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OF THREE BRASSICA NAPUS CULTIVARS

ABSTRACT

Fatty acid levels and gene expression profiles for selected genes associated with the synthesis of fatty
acids (FA), triacylglycerol, and oil body proteins were examined in three oilseed rape (Brassica napus) culti-
vars that have utility for cultivar development in our spring canola breeding program. The seed oil content of
Bronowski, Q2, and Westar was 39.0, 40.1, and 40.6%, respectively at 40 days after flowering (DAF). During
the 20 to 40 day period of seed development, cultivars had varying levels of palmitic, stearic, oleic, linoleic, o
-linolenic, eicosenoic, and erucic acid. In general, the percentage of each FA was similar among the cultivars
during seed development. However, the level of oleic acid was lower and the levels of eicosenoic acid and
erucic acid were higher in Bronowski than in Q2 and Westar seeds; linoleic acid also tended to be lower in
Bronowski. Gene expression among the cultivars was similar from 10 to 40 DAF. The few exceptions were
that expression of KASI and SAD were higher in Westar and Q2 than in Bronowski at 25 DAF, SAD was
highest in Q2, intermediate in Westar, and lowest in Bronowski at 35 DAF, FAD2 was higher in Q2 than in
Bronowski at 35 DAF, FAD3 was higher in Q2 than in Bronowski at 15 DAF and Q2 and Westar at 25 and 30
DAF, and FAE! was higher in Westar and Q2 than in Bronowski at 30 DAF. Correlation analysis for gene
expression against DAF for each genotype supported a common trend in gene expression among the three
cultivars with gene expression tending to decrease over time; except for LPAAT, which tended to increase.
The correlation between the level of FAs and expression of genes by genotype indicated no general trend;
rather correlations seem to depend on the genotype.
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INTRODUCTION

Brassica napus (L.) is commonly referred to as canola, rapeseed, or oil-
seed rape. Canola itself was bred from rapeseed in Canada to develop
a nutritious oil low in glucosinolates and erucic acid (Stefansson et al. 1961;
Stefansson and Kondra 1970), which are anti-nutritional components for
humans and livestock. Canola is the second largest vegetable oilseed crop
worldwide behind soybean (http://www.ers.usda.gov/data-products/oil-crops
-yearbook.aspx). The U.S. ranks eighth in worldwide oilseed rape produc-
tion (http://apps.fas.usda.gov/psdonline/psdQuery.aspx), valued at approxi-
mately $483 million in 2011/2013, yet the U.S. remains a primary importer
of canola oil and meal (http://usda.mannlib.cornell.edu/usda/current/
CropValuSu/CropValuSu-02-14-2014.pdf). Because 80% of the U.S. canola
production is in the state of North Dakota, a public spring canola improve-
ment project was initiated to develop germplasm adaptable to the Northern
Plains of the U.S.

High oil yield and quality are fundamental to developing adapted germ-
plasm. The biosynthesis and regulation of oil production in oilseeds is com-
plex encompassing several steps and organelles within the cell (Baud and
Lepiniec 2010; Bates et al. 2013; Li-Beisson et al. 2013). Rapeseed or ca-
nola oil is a mixture of triacylglycerols (TAG) that account for about 40-
45% of the seed dry weight (Troncoso-Ponce et al. 2011). Initially, com-
pounds like sucrose are imported into the plastid, and through a number of
enzymatically mediated steps beginning with a multisubunit heteromeric
acetyl-CoA carboxylase (HtACCase), free fatty acids (FA) of 16 to 18 car-
bons are synthesized. Long-chain FA are then exported to the endoplasmic
reticulum (ER) for modification in the form of desaturation and elongation
and assembly of TAG, which are esters of glycerol and FA. The formation
of very long-chain FA (VLCFA) such as erucic acid (22:1), a major compo-
nent of non-canola quality rapeseed oil, is enzymatically mediated by the
fatty acid elongase complex (FAE), with fatty acid elongation1 (FAE1) be-
ing the first of four enzymes that comprise FAE. Synthesis of polyunsatu-
rated FA such as linoleic (18:2) and a-linolenic acid (18:3) is mediated by
fatty acid desaturase (FAD) enzymes. De novo assembly of TAG occurs by
various routes in the ER, with the relatively straight forward one being the
Kennedy pathway (Baud and Lepiniec 2010). This pathway encompasses
aseries of sequential acylation of a glycerol-3-phosphate backbone culmi-
nating with the third acylation catalyzed by diacylglycerol acyltransferase
(DGAT). Finally, TAGs are stored in oil bodies composed of a matrix of
TAGs and various proteins such as oleosins and steroleosin (Baud and Le-
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piniec 2009). The TAGs are important as they act as areserve for post-
germination growth prior to achieving sufficient photosynthetic capacity and
comprise the tremendous economic value for oilseed crops such as canola.
Thus, it is important to understand the link between various genes involved
in the oil biosynthesis during development and composition of seeds as
a prelude to germplasm development, as well as to understand factors re-
lated to oilseed quality improvement.

