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Structuring genotype × environment interaction 
— an overview* 

Badanie struktury interakcji genotypowo-środowiskowej — przegląd metod 
The phenotype of an individual is determined by both the genotype and environment. Farmers and 

scientists aim to determine a superior genotype over a wide range of environmental conditions but also 
over years. The basic cause of differences between genotypes in their yield stability is when these two 
effects are not only additive, i.e. when genotype × environment interaction (GEI) is present in the data. 
Multi-location trials play an important role in plant breeding and agronomic research. The data from 
such trials have three main points: (i) to accurately estimate and predict yield based on limited 
experimental data; (ii) to determine yield stability and the pattern of response of genotypes across 
environments; and (iii) to provide reliable guidance for selecting the best genotypes or agronomic 
treatments for planting in future years and at new sites (Crossa, 1990). The purpose of the present paper 
is (i) to describe various multivariate statistical methods for analyzing interactions in general and GEI 
in particular, and (ii) to present a selected bibliography of 142 references to previous work. 

Key words: genotype × environment interaction, additive main effects and multiplicative 
interaction model, principal component analysis, cluster analysis, biplot 

Celem programów genetyczno-hodowlanych, jak i praktyki, jest uzyskanie genotypów (odmian), 
które wykazują korzystne właściwości w różnych środowiskach. Podstawowym źródłem różnorodności 
fenotypu odmian jest nieaddytywność tych dwóch czynników, tzn. genotypu i środowiska. 
Nieaddytywność tę charakteryzujemy poprzez interakcję genotypowo- środowiskową. W badaniach 
hodowlanych bardzo ważną rolę pełnią doświadczenia wielokrotne i wieloletnie. Wykorzystujemy je 
głównie do oceny odmian w zakresie estymacji i predykcji plonów, oceny stabilności plonu odmian w 
różnych środowiskach oraz do rekomendacji uprawowych odmian ze względu na wartość hodowlaną 
lub rolniczą (Crossa, 1990). W pracy tej dokonujemy przeglądu wielowymiarowych metod 
analizowania interakcji podwójnej oraz, w szczególności, interakcji genotypowo – środowiskowej. 
Podajemy także literaturę dotyczącą wyżej wymienionych zagadnień. 

Słowa kluczowe: interakcja genotypowo środowiskowa, model addytywny ze względu na efekty 
główne i multiplikatywny ze względu na interakcję, analiza składowych głównych, 
metody grupowania, biplot 
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1. INTRODUCTION 

Farmers and scientists aim at determining a genotype which is superior over a wide 
range of environmental conditions and also over a number of years (multi-environment 
trials). The basic cause of differences between genotypes in their yield stability is when 
these two effects (genotype and environment) are not simply additive, i.e. when GEI is 
present in the data. 

Various statistical methods have been proposed for the analysis of interaction in general, 
and GEI in particular and these will be reviewed in this paper. First of all it is necessary to 
find if there is an interaction effect present in the data, then one has to consider this effect 
and importance as a subsequent work. Freeman (1972) described the aim of structuring 
GEI as: “This is all part of an attempt to discover more about the data than the crude tests 
reveal; thus, assuming that data = pattern + noise, one wants to find as much as possible 
of the pattern while eliminating the maximum noise”. 

To the best of our knowledge there is no recent review paper which provides an up-to-
date and extensive list of references about the most used techniques for analyzing and 
structuring GEI. 

The decision as to which papers are most important and relevant is necessarily 
subjective and doubtful, a lot of very good papers are not included. The aim of this selection 
is to give some key references as a possible basis for a further reading. Some of the 
references are very recent and with high quality which means that this subject is still under 
development.  

