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Barley (Hordeum vulgare L.) is one of the most economically important cereals and holds fourth place in the world
by harvest area. Powdery mildew, caused by the pathogenic fungus Blumeria graminis f. sp. hordei, is one of the most
important diseases that decrease the quantity and quality of the yield. Since there is a limited number of resistance genes
present in cultivated crop varieties, there is a need to search for and identify new sources of resistance.
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Jeczmien (Hordeum vulgare L.) jest jednym z najwazniejszych gospodarczo zbdz i zajmuje czwarte miejsce pod
wzgledem areatu upraw na $wiecie. Maczniak prawdziwy, powodowany przez grzyb patogeniczny Blumeria graminis
f. sp. hordei, jest jedna z najwazniejszych chordb wplywajacych negatywnie na ilo§¢ i jako$¢ plonu jeczmienia.
Ograniczona pula genéw odpornosci wykorzystywanych w odmianach uprawnych stwarza potrzebe poszukiwania

i identyfikacji nowych zrédet odpornosci.

Stowa kluczowe: geny odpornosci, Hordeum vulgare, maczniak prawdziwy traw i zb6z, pule genowe

Introduction

Barley (Hordeum vulgare L.) 1is one
of the major cereals in terms of harvest area
and yield, both in Poland and in the world
(FAOSTAT 2019, GUS 2019). Fungal pathogens
are an economically important factor limiting
the quantity and quality of the yield (Singh et al.
2019). Powdery mildew, caused by Blumeria
graminis f. sp. hordei, is one of the most impor-
tant diseases with a negative effect on the yield
(Savary et al. 2012, Walters et al. 2012). The wide-
spread cultivation of spring and winter barley,
as well as local climatic conditions, promote
the persistence of this pathogen and the devel-
opment of the disease. Extensive use of chem-
icals to protect crops is not socially accepted
(Report on public consultations for the Strategy
for Sustainable Rural Development, Agriculture
and Fisheries 2030, 2019) and leads to the selec-
tion of fungicide-resistant pathogen strains
(Lucas et al. 2015). Responsible use of chemicals
and the cultivation of resistant varieties are in line
with the main objectives of the FEuropean
Union’s Common Agricultural Policy for 2021-
2027 (https://europa.eu/rapid/press-release
MEMO-18-3974 en.htm) and the 2030 Agenda

for Sustainable Development, UN (http://www.
un.org.pl/). The narrow genepool of the currently
grown elite varieties of barley stimulates the need
to search for new effective resistance genes
in landraces and related wild species.

Barley

The genus barley (Hordeum) is taxonomically
assigned to the Poaceae family and the Tritice-
ae tribe (APG 1V, 2016). This genus includes 32
species, most of which are diploid (von Both-
mer et al. 2003a). About 200 botanical varieties
of H. vulgare have been identified (Hanelt et al.
2001). Cultivated barley (Hordeum vulgare
ssp. vulgare L.) originates from wild barley
(H. vulgare ssp. spontaneum C. Koch). It was
domesticated during the Neolithic revolution,
about 13,000-11,000 years ago, in the area known
as the Fertile Crescent, stretching from the Persian
Gulf to the Nile valley and covering the lands
of Iraq, Syria, Jordan, Lebanon, Palestine, Isra-
el and Egypt (Salamini et al. 2002, Purugganan
and Fuller 2009). DNA studies and the natural
range of wild barley occurrence indicate a second
independent domestication that took place at
the eastern end of the Iranian Plateau in Pakistan

Managing editor: Anna Linkiewicz.

Artykut przeglagdowy

Review paper


mailto:u.piechota%40ihar.edu.pl?subject=

BIULETYN IHAR Nr 289 /2020

Urszula Piechota, Pawet Czembor...Urszula Piechota, Pawet Czembor

(Komatsuda 2014). Today, barley is one of the most
popular cereals grown in the world. It owes its
success to various and harsh environmental condi-
tions. It is highly resistant to drought and soil salin-
ity, as well as cold (von Bothmer et al. 2003a).
Barley has a relatively short growth cycle, which
is 60-90 days for spring forms (Agrometeorologi-
cal Centre of Excellence, http://www.gov.mb.ca/
agriculture/climate), and which can be completed
before the onset of unfavourable conditions, i.e.
summer drought and high temperatures.