While the FA composition in rapeseed oil has been documented (Canvin
1965), employing genomic techniques to evaluate expression of gene tran-
scripts in relation to FA composition during rapeseed development is more
recent. Hu ez al. (2009) used quantitative reverse transcription (QRT-PCR) to
examine transcript levels of 32 genes involved in the biosynthesis of FA,
TAG, storage proteins, and in other physiological processes during seed de-
velopment of an older Chinese high erucic acid cultivar and a descendent,
low erucic acid cultivar. They determined that the transcription profiles were
similar for both cultivars, while selection pressure for no erucic acid, low
glucosinolates, high oleic acid, oil content, and yield affected the expression
levels of several genes. In turn, they determined FA levels during seed de-
velopment and correlated those with the gene transcripts. In another investi-
gation, comparative transcriptome analysis in developing oilseeds of multi-
ple species, including B. napus, relied on expressed sequence tag (EST) da-
tabase development through pyrosequencing (Troncoso-Ponce et al. 2011).
A notable outcome of this study was that regardless of the species ESTs rep-
resenting almost all reactions of FA biosynthesis had comparable
stoichiometry and consistent temporal profiles. This outcome and related
results from EST sequencing and gene and protein expression studies sug-
gest it is valid to make some cross species comparisons such as between
Arabidopsis thaliana and B. napus (Niu et al. 2009; Venglat et al. 2013).

The first canola-type cultivar of summer rape released in Canada (Stefansson and
Kondra 1975) was derived from a complex series of crosses that include selections
from Liho and Bronowski to impart low erucic acid and glucosinolates, respec-
tively. Likewise, subsequent canola quality summer rape cultivars, such as Westar
and Q2, with superior agronomic and disease resistance traits (Klassen et al. 1987,
Stringam et al. 1999) relied on series of crosses using germplasm with low erucic
acid and glucosinolates. Westar, released in 1982 by Agriculture and Agri-Food
Canada, has been widely cultivated, modified, and used as a baseline for subsequent
germplasm development (Juska et al. 1997). However, it is susceptible to a serious
disease of canola called blackleg caused by the fungus Leptosphaeria maculans. Q2
released in 1998 by University of Alberta is resistant to blackleg disease and rela-
tively resistant to lodging. We cultivated Bronowski, Westar, and Q2 in the green-
house to examine for potential traits that could be used in our spring canola breed-
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ing program. Thus, the objectives of this research were to examine fatty acid levels
and expression profiles for selected genes associated with the synthesis of FA,
TAG, and oil body proteins during seed development in the three cultivars.