2. MOTIVATION AND PREVIEW OF THE REVIEW PAPERS 

Literally hundreds (even thousands) of papers have been written on this subject by 
statisticians, breeders, agronomists and geneticists. Over time some authors presented 
helpful works with many references about GEI: the paper of Aastveit and Mejza (1992) 
presents a collection with more than 120 references. Also the review works by Denis and 
Vincourt (1982), Cox (1984), Westcoutt (1986) and Crossa (1990) and the books by Kang 
(1990), Gauch (1992) and Kang and Gauch (1996) contain many references. The MSc. 
Thesis by Alberts (2004) also provides some useful references. However it is not easy to 
keep up with the expanding literature on this subject and the main reasons for this were 
pointed out by Kang and Gauch Jr. (1996), (i) “many important developments on 
interaction are published in statistical journals not read routinely by many agricultural 
researchers, and relevant statistical applications appear in an even wider assortment of 
medical, engineering, and other journals”; and (ii) “merely the agricultural literature itself 
is enormous, appearing in various languages and published in numerous countries. Some 
important items are published as departmental monographs or as chapters in books that 
may not come to some researcher’s attention.” 
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4. MULTIVARIATE ANALYSIS  

Crossa (1990) pointed out that multivariate analysis has three main purposes: (i) to 
eliminate noise from the data pattern (i.e., to distinguish systematic from nonsystematic 
variation); (ii) to summarize the data; and (iii) to reveal a structure in the data. He also 
divided the multivariate techniques used to structuring GEI in two groups: (i) ordination 
techniques — PCA, biplots and graphical representation, principal coordinates analysis and 
factor analysis – which assume that the data is continuous and attempt to represent genotype 
and environment relationships in a low-dimensional space; and (ii) classification 
techniques — cluster analysis and discriminant analysis – which seek for discontinuities in 
the data, group similar entities in clusters and summarize redundancy in the data. Here we 
follow the same division as Crossa (1990) to present the most used multivariate techniques 
for structuring GEI. 

4.1. ORDINATION TECHNIQUES  

4.1.1. Principal component analysis 
When dealing with large data sets, one of the main problems is how to extract the 

information. Principal component analysis (PCA) is the most used technique for reducing 
the data set while preserving significant features (e.g. Jolliffe, 2002).  

The most immediate objective of PCA is to verify if a small number of the first principal 
components exists which explains a high proportion of the variation in the original data set. 
If so, a few principal components can be used to represent the original data set without a 
big loss of information. This procedure corresponds to the dimension reduction of the 
original data set. 

Another goal of PCA is the visualization of variables underlying the original structure 
(the principal components) which have physical meaning and, therefore, help to see the 
initial structure from another point of view. 

This analysis can effectively reduce the structure of a two-way genotype × environment 
data matrix of G (genotypes) points in E (environments) dimensions in a subspace of fewer 
dimensions (Crossa, 1990).  

The model can be written as  

 
1

h

ij n ni nj
n

Y k v sµ
=

= +∑  (1) 

where Yij is the observed mean yield of the i-th genotype at the j-th environment, µ is 
the general mean, kn is the singular value of the n-th axis/principal component (𝑘𝑘𝑛𝑛2 is the 
eigenvalue), vni is the eigenvector of the i-th genotype for the n-th axis, snj is the eigenvector 
of the j-th environment for the n-th axis, and ∑ 𝑣𝑣𝑛𝑛𝑛𝑛ℎ

𝑛𝑛=1 = ∑ 𝑠𝑠𝑛𝑛𝑛𝑛 = 1ℎ
𝑛𝑛=1 . 

Johnson and Graybill (1972) and Corsten and van Eijnsbergen (1972) gave the full 
statistical analysis underlying the principal component approach and derived the 
appropriate distribution for a test of significance of the first component. 
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The model (1), under certain conditions, can be seen as a generalization of the linear 
regression analysis (Williams, 1952; Mandel, 1969; Johnson, 1977; Digby, 1979; Crossa, 
1990). 

Another generalization which includes PCA (together with the analysis of variance - 
ANOVA) is the Additive Main effects and Multiplicative Interaction (AMMI) model 
(Fisher and Mackenzie, 1923; Mandel, 1971; Gauch, 1988; Zobel, Wright and Gauch 1988; 
Gauch and Zobel, 1997; Gauch, 2006). The AMMI model, also called doubly-centered 
PCA, applies the singular value decomposition (SVD) to the data minus the genotype and 
environment means (Gauch, 2006). In the AMMI model, ANOVA estimates the additive 
effects of genotypes and environments and SVD or PCA estimates the GEI. 

Applications of PCA can be found, among others, in: Mandel (1971); Freeman and 
Dowker (1973); Hill and Goodchild (1981); Annicchiarico (1992); Jackson et al. (1994); 
Bull et al. (1994); Romagosa et al. (1996); Martinez et al. (1997); Ibanez et al. (2001); 
Laurentin et al. (2007).  