Barley is the fourth cereal in the world, after
wheat, maize and rice, in terms of harvest area,
which is approx. 48 million ha (FAOSTAT, 2018).
Almost half of the world’s barley is grown in Europe
(23 million ha), where this cereal ranks second after
wheat (FAOSTAT, 2018) in terms of harvest area.
The European Union is the leader in barley exports,
which in 2016 amounted to over 8.5 million tonnes.
World barley production by country is presented
in Figure 1.

Poland ranks seventh among European coun-
tries in terms of barley harvest area. In 2019, it was
over | million ha, which is approx. 13% of the total
area of land under cereal crops, and in third place,
after wheat and triticale (GUS, 2019). Considering
the total yield of barley in Poland, which in 2017
was less than 305 million tonnes, this cereal ranks
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fourth, after wheat, triticale and maize (GUS, 2017).

The use of barley changed depending
on the historic period and culture. In Ancient
Rome, barley grain was an important component
of the human diet (Giraldo et al. 2019). The natu-
ral fermentation of grain during storage resulted
in the discovery of alcoholic beverages. Barley beer
was produced in Ancient Egypt over 5,000 years
ago (Giraldo et al. 2019). Today barley is grown
mainly for the production of feed for cattle and pigs.
Fodder barley accounts for 85% of global produc-
tion. Another 15% of harvested barley is used
for food and seed. In the human diet barley grain
is a rich source of B-glucans that normalize choles-
terol and blood glucose levels (Collins et al. 2010).
In the food industry, barley is mainly used to produce
beer and whisky, flour and flakes. In 2014, glob-
al beer consumption amounted to almost 2 billion
hectolitres, and over 21 million tonnes of barley
were used by the brewing industry (http://e-malt.
com/ after Giraldo et al. 2019).

The International Barley Sequencing Consor-
tium elaborated a physical map and the complete
sequence of the barley genome (The Interna-
tional Barley Genome Sequencing Consortium
2012). The haploid barley genome has seven chro-
mosomes with a total length of approximately
5.3 Gbp. It is one of the largest genomes of all crops

Rys. 1. Swiatowa produkcja jeczmienia wyrazona w tonach (Actualitix 2019, https:/en.actualitix.com/, Zrédlo danych:
FAOSTAT 2014).

Fig. 1. World barley production in tonnes (Actualitix 2019, https://en.actualitix.com/, data source: FAOSTAT 2014).
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Rys. 2. Schemat cyklu Zyciowego Blumeria graminis,

na podstawie Ridout i in. (2006), zmienione.

Fig. 2. The lifecycle scheme of Blumeria graminis, based
on Ridout et al. (2006), modificated.

1. Grzybnia z konidioforami / Mycelium with conidiophores.

2. Konidia / Conidia.

3. Zarodnik infekujqgcy komérke gospodarza / A spore infects host cell.
4. Grzybnia z klejstotecjami / Mycelium with cleistothecia.

5. Klejstotecjum z workami / Ascii in cleistothecium.

6. Askospory / Ascospores.

and the third largest cereal genome after triticale
(21.3 Gbp) and wheat (14.5 Gbp). The complete
sequence is deposited in the open EnsemblPlants
repository  (https://plants.ensembl.org/)  (Aken
et al. 2017). Barley is a model plant used in scien-
tific research. By 2018 the term barley appeared
in over 50,000 research papers indexed in the Else-
vier Scopus database, and 2% of them were Polish
publications (Giraldo et al. 2019).

