DOI: 10.1515/plass-2017-0008

Zhimin Yin*, Krystyna Michalak, Renata Lebecka

Plant Breeding and Acclimatization Institute – National Research Institute, Młochów Research Center, 05-831 Młochów, Platanowa 19 Str. Poland; *Corresponding author: z.yin@ihar.edu.pl

COLLECTION OF POTATO VIRAL PATHOGENS, ITS VALIDATION AND MAINTENANCE

ABSTRACT

IHAR – PIB collection of potato viral pathogens has been maintained since 1970s. Currently there are 258 isolates in the collection representing 12 potato viruses, named PVY, PVM, PVS, PLRV, PVA, PVX, PAMV, BMYV, TBRV, AMV, CMV and TRV. The viruses are maintained in potato plants *in vivo* in the greenhouse (246 isolates), in potato plantlets cultured *in vitro* (12 isolates), in frozen leaves (two copies each of the 246 isolates) and in freeze-dried tissue (234 isolates).

Keywords: potato viruses, in vitro plantlets, freeze-dried leaves, frozen leaves

INTRODUCTION

The maintenance of a virus and keeping its variability is a fundamental requirement for various purposes: virus diagnostics (e.g. antibody production), virology study (e.g. virus population, strain identification, virus-host interaction), and potato breeding for virus resistance.

The Agriculture Research Service's (ARS) Schultz Potato Virus Collection in the United States started in 1916 (Webb, 1958; Weaver-Missick, 2000). A plant virus collection at Plant Research International (PRI) in the Netherlands was established in 1950s (Dullenmans *et al.*, 2011). The collection of potato viruses in Czech in Potato Research Institute in Havlíčkův Brod was founded in the 1970s and has been maintained since (www.vurv.cz/mikroorganismy/Potato% 20Viruses.html). In Scotland, diagnosis of potato viruses has been conducted by The Science and Advice for Scottish Agriculture (SASA).

Communicated by Ewa Zimnoch-Guzowska

In Poland, a history on plant virology studies (Kryczyński, 2010) and diseases caused by viruses in potato (Świeżyński, 1968) has been summarized. A collection of potato viral pathogens at IHAR-PIB Młochów Research Center has been maintained since 1974 (Chrzanowska *et al.*, 1996, 2001). Currently, there are 258 isolates representing 12 potato viruses named PVY, PVM, PVS, PLRV, PVA, PVX, PAMV, BMTV, TBRV, AMV, CMV and TRV in the collection (Table 1). Some virus isolates are sequenced (Table 2).

The viruses are maintained in potato plants *in vivo* in the greenhouse (246 isolates), in potato plantlets cultured *in vitro* (12 isolates), in frozen leaves (two copies each of the 246 isolates) and in freeze-dried tissue (234 isolates) (Table 3).

The detailed methods for the validation of the presence of viruses are referred to in Yin and Michalak (2018). Briefly, the virus isolates maintained in the collection in different forms have biologically, serologically and/or molecularly confirmed identities.

Table 1

	A11	6	Number of isolates	
Name of virus	Abbre-viation	Genus	in vivo	in vitro
Potato virus Y	PVY	Potyvirus	190	4
Potato virus M	PVM	Carlavirus	10	
Potato virus S	PVS	Carlavirus	13	
Potato leafroll virus	PLRV	Polerovirus	7	2
Potato virus A	PVA	Potyvirus	1	6
Potato virus X	PVX	Potexvirus	2	
Potato aucuba mosaic virus	PAMV	Potexvirus	3	
Beet mild yellowing virus	BMYV	Polerovirus	2	
Tomato black ring virus	TBRV	Nepovirus	2	
Alfalfa mosaic virus	AMV	Alfamovirus	3	
Cucumber mosaic virus	CMV	Cucumovirus	1	
Tobacco rattle virus*	TRV	Tobravirus	12	
SUM	12	8	246	12

Potato viruses maintained in potato plants *in vivo* in the greenhouse and cultured *in vitro* at IHAR-PIB Mlochów

*: Maintained in the tobacco cv. Samsun.