Three mode PCA (Kroonenberg, 1983) has been used to analyse and structuring GEI 
when the data are considered as a three dimensional matrix, e.g. Genotype × Environment 
× Year: Basford et al., 1991; van Eeuwijk and Kroonenberg, 1998; de la Vega and 
Kroonenberg, 2002). Furthermore, one can find some more applications on Kroonenberg 
and Basford (1989); and de la Vega and  Chapman (2001, 2006. Varela et al. (2006) 
presented as a generalization of three mode PCA for AMMI models.  

Although PCA is more efficient than the linear regression method in describing 
genotypic performance (Crossa, 1990), the interpretation of resulting principal components 
is difficult (Aastveit and Mejza, 1992). This weakness can be overcome by the use of 
graphical visualisations and biplots which are described in the next subsection. More weak 
points of PCA can be found in the literature: (i) the reduction of dimensionality of 
multivariate data may lead to distortions on interpretations (Crossa, 1990); (ii) if the 
proportion of variance explained by the first principal components is small, the individuals 
that are quite different may be represented by points that are close together (Gower, 1967); 
(iii) as a multiplicative model it has the problem of not describing the additive main effects 
(Zobel et al., 1998) and confuses the additive (main effects of genotypes and environments) 
structure of the data with nonadditivity effects (GEI) (Crossa, 1990); (iv) and nonlinear 
association in the data prevents PCA from efficiently describing the real relationships 
between entities (Williams, 1976). Perkins (1972) also pointed out that PCA was not useful 
for studying the adaptation of a group of inbred lines of Nicotiana rustica. 

4.1.2. Biplot and graphical visualization 
The display of genotypes and environments along the first two principal component 

axes for the interaction table of residuals is called a biplot (Gabriel, 1971; Bradu and 
Gabriel, 1978; Kempton, 1984; Gower and Hand, 1996). This technique can provide useful 
information on grouping similar genotypes and/or environments and can also provide some 
useful information about the GEI to identify genotypes which are well adapted to a 
particular environment (Zobel et al., 1988; Crossa, 1990; Crossa et al., 2002). Three 
dimensional biplots were presented by Gower and Digby (1981). 
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Since Bradu and Gabriel (1978) explored the use of the biplot as a diagnostic tool for 
choosing an appropriate model for the analysis of two-way data it has been used in multi-
environment trial data analysis (Yan and Hunt, 2002). Consequently some generalizations 
and applications have been proposed: GGE biplots display both genotype main effects (G) 
and genotype × environment interaction (GE) which are two sources of yield variation that 
are relevant in cultivar evaluation (Cooper et al., 1997; Yan, 1999, 2001; Yan et al., 2001; 
Yan and Kang, 2003); Yan and Tinker (2005) presented a third type of biplot (after biplot 
and GGE biplot) which displays the yield-trait relations in individual environments and 
addresses whether and how the GEI for yield can be explored by indirect selection for the 
other traits.  A genotype x trait biplot (Yan and Rajcan, 2002; Yan and Kang, 2003) 
graphically approximates a genotype × trait two-way table and can be used to visualize the 
genetic correlations among traits.  

Applications of the biplot methodology to diallel data (Yan and Hunt, 2002), to host-
by-pathogen data (Yan and Falk, 2002), to barley yield (Dehghani et al., 2006) and to 
linear-bilinear models (Crossa et al., 2002), among others, can be found in the literature. 

4.1.3. Principal coordinates analysis 
Principal coordinates analysis (PCO) was pioneered by Gower (1966) as an alternative 

to PCA, which is a metric multidimensional scaling method based on projection and uses 
spectral decomposition to approximate a matrix of distances/dissimilarities by the distances 
between a set of points in several dimensions. It can be seen as the dual of PCA, i.e. instead 
of the use of the matrix WW‘ whose size is the number of variables or environments (PCA), 
it consider the matrix W’W whose size is the number of individuals or genotypes, where 
W represents all the variation within genotypes, including that for the error (Freeman, 
1972). 