MATERIALS AND METHODS

Plant Materials

Oilseed rape (Brassica napus) cultivars, Bronowski, Westar, and Q2 were grown
in a greenhouse at North Dakota State University, Fargo, ND, USA, at 22+4°C (day
and night). The seeds were sown in 15 cm (diameter) by 15 cm (depth) pots filled
with Sunshine-Mix-1 (Sun Gro Horticulture). The plants were watered daily and
fertilized with water soluble 20 N-20 P-20 K fertilizer. Light in the greenhouse was
provided with a 16-h photoperiod by natural sunlight supplemented with 400 W
HPS PL 2000 lights (P.L. Light Systems Inc. ON, Canada). During the flowering
stage, plants were bagged (microperforated polybag, Crawford Provincial, ON,
Canada) and allowed to self-pollinate. Developing pods were harvested at 5-day
intervals, 10 to 40 days after flowering (DAF). Seeds were harvested into liquid
nitrogen and stored at -80°C for gas chromatographic analysis and RNA extraction.
There were three biological replications per treatment.

Determination of Oil and Fatty Acid Profile

At 40 d after flowering (DAF), oil was extracted from seeds with n-hexane using
accelerated solvent extraction (Dionex ASE 200, Thermo Scientific, Sunnyvale,
CA) according to the methods of Haagenson et al. (2010) for oil content determina-
tion. One gram canola seed was oven dried for 4 h at 70°C. Seed was milled in
a coffee grinder with 3.5 g diatomaceous earth, and samples were loaded into 11 ml
stainless steel cells. Any remaining extraction cell void volume was filled with dia-
tomaceous earth prior to extraction. Extractions were performed at 100°C, 6.7 MPa
with a 5 min equilibration time and three 10 min static cycles having a 100% flush
volume and 60 s purge time. The solvent containing extracted oil was collected in
pre-weighed vials, and solvent was evaporated to dryness with a stream of dry air (-
70°C dew point). Extracted samples were air dried, and reground for a second ex-
traction and the total oil recovery from the two extractions was recorded. Oil is re-
ported as a percent of seed dry weight.

At 5 d intervals from 20 to 40 DAF, fatty acid profiles were determined on seeds
air dried overnight at room temperature in a fume hood. Samples of 0.1 to 0.3 g of
dried seed were ground in a mortar and pestle and vortexed in 0.5 to 2 ml of hexane
-chloroform-sodium methoxide (HCSM) derivatization reagent to produce fatty
acid methyl esters (FAMEs). The HCSM reagent was freshly prepared by mixing
75 ml hexane, 20 ml chloroform (pentene stabilized), and 5 ml 0.5 M sodium meth-
oxide in methanol (Sigma #403067). Analysis of the FAMEs was carried out on
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a Hewlett-Packard 5890 Series II gas chromatograph with a flame-ionization detec-
tor. Split injections of 1 ul of the FAMEs were separated on a J & W Scientific DB-
23,30 m by 0.25 mm, 0.25 pm film column with helium carrier gas at 29 psi (1.9
ml/minute) and split flow at 50-100 ml/minute. The column was temperature pro-
grammed at 190°C for 4 min then to 220°C at 15°C/min and held 1 min, then to
240°C at 25'C/min and held 1 min. Inlet temperature was 230°C and detector tem-
perature was 250°C with air at 345 ml/minute, hydrogen at 36 ml/minute, and he-
lium makeup gas at 35 ml/minute. Nu-Check 21A and 411 standards were used to
identify the FAME:s.

Template cDNA preparation and quantitative real-time PCR (qRT-PCR)

Total RNA was extracted at 5 d intervals from 10 to 40 DAF from canola
seeds using the pine tree extraction protocol (Chang et al. 1993), and these sam-
ples were used to prepare template cDNA through reverse transcription follow-
ing manufacturer’s instructions (Invitrogen). Briefly, 5 ug of total RNA was
DNase treated and then reverse transcription was performed in 20 ul total vol-
ume using a SuperScript First-Strand Synthesis Kit to produce total cDNA from
each sample. After cDNA synthesis, each 20 ul reaction was diluted to 800 pl
and stored at -80°C.