The sequenced virus isolates of the IHAR-PIB/Mlochów collection

Table 2

Name of virus	Name of isolate	Strain	NCBI GenBank accession number	Whole genome or partial	References	
PVY	PVY-3202	PVY ^{NTN}	KX356068	Whole genome		
PVY	PVY-3303	PVY ^z -NTN	KX356069	Whole genome	Yin et al., 2017	
PVY	PVY-3411	PVY ^{N-Wi}	KX356070	Whole genome		
PVY	Wilga (Wi)	$PVY^{\text{N-Wi}}$	EF558545	Whole genome	Kosakowski <i>et al.</i> , 2007 (unpublished)	
PVY	Ditta	PVY ^{NTN}	AJ890344	Whole genome		
PVY	Gr99	PVY ^{NTN}	AJ890343	Whole genome		
PVY	34/01	PVY^N	AJ890342	Whole genome	Schubert et al., 2007	
PVY	LW	PVY ^o	AJ890349	Whole genome		
PVY	12-94	PVY ^{NTN}	AJ889866	Whole genome		
PVY	E30	PVY ^{NTN}	HM991453	Whole genome	Golnik et al., 2010	
PVY	Nysa	PVY^N	FJ666337	Whole genome	(unpublished)	
PVY	FrKV15	Atypical PVY ^{N-Wi}	HM991454	Whole genome	Golnik <i>et al.</i> , 2010 (unpub) Obtained from C. Kerlan, France	
PVY	ҮЕ Еро	PVY ^{N-Wi}	JF804800	Partial, HC-Pro		
PVY	ҮЕ Еро	PVY ^o	JF804799	Partial, VPg		
PVY	YE Epo	PVY ^{N-Wi}	JF804798	Partial, VPg		
PVY	ҮЕ Еро	PVY ^o	JF804787	Partial, CP		
PVY	ҮЕ Еро	PVY ^{N-Wi}	JF804786	Partial, CP		
PVY	Cou8/03	PVY ^{NTN}	JF804780	Partial, CP	Golnik et al., 2016	
PVY	YC Zb	PVY ^C	JF804797	Partial, VPg	(unpublished)	
PVY	YC Zb	PVY ^C	JF804785	Partial, CP		
PVY	N-Gineke	PVY^N	JF804793	Partial, VPg		
PVY	N-Gineke	PVY^N	JF804781	Partial, CP		
PVY	New Zealand-N	PVY^N	JF804789	Partial		
PVY	New Zealand-NTN	PVY ^{NTN}	JF804788	Partial		
PVY	47/96	PVY ^{NTN}	KY092173	Whole genome		
PVY	FrKv2	PVY ^{N:O}	KY112747	Whole genome	Grupa and Syller 2017,	
PVY	PVY ^o Li	PVY ^o	KY112748	Whole genome	(unpublished)	
PVY	PVY ^{N-Wi} Wy	PVY ^{N-Wi}	KY112749	Whole genome		
TRV	11r21	nd	KF758790	RNA1		
TRV	11r21	nd	KF758797	RNA2		
TRV	Deb57	nd	KF758791	RNA1		
TRV	Deb57	nd	KF758794	RNA2	Via et al. 2014 - 1	
TRV	Mlo7	nd	KF758792	RNA1	1 III <i>el al., 2</i> 014 a, d	
TRV	Mlo7	nd	KF758795	RNA2		
TRV	Slu24	nd	KF758793	RNA1		
TRV	Slu24	nd	KF758796	RNA2		
PVM	I38	nd	KJ365309	Partial, CP	Grupa and Syller, 2016	

nd: not determined.