The breeding of barley led to the creation
of many varieties. These varieties are categorized
in accordance with the OECD quality criteria
(2004), depending on the vernalization require-
ments for spring and winter varieties, and starch
composition and protein content in the grain
for feed and malting cultivars. Barley breeding
programmes focus on increasing the nutritional
value and tolerance to biotic and abiotic stresses,
especially in the context of global climate change
(Riehl 2019). It is still challenging to control nearly
250 barley pathogens, which cause significant loss-
es in yield and quality of grain (Singh et al. 2019).
Powdery mildew caused by Blumeria graminis f. sp.
hordei, is next to rust (Puccinia hordei) and scald

(Rynchosporium commune), the most important
disease in barley (Savary et al. 2012, Walters et al.
2012). It causes a 10-20% loss in yield on average,
and up to 50% in favourable conditions (Tratwal
and Weber, 2006). The cultivation of barley all year
round, the use of spring and winter forms, as well
as a long growing season and a moderate climate
promote the development of this disease (Jorgensen
and Wolfe 1994).

Blumeria graminis f. sp. hordei

Powdery mildew of grasses and cereals
is a fungal disease caused by Blumeria graminis,
from the order Erysiphales, class Leotiomycetes,
phylum Ascomycota. The order Erysiphales includes
only one family, Erysiphaceae. Molecular analyses
of the internal transcribed spacer (ITS), a noncoding
domain within the ribosomal DNA genes, contribut-
ed to the revision of the previously adopted taxono-
my. The Erysiphaceae family was divided into tribes
reflecting the origin and morphology of particular
species. Powdery mildew of cereals and grasses
is caused by Blumeria graminis (D.C.) Golovin ex
Speer, the only species representing the Blumerie-
ae tribe. Within this species there are special forms
(formae speciales) adapted to interaction with
a compatible host species (Wyand and Brown
2003). This classification, based on both molecular
and phenotypic analyses, was presented in the publi-
cation by Braun (2011) and the textbook by Braun
and Cook (2012), and is identical to the classifica-
tion presented in the Species Fungorum database
(http://www.speciesfungorum.org/; 10.2019, Centre
for Agriculture and Biosciences International, UK).

Blumeria graminis is an obligate biotroph.
Fungal propagules (conidia) are dispersed by wind
(Figure 2). Conidia contain 75% of water and thus
can germinate fast, even on dry leaves. Just a few
minutes after landing on the leaf of the host plant,
a conidium produces a short primary germ tube
that is used for host recognition. A few hours later
the conidium produces a secondary germ tube. This
tube develops an appresorium which, through phys-
ical pressure and chemical degradation, penetrates
the wall of host epidermal cells.

At the next stage of infection, the haustorium
is produced inside host cells, a special structure
for the exchange of metabolites between the path-
ogen and the host. During compatible coloniza-
tion, secondary haustoria and vegetative hyphae
are produced epiphytically. A few days after infec-
tion, the mycelium produces conidiophores that
release conidia on the host surface. The macro-
scopic symptom of the disease is a powdery white,
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grey to brown mycelium on the leaf surface.
It can be accompanied by chlorosis, necrosis, wilt-
ing, and weakening. The complete asexual life
cycle of the pathogen is seven to ten days long
and is repeated almost all year round, causing host
reinfections and disease progression.

At the end of the growing season, B. graminis
propagates in a sexual cycle. Plasmogamy and karyo-
gamy occur between compatible gametangia formed
on fungal hyphae. Meiosis leads to the formation
of ascospores. Black spots of fruiting bodies visi-
ble on the epiphytic mycelium are cleistothecia
containing ascii with ascospores. Cleistothecia can
survive in unfavourable environmental conditions
during hot late summer, and winter. Under favour-
able conditions mature ascii release ascospores that
infect a susceptible host. B. graminis can survive
winter in the form of a vegetative mycelium
and cleistothecia on winter varieties and volunteer
host plants.