In contrast to PCA, PCO employs a broader range of distances (PCO is equivalent to 
PCA on a covariance matrix of a transposed data matrix if the distance matrix is Euclidean; 
and PCO is equivalent to PCA on a correlation matrix of a transposed data matrix if the 
distance matrix is Penrose) or dissimilarity coefficients between objects (Crossa, 1990). 
The objectives and limitations of PCO are similar to those of PCA with some advantages 
as pointed out by Crossa (1988, 1990): (i) it is trustworthy when used for data that include 
extremely low or high yielding sites; (ii) it does not depend on the set of genotypes included 
in the analysis; and (iii) it is simple to identify stable varieties from the sequence of graphic 
displays. 

Applications of PCO can be found, for example, on Fox and Rosielle (1982); Crossa 
et al. (1988, 1999) and Ibanez et al. (2001). 

4.1.4. Factor Analysis 
Factor Analysis (FA) is similar to PCA where the principal components are replaced by 

“factors”. As in PCA, in FA a large number of correlated variables is reduced to a small 
number of main (uncorrelated) factors (Spearman, 1904; Cattell, 1965), and assumed that 
each variable can be expressed as a linear compound of k (lower than the number of 
individuals) hypothetical variables, the common factors, plus an additional term depending 
only on the particular variable and known as the specific factor (Gower, 1966). Another 
difference between PCA and FA is that in FA the rotation of the obtained factors is possible. 
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A rotation which requires the factors to remain uncorrelated is an orthogonal rotation, while 
others are oblique rotations. Oblique rotations often achieve greater simple structure, 
though at the cost that one must also consider the matrix of factor intercorrelations when 
interpreting results. 

FA has been used to analyse GEI. Grafius and Kiesling (1960) constructed orthogonal 
vectors representing environmental effects using FA and predicted genotype responses in 
terms of these vectors. Walton (1972), and Seiler and Stafford (1985) used FA to 
understand relationships between yield components and morphological characteristics. 
Gollob (1968) refers to the fixed two-way models 

 1
, 1,..., ; 1,..., ,

c

ij i j k ki kj ij
k

Y u v i t j bµ τ β θ ε
=

= + + + + = =∑  (2) 

where μ is the general mean, τi and βj represent the main effects, and the 𝜀𝜀𝑛𝑛𝑖𝑖~𝑁𝑁(0,𝜎𝜎2), 
as factor analysis of variance or simply FANOVA models because they incorporate the 
benefits of data reduction from a factor decomposition of residuals and the ease of 
interpretation permitted by the analysis of variance. Latter, Yochmowitz and Cornell 
(1978) proposed a stepwise test base upon likelihood ratio statistics to determine the 
number of multiplicative components in the MANOVA (Multivariate ANOVA) model. 

Applications of FA to GEI can be found, among others, in Peterson and Pfeiffer (1989), 
Oliveira et al. (2005) and Garbuglio et al. (2007). 

4.2. CLASSIFICATION TECHNIQUES 

4.2.1. Cluster analysis 
Cluster analysis (CA) (Cormack, 1971; Everitt et al., 2001) seeks to identify a set of 

groups which both minimize within-group variation and maximize between-group 
variation. 

Two types of clustering can be distinguished: (i) hierarchical and (ii) 
partitional/nonhierarchical. Hierarchical clustering algorithms find successive clusters 
using previously established clusters and do not require preset knowledge of the number of 
groups (the traditional representation is called a hierarchical tree diagram or dendrogram). 
Hierarchical algorithms can be agglomerative — beginning with each element as a separate 
cluster and merging them into successively larger clusters; or divisive — beginning with 
the whole set and proceeding to divide it into successively smaller clusters. 

Partitional/nonhierarchical algorithms determine all clusters at once and one has to 
decide in the beginning of the analysis the number of clusters (the most well known 
partitional algorithm is K-means which uses the Euclidian distance). CA also requires a 
measure of distance between the individuals which determines how the 
similarity/dissimilarity of two objects is calculated. The most known and used distance 
functions are: Euclidean; Mahalanobis, Manhattan, maximum norm and Hamming.  

CA is one of the most important methods to analyzing and structuring GEI (Aastveit 
and Mejza, 1992) and the most widely used technique for classifying environments or 
genotypes into homogeneous groups (Huhn and Truberg, 2002). CA has been used to study 
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genotype adaptation by simplifying the pattern of responses and to subdivide genotypes 
and environments into more homogeneous groups (Crossa, 1990). Lin et al. (1986) and 
Westcott (1987) presented review papers about the application of classification methods to 
GEI and discussed their problems. 