59

Potato viruses maintained in freeze-dried potato tissue at IHAR-PIB/Młochów

Table 3

Virus	Number of isolates in freeze-dried form						
	1996-1997	2003	2007	2016			
PVY	31	11	145	190			
PVM			9	10			
PVS			3	13			
PLRV			5	7			
PVA			2	1			
PVX			1	2			
PAMV			1	3			
BMYV			2	2			
TBRV			1	2			
AMV			2	3			
CMV			1	1			
TRV	1						
SUM	32	32	172	234			

MATERIALS AND REAGENTS

- 1) Virus infected potato tubers
- 2) Soil mixed with peat in a proportion of 1:2 in trays
- 3) Fertilizer PG mix (14-16-18) + Micro at a concentration of 0.5-0.8 kg × m⁻³
- 4) Pots (\emptyset =16 cm)
- 5) MS medium with 3% sucrose and 0.8% agar
- 6) Reclosable Bag (Plast Polska 150x200 mm)
- 7) Falcon tube (Medlab Products, 50 ml, Cat. No 24.3050.1s)
- 8) Latex powder-free gloves "Protect clinic" (Semperit Technische Producte Gesellschaft)

EQUIPMENT

- 1) Insect-free greenhouse with natural light
- 2) Cold dark room $(4^{\circ}C)$
- 3) Cold chamber $(6-8^{\circ}C)$
- 4) Laminar flow cabinet KL-21
- 5) Freezer (-20°C) (LIEBHERR)
- 6) Lyophilizing cabinet (LABCONCO, Freeze Dry/SHELL FREEZE SYSTEM, FreeZONE 18)

PROCEDURE

Maintaining viruses in potato plants in vivo in the greenhouse

 The virus isolates are maintained in their host cultivars by replanting the infected potato tubers yearly in an insect-free greenhouse (day temp. 20 -26°C and night temp.14-16°C, day length 16 h) from May to June.

- 2) The harvested tubers are stored at 4°C in a dark cold room.
- 3) The selected virus isolates are checked for their pathogenicity in the potato or other proper test plants every 3-4 years.

The isolates which have been maintained for 40 years are still infectious. In total, 246 virus isolates are maintained in potato plants *in vivo* in the greenhouse.

Maintaining viruses in potato plantlets cultured in vitro

- 1) Potato plantlets of the originally collected virus-infected cultivar are maintained an *in vitro* culture in an MS medium (Murashige and Skoog, 1962).
- 2) The tubes with plantlets are kept in a growth chamber at 20-22°C with a photoperiod of 16 h with a monthly passage to a fresh medium.
- 3) For long-term maintenance, the MS medium is modified with a higher percentage of sucrose (3%).
- 4) The plantlets are kept at 20-22°C and the rooted plantlets are transferred to a cold chamber at 6-8°C under 1000 lx light intensity. Under such conditions, the plantlets may be maintained for two years without passage.
- 5) The detailed *in vitro* preservation of potato plants is referred to in Strzelczyk-Żyta (2018).

In the *in vitro* collection, 4 PVY isolates, 6 PVA isolates and 2 PLRV isolates have been maintained since 1990s (Zagórska and Kryszczuk, 1998).

Maintaining viruses in frozen leaves

- 1) Leaf tissues with characteristic symptoms are collected from 4- to 6week-old potato plants which contain the respective virus.
- 2) The infected leaf tissues are kept in sterile plastic bags and stored at 20°C in a freezer.
- 3) Two copies of each of the 246 isolates, which are maintained in potato plants *in vivo*, are parallelly stored at -20°C.
- 4) The TRV isolates are maintained in frozen tobacco leaves at -20°C.

Maintaining viruses in freeze-dried tissues

- 1) One copy of the *in vivo* maintained viruses is also maintained in a freeze-dried form.
- 2) The leaf tissues with characteristic symptoms are collected into a falcon tube from 4- to 6-week-old potato plants containing the respective viruses, and stored at -20°C in a freezer.
- 3) Before lyophilisation the cap is removed and the tube is closed with a parafilm perforated with small holes.
- 4) The leaves in the tubes are freeze-dried in a lyophilizing cabinet for two days.
- 5) Finally, the tube containing the freeze-dried tissue is closed with the same cap and stored at 4°C in a cold room.