Blumeria graminis is the sixth of the ten most
important fungal plant pathogens due to its economic
and scientific importance, according to the experts
collaborating with the Molecular Plant Pathology
journal (Dean et al. 2012). According to the classi-
fication proposed by McDonald and Linde (2002),
B. graminis is a high risk pathogen due to its high
adaptability and very large population size. New
races of this pathogen showing different virulence
are produced in the sexual cycle, and the share
of virulent races increases dramatically in the asex-
ual cycle. When weather is favourable, sporulation
begins just six days after infection. After ten days,
up to 100,000 conidia are released from a single
infection site. The spores easily spread to neigh-
bouring plants, and can also be dispersed by wind
for hundreds of kilometres (Jorgensen and Wolfe
1994). In addition, the high rate of spontaneous
mutations, estimated at 1.3E-8 - 2.29E-9 per nucle-
otide per year (Oberhaensli et al. 2011, Hacquard
et al. 2013), contributes to the creation of new races
of this fungus.

Eight isolates of B. graminis have been
sequenced, including four of B. graminis f. sp.
hordei (A6, CC146, DH14, K1) (NCBI, 10.2019).
The size of the fungus genome is estimated
at 120—130 Mbp. This is three to four times more
than the size of the genomes of other pathogen-
ic fungi from the Ascomycota genus, for example
Magnaporthe oryzae genome is 40 Mbp. The size
of the B. graminis f. sp. hordei genome results from
the large number of repetitive DNA and the pres-
ence of transposable elements. These sequences
account for 64% of the whole genome (Spanu et al.
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2010). The presence of transposable elements leads
to large genomic rearrangements and the forma-
tion of physiological races with different virulence
on various host genotypes.

Despite its large genome, B. graminis f. sp.
hordei has a reduced number of genes encoding
enzymes hydrolyzing the plant cell wall in the host.
Two genes encoding cellulose hydrolase, four
for hemicellulose and one for pectin, have been
identified (Spanu et al. 2010). A similar reduced
number of genes encoding proteins from these
families was observed in the genomes of other
obligate biotrophs, e.g. Puccinia graminis f. sp.
tritici, in contrast to facultative biotrophs that have
more than 100 genes encoding enzymes involved
in the degradation of the cell wall of the host, like
Sclerotinia sclerotiorum and Colletotrichum higgin-
sianum. The genome of B. graminis f. sp. hordei
contains 248 (Spanu et al. 2010), or 500 (Panstru-
ga 2012) sequences potentially encoding virulence
factors. So far, two genes encoding the effector
factors Avrkl and Avral0 have been identified
(Ridout et al. 20006).

Resistance of plants to pathogens

Plants have developed various multi-level
defence mechanisms of resistance to pathogens
(Chen 2013, Zhang et al. 2013). The fundamental
classical hypothesis of the resistance mechanism
is Flor’s gene-for-gene (1956), describing a direct
interaction between the product of the host resistance
gene R and the avirulence factor Avr of the path-
ogen. Most R genes are dominant and determine
complete race-specific resistance (Kourelis and van
der Hoorn 2018). In the course of further research,
Flor’s hypothesis was incorporated into the zigzag
model developed by Jones and Dangl (2006) (Figure
3). This model illustrates the successive stages
of pathogen infection and host response. According
to the zigzag model, two mechanisms are involved
in the recognition of the pathogen and the activa-
tion of defence mechanisms. The first one depends
on pattern recognition receptors (PRR) recognizing
pathogen-associated molecular patterns (PAMPs),
e.g. chitin (Zipfel 2008, 2009; Schwessinger
and Ronald 2012). The recognition of PAMPs leads
to the activation of PAMP-triggered immunity (PTI).
PTI is manifested, for example, by the induction
of pathogenesis-related gene (PR) expression, cell
wall apposition, and oxidative burst. PTI is poten-
tially durable. A pathogen that evades or overcomes
PTI initiates the secretion of virulence factors
(effectors) into the host cells, which facilitate infec-
tion and cause effector-triggered susceptibility
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Rys. 3. Schemat modelu zig-zag odpornosci roslin; na podstawie Jones i Dangl (2006), zmienione. Rozpoznanie PAMP

przez receptory PRR powoduje aktywacje odpornosci PTI. Sekrecja efektoréw patogenu przelamuje PTI i indukuje po-

datno$¢ ETS. Gdy specyficzny czynnik Avr zostanie rozpoznany przez roslinne bialko R, nastepuje aktywacja odpornosci

ETI, ktora wyraza si¢ reakcja nadwrazliwosci. W wyniku presji selekcyjnej, patogen traci Avr i indukuje podatno$¢ ETS.
Powstaja nowe bialka R uczestniczace w ETI.