Crossa (1990) pointed out some of the disadvantages of CA: (i) numerous hierarchical 
grouping exist, and each of them may produce different cluster groups; (ii) the truncation 
level of the classificatory hierarchies may be decided arbitrarily; (iii) many different 
similarity measures can be used yielding different results; and (iv) CA may produce 
misleading results by showing structures and patterns in the data when they do not exist 
(Gordon, 1999). 

With the two-stage Ward-Modified Location Model (Ward-MLM), proposed by Franco 
et al. (1998) where the initial groups are generated by the Ward (1963) minimum variance 
within-groups hierarchical method, it is possible to avoid the “independence across sites” 
assumption and therefore to estimate variance of the traits within sites and their covariances 
across sites (Franco et al., 2003).  

Franco et al. (1999) extended the Ward-MLM strategy to the case of clustering three-
way data of cultivar x environment x trait. This strategy considers the same trait measured 
in different environments as different variables, and it considers the clustering of n 
individuals on the basis of p continuous and q categorical traits measured in r different 
environments (Franco et al., 2003). 

Multiplicative models for multi-environment cultivar trials that consider one trait at a 
time (unvaried case) have been used for developing methods for clustering environments 
or genotypes into groups with statistically negligible crossover interaction (Cornelius et al., 
1992, 1993; Crossa et al., 1993; Kang and Gauch, 1996; Crossa and Cornelius, 1997; 
Abdalla et al., 1997). The multivariate case is when one considers all the traits (continuous 
and categorical) simultaneously (three-way Ward-MLM methodology) (Franco et al., 
2003). 

Basford and McLachlan (1985) also proposed a classification method for three-way 
cluster analysis when all measured traits are continuous, and an association between 
categorical and continuous variables can be found in Franco and Crossa (2002) and Franco 
et al., 2002) with application in Franco et al. (2002). 

The first attempt to apply CA to GEI was by Abou-El-Fittouh et al. (1969) using cotton. 
Lin (1982) proposed a cluster method to group genotypes according to their response to 
environments when the GEI is large. Ramey and Rosielle (1983) proposed a new method 
of cluster analysis, termed the hierarchical agglomerative sums of squares method (HASS) 
to facilitate clustering of genotypes and environments where GEI exists. Corsten and Denis 
(1990) proposed an agglomerative hierarchical clustering procedure for an orthogonal two-
way table. Franco et al. (1998) proposed the two-stage clustering Ward-Modified Location 
Model, and Lefkovitch (1985) discussed the problems of multi-criteria clustering in GEI. 

Huhn and Truberg (2002) compare different cluster techniques, present theoretical 
results and give wide list of references to preview work in CA, in particular applied to GEI. 
The experimental results are given by Truberg and Huhn (2002). 
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Many references to the application of CA to GEI can be found: Robert (1997) used a 
clustering procedure to identify groups of environments which were homogeneous for 
interaction in bread wheat, in two multi-location series of trials. Berger et al. (2002) used 
the K-means clustering algorithm to group genotypes of undomesticated Mediterranean 
Vicia. CA was undertaken by Adugna and Labuschagne (2003) for 10 genotypes of linseed 
that were tested in a four-times replicated randomized block design across 18 environments 
(six localities by 3 years) of Ethiopia. Gruneberg et al. (2005) derived three environmental 
groups, for sweet potato clones from CA. A CA was used by Isik and Kleinschmit (2005) 
in order to illustrate the general pattern of similarities among the test sites of Picea abies 
in northern Germany. Padi (2007) used hierarchical CA to identify discrete groups of 
cowpea genotypes. 

Sometimes, the CA is combined with regression analysis (Tai et al., 1994, Yang et al., 
2006) and with the analysis of variance (Lin, 1982; Lefkovitch, 1985; Sanchez-Dominguez 
et al., 2006). 

Many times the multivariate methods constitute a basis for a CA (e.g. Seif et al., 1979; 
Calinski et al, 1989 a, b; Adugna and Labuschagne, 2003 — for canonical analysis).  