The number of virus isolates maintained in the freeze-dried form is 234 (Table 3).

ACKNOWLEDGEMENTS

This work was financed by Polish Ministry of Agriculture and Rural Development, multiannual program "Creating the scientific basis for biological progress and the protection of plant genetic resources as source of innovation and support for sustainable agriculture and food security of the country" Task 3.1 Monitoring of changes in populations of harmful and quarantine organisms for potato.

REFERENCES

Chrzanowska M., Zarzycka H., Zimnoch-Guzowska E. 1996. Kolekcja patogenów prowadzona w Zakładzie Genetyki i Syntezy Materiałów Wyjściowych Instytutu Ziemniaka. Hodowla Roślin i Nasiennictwo 4: 8-10. (in Polish)

Chrzanowska M., Muchalski T., Zagórska H. 2001. Maintenance of a collection of the viruses and the viroid pathogenic to potato. p 14-16. In: "Monografie i Rozprawy Naukowe 10a/2001" (E. Zimnoch-Guzowska, J. Syller, M. Sieczka, eds.). IHAR, Radzików: 131.

Dullemans A.M., Cuperus C., Verbeek M., van der Vlugt R.A. 2011. Complete nucleotide sequence of a potato isolate of strain group C of *Potato virus Y* from 1938. Arch. Virol. 156: 473-477.

Grupa A., Syller J. 2016. Cross protection between a naturally occurring mild isolate of *Potato virus M* (PVM) and a more virulent isolate in *Datura metel* plants. J. Phytopathol. 164: 69-73.

Kryczyński S. 2010. Wirusologia roślinna. PWN, Warszawa, 375 ss. (in Polish)

Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plantarum 15: 473-497.

Schubert J., Fomitcheva V., Sztangret-Wiśniewska J. 2007. Differentiation of Potato virus Y strains using improved sets of diagnostic PCR-primers. J. Virol. Methods 140: 66-74.

Strzelczyk-Zyta D. 2017. In vitro preservation of potato plants, Plant Breed Seed Sci., 76:.

Świeżyński K. 1968. Choroby wirusowe ziemniaków. Wyd. 3. PWRiL, Warszawa. (in Polish)

Weaver-Missick T. 2000. A unique potato virus collection. Agri. Res. vol. 48: 19.

Webb R.E. 1958. Schultz potato virus collection. Am. Potato J. 35: 615-619.

Yin Z., Michalak K. 2017. Diagnosis of the presence of viruses in potato and soil, Plant Breed. Seed Sci. 75:37-55 Yin Z., Pawełkowicz M., Michalak K., Chrzanowska M., Zimnoch-Guzowska E. 2014a. The genomic RNA1 and

RNA2 sequences of the tobacco rattle virus isolates found in Polish potato fields. Virus Res. 185: 110-113.

- Yin Z., Pawełkowicz M., Michalak K., Chrzanowska M., Zimnoch-Guzowska E. 2014b. Single-nucleotide polymorphisms and reading frame shifts in RNA2 recombinant regions of tobacco rattle virus isolates Slu24 and Deb57. Arch. Virol. 159: 3119-3123.
- Yin Z., Xie F., Michalak K., Pawełkowicz M., Zhang B., Murawska Z., Lebecka R., Zimnoch-Guzowska E. 2017. Potato cultivar Etola exhibits hypersensitive resistance to PVY^{NTN} and partial resistance to PVY^Z-NTN and PVY^{N-Wi} strains and strain-specific alterations of certain host miRNAs might correlate with symptom severity. Plant Pathol. 66: 539-550.
- Zagórska H., Kryszczuk A. 1998. Kolekcja form diploidalnych i tetraploidalnych ziemniaka w IHAR Oddział Młochów. II. Kolekcja *in vitro*. Materiały z I Ogólnopolskiej Konferencji.: Zasoby genowe roślin użytkowych – gromadzenie, ocena i wykorzystanie, Puławy: 62. (in Polish)