Fig. 3. The zig-zag model of plant immune system, based on Jones and Dangl (2006), modificated. Plants detect PAMP

via PRRs to trigger PTI immunity. Pathogens deliver effectors that interfere with PTI, resulting ETS susceptibility. One

Avr effector is recognized by an R protein, activating ETI immunity and induction of hypersensitive reaction. Pathogen
is selected that have lost Avr and induce ETS susceptibility. New R proteins are developed, resulting in ETI.

(ETS). If a specific effector (Avr factor) is recog-
nized by the R resistance gene product, effector-trig-
gered immunity (ETI) is induced (Jones and Dangl
2006). ETI leads to a hypersensitivity reaction, i.e.
programmed host cell death and arrest of patho-
gen development. As a result of selective pres-
sure, the pathogen overcomes the host’s response
through the loss of the Avr factor. The emergence
of new virulent races favours the selection of new R
proteins binding the effectors produced by the viru-
lent isolate. Binding the Avr and R factors may
be direct in accordance with the gene-for-gene
model, or indirect through a guard protein (Dangl
and Jones 2001) or a decoy protein (van der Hoorn
and Kamoun, 2008). In a detailed study, Kourelis
and van der Hoorn (2018) distinguished nine mech-
anisms of action of R proteins.

The pathogen-host interaction depends on three
components: the genetic background of both organ-
isms and the environmental conditions in which
the interaction takes place. Plants vary in terms
of their susceptibility and resistance, while path-
ogens vary in their virulence. The result of this

interaction depends on the long pathogen-host coev-
olution: plants evolve towards recognizing the path-
ogen, and the pathogen evolves towards avoiding
or overcoming the host’s immunity (Stukenbro-
ck and McDonald 2009). Models are simpli-
fied concepts of a complex sum of interactions.
The actual host response does not strictly follow
each of the mechanisms included in the zigzag
model, but fluctuates smoothly between the PTI
and ETI. As the phylogenetic distance between
the potential host and the specialized host increases
and the degree of pathogen specialization decreases,
the share of ETI in the overall plant response in favor
of PTI decreases (Schulze-Lefert and Panstruga
2011). The mechanism and outcome of infection
depends on the spectrum of factors determining
the pathogen’s virulence and host response involved
in both types of resistance, as well as the degree
of pathogen specialization and host compatibility.
The interaction between barley and B. graminis
f. sp. hordei is one of the best investigated
and modelled plant-pathogen systems (Panstru-
ga and Dodds 2009, Spanu et al. 2010). During
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infection, barley rapidly identifies the pathogen.
Transcriptome profiles in the host change as early
as four to six hours after inoculation. The quick
response indicates the recognition of the PAMP
signal and induction of PTI. After overcoming
PTI response, the pathogen secretes effectors
into the host cells. About 500 candidate genes
for potential effector proteins have been identified
in the genome of B. graminis f. sp. hordei (Panstru-
ga 2012). These proteins can be bound by a range
of R proteins in barley triggering ETI.