4.2.2. Linear discriminant analysis 
Linear discriminant function analysis or discriminant analysis (LDA) (Fisher, 1936) 

aims to find the linear combinations of features which best separate two or more predefined  
classes of objects or events. The multivariate case, known as Multiple Discriminant 
Analysis, Discriminant Factor Analysis or Canonical Discriminant Analysis (CDA), 
derives the canonical coefficients and finds linear combinations of the quantitative 
variables that provide maximal separation between the classes or groups in much the same 
way that principal components summarize total variation (from the n original variables it 
constructs n linear functions — canonical discriminant functions - and the discriminant 
functions may be used to calculate a set of n discriminant scores for each discriminant 
function). 

Applications of DA and CDA may be found in the literature about GEI. Gallacher 
(1997) used both a monothetic and a polythetic discriminant analysis on selected 
characteristics of Australian sugarcane germplasm. Martinez et al. (1997) used DA on 
Grenache N grapevine, and Salehuzzaman and Joarder (1979) on soybean. Crown shape of 
four different clones planted out in six experimental fields located in five European 
countries are described and compared using discriminant analysis (Santini and Camussi, 
2000). Johnston et al. (2001) used CDA to infer the environmental factors most strongly 
associated with the different genotypic groups in a Louisiana iris hybrid population. 

Canonical analysis is concerned with determining the relationships between groups of 
variables in a data set (Hotelling, 1936; Cliff and Krus, 1976) and has also been used in 
GEI. Applications of this methodology to GEI can be found in Calinski et al. (1987a, 
1987b); Lejeune and Calinski (2000) and Adugna and Labuschagne (2003). 
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5. AMMI MODELS 

Work by Williams (1952), Gollob (1968), Mandel (1971) and Bradu and Gabriel (1978) 
has made an important contribution to the development of additive main effects and 
multiplicative interaction  (AMMI) models (Annicchiarico, 2002). According to Gauch 
(1988), Zobel et al. (1988) and Crossa et al. (1990), AMMI models can be used to analyze 
multilocation trials.  

The AMMI method first applies the addictive analysis of variance model to a two-way 
data (e.g. genotypes and environments), and then applies the multiplicative principal 
component analysis model to the residual from the additive model, i.e. to the interaction 
(e.g. GEI) (Gauch, 1988, 1992). The AMMI model is given by, see Gauch (1988), 

 
1

,
N

ge g e n gn en ge
n

Y µ α β λ γ δ θ
=

= + + + +∑  (3) 

where: 
Yge is the yield of genotype g in environment e; 
µ is the grand mean; 
αg are the genotype mean deviations (the genotype means minus the grand mean); 
βe are the environment mean deviations; 
λn is the eigenvalue of PCA axis n; 
γgn and δen are the genotype and environment PCA scores for PCA axis n; 
Ν is the number of PCA axes retained in the model; 
θge is the residual. 
If the experiment is replicated, an error term εger, which is the difference between the Yge  mean and the single observation for replicate r, may be added. 
Crossa (1990) pointed out three main purposes of AMMI models: (i) model diagnosis 

— AMMI is more appropriate in the initial statistical analysis of yield trials because it 
provides an analytical tool for diagnosing other models as subclasses when these are better 
for a particular data set (Bradu and Gabriel, 1978); (ii) to clarify GEI — AMMI models 
summarize patterns and relations of genotypes and environments (Kempton, 1984; Zobel 
et al., 1988; Crossa et al. 1990); and (iii) to improve the accuracy of yield estimates — 
gains have been obtained in the accuracy of yield estimates that are equivalent to increasing 
the number of replicates by a factor of two to five (Zobel et al., 1988; Crossa et al., 1990) 
which can be used to reduce the costs by reducing the number of replications, to include 
more treatments in the experiment, or to improve efficiency in selecting the best genotypes. 