Gene expression by qRT-PCR was examined using template cDNA on
a Roche LightCycler® 480 real-time PCR system. Primer pairs were synthe-
sized based on sequences from Hu et al. (2009) (Electronic Supplementary Ta-
ble S1). qRT-PCR parameters were described previously by Chao (2008) with
some modification. The formula used to calculate the fold differences is similar
to the comparative Cr method (AACr ) except that no control sample is incorpo-
rated in the calculation. Thus, levels of different target gene expressions can be
compared based on the expression of areference SAND family gene, which
served as a base line. A canola SAND family gene was used as a reference be-
cause it was verified to be stably expressed during seed development (see Elec-
tronic Supplementary Fig. S1 and Table S1 & S2). The modified formula for
fold difference in gene expression of target vs. reference gene is:

ACr = ACr target — ACr reference

where, ACr ureer 18 the Cr value of the target gene, and ACr reference 18 the Cr
value of the reference gene. SYBR green chemistry was used to produce fluo-
rescent signal, and three technical replicates were used per sample for the RT-
gPCR experiments. The Cr value of each gene is the average of three technical
replicates. The difference in gene expression is designated as log2 value. Heat-
map of the qRT-PCR results in Fig. S1 was created based on log2 values using
Eisen Lab software, Cluster and TreeView as described by Eisen et al. (1998).
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Statistical Analysis

The standard error (SE) of the mean difference of Ct values between the tar-
get and reference (SAND family) genes were calculated based on

Si , Sk Sa Sg
S v = |—=—4+—-2.9 —
Fato \/nﬁnﬂ P T Vit

where Sy and Sp are the standard deviations and n4 and np are the sample
sizes for samples A and B. B, is the estimated correlation of these pairs. The
95% confidence intervals were obtained based on the mean difference +t
-value x SE; the t-value with 2 degrees of freedom and 95% confidence is
4.303. The variance sum law was applied in the calculation of each reference
gene normalized target gene SE and explains why the 95% confidence intervals
for most of the target genes appeared very large.

MANOVA was used to compare FA profiles among cultivars using the manova
function of the stats package in R (2015). The Wilks Lambda statistic was used to
determine significant difference for the FA profiles (Johnson and Wichern 2007).

Pearson correlation coefficients between the FA and the gene expression by cul-
tivar were computed using the cor function of the stats package in R (2015). Be-
cause only three biological replications were used in this study for each cultivar and
DAF, only large effects and/or strong associations could be expected to be detected
statistically.

RESULTS

Oil and Fatty Acids

The seed oil content of Bronowski, Westar, and Q2 grown in the green-
house was 39.0, 40.6, and 40.1%, respectively. During the 20 to 40 d period
of seed development, cultivars had varying levels of palmitic, stearic, oleic,
linoleic, a-linolenic, eicosenioc acid, and erucic acid (Fig. 1). Levels of the
two saturated FA, palmitic acid and stearic acid, were similar among the
cultivars averaging 7.5% and 4.4% and 2.5% and 1.9%, respective at 20 and
40 DAF. The level of oleic acid was the same in Westar and Q2 over the 20
to 40 d period, although there was a trend for slightly high levels in Westar.
In contrast, the mean level of oleic acid in Bronowski seeds was about 25%
lower over the 20 d period relative to Westar and Q2. In general, the levels
for two polyunsaturated FA, linoleic acid and a-linolenic acid, were similar
among the cultivars averaging 22.2% and 15.7% and 10.8% and 6.1%, re-
spective at 20 and 40 DAF. Nevertheless, the trend was for higher levels of
linoleic acid in Q2 > Westar > Bronowski seeds from 20 to 40 DAF. The
monounsaturated VLCFAs, eicosenioc acid and erucic acid, varied tremen-
dously among the cultivars, particularly for Bronowski. Eicosenioc acid
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levels over the 20 to 40 d period averaged 16.3%, 1.5% and 1.4%, respec-
tive for Bronowski, Westar, and Q2 seeds. Erucic acid was not detected in
Westar seeds and the levels in Q2 were 3% and 1.1% at 35 and 40 DAF,
respectively. In contrast, erucic acid levels in Bronowski seeds increased
from 10.9% to 22.5% of total FAs over the 20 to 40 d period.
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Fig. 1. Fatty acid accumulation during seed development.
The levels of 7 fatty acids (palmitic, stearic, oleic, linoleic, a-linolenic, eicosenioc, and erucic acid)
were examined at 5-day intervals, 20 to 40 DAF in cultivars Bronowski, Westar, and Q2