Resistance genes to powdery mildew in bar-
ley

Barley race-specific resistance to powdery
mildew has been investigated since the 1930s
(Jorgensen and Wolfe 1994). Barley genes deter-
mining resistance to mildew are called M- (Mildew
locus) (Jorgensen 1987, Franckowiak and Lund-
qvist 2009). Information about resistance genes
is published in the Barley Genetic Newsletter
http://wheat.pw.usda.gov/ggpages/bgn) (Jergensen
1993). A review paper by Jergensen and Wolfe
(1994) mentions 28 alleles in locus Mla, 16 genes

closely linked to locus Mla and 41 other genes
for race-specific resistance. Jorgensen and Wolfe
(1994) relied on reports from the 1970s, 1960s
and 1950s, and studies in the field of classical
genetics and phytopathology. They indicated that
some of the listed genes were identified based
on inconclusive findings. In some cases, research-
ers identifying these genes did not provide any data
on which they based their reports, and for example,
after the revision of data, the m/d and Mlp genes
originally assigned to chromosome 1H(5) were
removed from the barley genetic map (Jensen
1990). In a summary of mapped barley resistance
genes, Ordon (2009) presented a list of 11 major
genes for powdery mildew resistance.

There are 11 resistance genes on the barley
consensus genetic map (Figure 4). Mla, MIGa, Mk,
Minn and Mlra are located on the chromosome 1H,
MILa and MIMor on the chromosome 2H, mlo, Mlg
on 4H, Mlj on 5H, mlmr on 6H, and mit and MIf
on 7H (Jergensen and Wolfe 1994, Schonfeld et al.
1996, Chetkowski et al. 2003, Piechota et al. 2019,
2020). These genes come from barley landraces
as well as from the H. spontaneum. One gene (MILa)
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Rys. 4. Konsensusowa mapa genetyczna jeczmienia (H. vulgare) z naniesionymi genami odpornosci na B. graminis f. sp.
hordei, na podstawie Chelkowski i in. (2003), zmienione.

Fig. 4. The barley (Hordeum vulgare) consensus genetic map with resistance genes to B. graminis f. sp. hordei, based
on Chelkowski et al. (2003), modificated.
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comes from the botanical variety Leavigatum. All
of these are major genes. Most of them, except mlf
and mlo, are dominant. Apart from mlo, these genes
determine race-specific resistance. The molecu-
lar background of resistance determined by these
resistance genes has been poorly investigated.

One of the identified resistance genes
is the recessive allele mlo (Jergensen 1992, Rein-
stadler et al. 2010). Mlo-based resistance is mani-
fested by the presence of single small of B. graminis
f. sp. hordei pustules on the host leaves. Penetration
of the pathogen is stopped because of the epidermal
cell walls apposition and the formation of papillae,
local protective structures in the cell wall on the side
ofthe cellmembrane. Mlo confers a partial resistance
because various expression of mlo gene in particu-
lar types of epidermal cells. Papillaec are formed
spontaneously, even in the absence of the patho-
gen in the short epidermal cells which are resist-
ant. Long cells are still susceptible to infection.
Mlo-based resistance is race-nonspecific. It also
does not generate selection pressure on the popula-
tion of B. graminis f. sp. hordei population. It is also
associated with a negative pleiotropic effect mani-
fested by an increased susceptibility to necrotrophic
and hemibiotrophic pathogens (Jarosch et al. 1999,
Kumar et al. 2001, Brown and Rant 2013) and lower
yielding (Kjer et al. 1990). Mlo-based resistance
was first identified in a barley landrace from Ethi-
opia (Biischges et al. 1997). This natural allele was
designated mloll. Other variants of this gene were
identified in barley after artificial mutagenesis.
The Mlo gene encodes a transmembrane protein
of unexplained function. Resistance is determined
by the loss of function mutations. The substitution
of aminoacids in the MLO protein determining
resistance have also been identified. Four of them
are cysteine exposed outside the cell membrane
(Reinstddler et al. 2010, Appiano et al. 2015).
Although almost 50 mlo alleles have been reported,
13 variants of barley MLO proteins are deposited
in the UniProt database (https://www.uniprot.org/,
access: 10.2019) (The UniProt Consortium 2019),
while the InterPro database (https://www.ebi.ac.uk/
interpro/, access: 10.2019) (Mitchell et al. 2019)
contains 215 MLO-like proteins also identified
in barley. MLO variants determine different levels
of resistance and different degrees of negative
pleiotropic effect. mloll is most commonly used
in barley cultivars.