There are several possible AMMI models characterized by a number of significant principal 
component axes ranging from zero (AMMI-0, i.e. additive model) to min(g-1,e-1), where g is 
the number of genotypes and e is the number of environments. The full model (AMMI-F), 
with the highest number of principal component axes, provides a perfect fit between 
expected and observed data. Models including one (AMMI-1) or two (AMMI-2) PC axes 
are usually the most appropriate where there is significant GEI. Due to their simplicity, 
they provide a notable reduction of dimensionality for the adaptation patterns relative to 
observed data (Annicchiarico, 2002). 
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6. OTHER TECHNIQUES 

6.1. Multivariate analysis of variance 
Multivariate analysis of variance (MANOVA) is an extension of ANOVA for several 

dependent variables. The main aims of MANOVA are identifying whether changes in the 
independent variables have a significant effect on the dependent variables, and the 
interactions among the independent variables and the association between dependent 
variables, if any. 

MANOVA has been used to analyse GEI. Yang and Baker (1991) proposed two 
heuristic tests for the significance of the two causes of GEI. A comparison between 
MANOVA and REML — restricted maximum likelihood analysis — was presented by 
Yang (2002). 

Application of MANOVA to the analysis of GEI can also be found in Shukla (1972), 
Calinski et al. (1979, 1987 a, 1987 b, 1989 a, 1989 b), Finnie et al. (2006), Aggoun et al. 
(2006), among others. 

6.2. Additional information — environmental variables 
Many times the environment part of GEI can be characterized with some additional 

variables (Wood, 1976) such as soil characteristics and climate (e.g. temperature, rainfall, 
radiation level, altitude). Usually the available data is composed of two-way data for yields 
to structure GEI and of data characterizing the environment (environmental variables), with 
the authors aiming to relate these two data sets to find relationships.  

The most usual way to introduce environmental variables in the analysis of GEI is using 
linear regression and related techniques. The multilinear regression method can be used for 
predictive purpose when environmental data are used as independent variables (Knight, 
1970). 

Factorial regression analysis (FA) (van Eeuwijk et al., 1996) was used by Signor et al. 
(2001) to model the interaction effect using additional genotypic and environmental 
information for grain yield of early maize, and by Campbell et al. (2004) to explain GEI 
and quantitative trait × environment interaction (QEI) on wheat. Crossa et al. (1999) found 
that temperature differences across environments accounted for a large portion of the GEI 
detected in tropical maize (Zea mays L.). Ceretta and van Eeuwlik (2008) used FA to model 
GEI directly in relation to measured environmental variables in malting barley cultivars. 

Aastveit and Martens (1986) used the Partial Least Squares (PLS) regression (Wold, 
1966; Wold, 1975) to relate year differences in straw length of 15 barley genotypes to 
climate variation over 9 years. A data set of rainfall, temperature, and global radiation at 
different stages throughout the growth season over years was related with the residual table 
of GEI after the factors’ effects were removed by an ANOVA. Other applications of PLS 
regression can be found, for example, in Vargas et al. (1999, 2001); Reynolds et al. (2004); 
and Ortiz et al. (2007). 

Vargas et al. (1999) compared results obtained from PLS and FR in two large multi-
environment trials and showed that both methods identified similar environmental and 
genotypic covariates that explain a large proportion of the GEI. Ortiz et al. (2007) also 
presented a comparison between PLS and FR with application to tomato genotypes. 
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PCA, combined with multiple regression, may be useful for reducing the number of 
environmental variables to be included in the final analysis (Perkins, 1972; Crossa, 1990). 

Reynolds et al. (2004) added environmental variables in an AMMI biplot. Yan and Hunt 
(2001) presented another approach for incorporating genetic and environmental covariates 
in multi-environment trials data analysis, in which the observed GGE (combination 
between genotypes and genotype x environment interaction) patterns were explained as 
interactions between genetic covariates and environmental covariates. This was achieved 
by relating the genetic–environmental covariates to the genotypic–environmental scores of 
the first two principal components derived from GGE biplot analysis (Yan and Tinker, 
2005). 

7. CONCLUDING REMARKS 

A wide range of multivariate methods can be used to structure and analyze GEI on 
multilocation trial data. Although some of these have limitations on interpretation of the 
achieved results, they often yield suggestions into particular complex situations and they 
usually overcome the limitations of linear regression. Nowadays researchers combine 
different techniques to get better results (e.g. AMMI models joint together ANOVA and 
PCA). 

In this paper we reviewed the most used multivariate techniques and we gave a selection 
with some references to be considered as a possible basis for further reader. If the reader 
finds out some important reference missing please let us know. 
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