The second identified gene of resistance
to B. graminis f. sp. hordei is a multiallelic locus
Mila. Approximately 30 variants of the Mla sequence
have been identified. The NCBI database (access:

10.2019) includes 29 coding sequences. New
variants are still being disclosed (Maekawa et al.
2019). The length of the Mla locus is more than
260 kbp. Mla is located on the short arm of the 1H
chromosome, at a position of about 8.5 Mbp.
Approximately 30 open reading frames have been
identified at the Mla locus, concentrated on three
gene islands separated by transposable elements.
The eight genes identified at this locus potentially
encode the CC-NBS-LRR or MLA proteins from
three families: RGH1, RGH2 and RGH3. Known
functional Mla alleles belong to the RGH1 fami-
ly and are homologs of RGHl1bcd, a pseudogene
identified in a susceptible cultivar Morex (Brab-
ham et al. 2017). The expression of Mla is induced
by the presence of the pathogen and only occurs
in an incompatible interaction (Halterman et al.
2003). Because of its high complexity and variabili-
ty, the Mla locus is an important source of resistance
in breeding programmes.

In a recent study, Hoseinzadeh et al. (2019)
located the M1 La-H gene identical to MI/La on chro-
mosome 2HL and identified markers flanking this
locus. The researchers selected four candidate genes
from the NBS-LRR class. They also identified
a mutation in one of the candidate genes that was
associated with resistance to powdery mildew.

Studies on the search for and identification
of powdery mildew resistance genes are still being
published. Examples of newly described genes
include MI{(Ve), identified in 2018 in cultivar Vene-
zia (Dreiseitl 2018) and MI(Lu,) identified in 2019
in a number of varieties of winter barley cultivars
(Dreiseitl 2019). Identification of these genes relied
on phytopathological tests. The above-mentioned
publications did not indicate the location of these
genes in the barley genome, and no other genet-
ic analyses were performed to demonstrate their
uniqueness. Many of the resistance genes used
in breeding studies have only been identified based
on the infection profiles after the differential set
of B. graminis f. sp. hordei inoculation.

Most of the modern spring barley cultivars posses
Mlo-based resistance (Dreiseitl 2017). In winter
barley, the pyramids of the major resistance genes
are used. Resistance genes introduced into Euro-
pean cultivars and the durability of the resistance
determined by them were described by Dreiseitl
(2014a, 2017). Dreiseitl listed 38 genes/alleles pres-
ent in barley cultivars from Central Europe (Drei-
seitl 2014a). Most cultivars registered in 2011-2015
contained the mlo allele (present in 27 out of 67
tested varieties). In the remaining barleys, Drei-
seitl identified two- to six-gene pyramids, and he
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Fig 5. The scheme of barley primary, secondary and tertiary gene-pools, based on von Bothmer et al. (2003b), modificated.

indicated the presence of an unknown resistance
gene in three of them (Dreiseitl 2017). The mlo allele
was detected in most of the spring barley cultivars
from the 2019 COBORU Descriptive List of Agri-
cultural Plant Varieties (50 out of 61 analysed).
In 31 analysed winter cultivars, single major genes
or two-gene pyramids were identified.

Barley genetic resources

Currently grown barley cultivars have been
created as a result of long and strongly selective
breeding pressure. The ongoing selection of vari-
eties to improve the parameters of agronomic
traits has narrowed their genepool and led to a loss
of genetic diversity (Tanksley and McCouch
1997, Buckler et al. 2001). This process has
significantly reduced the plasticity of varieties
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in adapting to biotic and abiotic stresses, and espe-
cially to climate change. This problem can be solved
by expanding the genepool using old varieties
and landraces, as well as wild relatives (McCouch
etal. 2013).

Barley genetic resources include cultivars,
landraces, breeding lines, wild species of the genus
Hordeum, and materials deposited in gene
banks. These resources can be classified based
on the concept of primary, secondary and tertiary
genepools (Figure 5) (von Bothmer et al. 2003b).
The primary barley genepool includes all forms
of cultivated barley and its wild ancestor, H. vulgare
ssp. spontaneum. The genetic material is transferred
easily within the primary pool by artifitial crossing.
There are no postzygotic barriers to crossability.
Barley landraces carry desirable agronomic traits,
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including many unidentified alleles determining
resistance to powdery mildew (Czembor 2000a,
2000b, 2002). Also wild barley is a source of resist-
ance with potential utility for breeding (Dreiseitl
2014b).

The secondary genepool contains only one
species - bulbous barley (H. bulbosum L.).
Hybridization of H. vulgare with H. bulbosum
is difficult because it leads to the elimination
of H. bulbosum chromosomes. This process was
used in the H. bulbosum method for the creation
of doubled haploids of barley.

The barley lines with H. bulbosum introgres-
sions are a valuable source of variation in culti-
vated barley (Czembor et al. 2019). H. bulbosum
is a source of resistance to B. graminis f. sp. hordei
determined by the MIHb gene (Pickering et al.
1995).

The tertiary genepool includes all other species
of the genus Hordeum. Transfer of genetic materi-
al by crossing is almost impossible. The potential
of this genepool can be utilized by means of chro-
mosomal and genetic engineering techniques.

Powdery mildew resistance genes identified
in barley landraces include, for example, Mlg iden-
tified in the German landrace Weihenstephan; Mla3
—in the Ricardo landrace from Uruguay, and Mlal2
in Arabische landrace (Jorgensen and Wolfe 1994).
Landraces originating from the regions where
cultivated barley was isolated and domesticat-
ed, i.e. North Africa and the Middle East, show
a large variability of resistance loci. This results
from a long coevolution with specific pathogens
such as B. graminis f. sp. hordei. These varieties
are subject to weaker pressure from the pathogen
and the resistance carried by them is relatively
more durable (Camacho Villa et al. 2005, Morrell
and Clegg 2007). The analysis of the African popu-
lation of B. graminis f. sp. hordei revealed that
barley landraces originating from Africa are high-
ly diversified in terms of resistance to powdery
mildew (Dreiseitl and Kosman 2013, Jensen et al.
2013). For example, studies on barley landrac-
es from Jordan or Morocco allowed for the selec-
tion of 160 and 133 lines, respectively, resistant
to powdery mildew (Czembor 2000a, 2000b, 2002,
Abdel-Ghani et al. 2008).

Of all the described genetic resources,
landraces are the easiest to use directly in breed-
ing programmes. Landraces are heterogeneous
and genetically dynamic populations. They come
from regions where traditional agriculture persisted,
and no active systemic breeding programmes
are implemented (Camacho Villa et al. 2005).

They undergo natural selection without strong
breeding pressure. They are also adapted to local
climatic conditions. Landraces carry unique traits
that have been eliminated from the elite cultivars
in the strong selection process and are considered
essential for resistance breeding and for the resto-
ration and extension of the genepool of cultivated
barley forms (Akem et al. 2000).

Concluding remarks

Goal 2 ofthe UN 2030 Agenda is to “End hunger,
achieve food security and improved nutrition,
and promote sustainable agriculture” (http://www.
un.org.pl/). Advances in plant breeding are funda-
mental for improving food security and sustainable
production. These advances require the availabili-
ty of a rich genepool, which would allow breeders
to blend important positive traits with the genetic
background of cultivars. Local and old crop varie-
ties carry many desirable traits. Research is needed
to recreate such varieties and evaluate the possi-
bility of their adaptation. Contemporary molecular
biology offers a wide range of techniques and tools
which, together with the available complete refer-
ence sequence of the barley genome, can signifi-
cantly contribute to identifying genes responsible
for these traits and help breeders introduce these
genes to elite cultivars. The use of resistant varie-
ties in integrated pest management is also recom-
mended in Directive 2009/128/EC of the European
Parliament and of the Council establishing a frame-
work for Community action for the sustainable use
of pesticides.
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