Gene Expression

Gene designation, role, and location are provided in Table 1. Overall and as
determined by the 95% confidence intervals, gene expression among the three
cultivars was similar from 10 to 35 DAF (Fig. 2). We had only one data point
for Bronowski genes at 40 DAF so confidence intervals could not be calculated.
The few exceptions were that expression of KAS/ and SAD were higher in
Westar and Q2 than in Bronowski at 25 DAF, SAD was highest in Q2, interme-
diate in Westar, and lowest in Bronowski at 35 DAF, FAD2 expression was
higher in Q2 than in Bronowski at 35 DAF, FAD3 expression was higher in Q2
than in Bronowski at 15 DAF and Q2 and Westar at 25 and 30 DAF, and FAEI
expression was higher in Westar and Q2 than in Bronowski at 30 DAF. At its
peak, expression of the gene for the seed storage protein napin was nearly
33,000 fold higher (log, of 15) than the SAND gene. Conversely, lowest level
of expression was the caleosin gene at 1/64 (log, of -6) that of the SAND gene
at 10 DAF.
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Table 1
Genedesignation, role, and location
Gene name Gene annotation Role Location
ACCase Homeomeric acetyl CoA carboxylase Fatty acid biosynthesis Cytosol
oa-C7 Alpha carboxyltransferase Fatty acid biosynthesis Plastid
p-C7 Beta carboxyltransferase Fatty acid biosynthesis Plastid
BC Biotin carboxylase Fatty acid biosynthesis Plastid
MCMT Malonyl-CoA:ACP malonyltransferase Fatty acid biosynthesis Plastid
KAS1 Beta-ketoacyl-ACP synthase 1 Fatty acid biosynthesis Plastid
KAS2 Beta-ketoacyl-ACP synthase 2 Fatty acid biosynthesis Plastid
KAS3 Beta-ketoacyl-ACP synthase 3 Fatty acid biosynthesis Plastid
HD/KACD  3-hydroxyacyl-ACP dehydratase Fatty acid biosynthesis Plastid
SAD Stearoyl-ACP desaturase Fatty acid biosynthesis Plastid
FatA Acyl-ACP thioesterasae Fatty acid biosynthesis Plastid
FatB Palmiottoyl-ACP thioesterase Fatty acid biosynthesis Plastid
FAD6 Oleate desaturase Acid editing Plastid
FAD2 Oleate desaturase Acid editing Endoplasmatic reticulum
FAD3 Linoleate desaturase Acid editing Endoplasmatic reticulum
LPATT Lysophosphatidic acid acyltransferase Triacylglycerol biosynthesis  Endoplasmatic reticulum
DGAT2 Acyl-CoA:diacylglycerol acyltransferase Triacylglycerol biosynthesis  Endoplasmatic reticulum
AAPTI Aminoalcoholphosphotransferase Triacylglycerol biosynthesis ~ Endoplasmatic reticulum
FAE] Fatty acid elongase 1/3-ketoacyl-CoA synthase t\;z?yrllcgllegj?am fatty acid Endoplasmatic reticulum
KCR2 3-ketoacyl-CoA reductase t:/izrsyyi(t)qulfsicsham fatty acid Endoplasmatic reticulum
Oleosin Oil nody associated protein Storage protein Oil body
Cruciferin 128 neutral oil body protein Storage protein Oil body
Napir 178 oil body protein Storage protein Oil body
Caleosin Ca”* binding oil body surface protein Storage protein Oil body
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Fig. 2. Gene expression profiles during seed development.
The expression profiles of 24 genes were examined at 5-day intervals, 10 to 40 DAF in cultivars Bronowski,
Westar, and Q2. Levels of different target gene expressions were compared based on the expression
of a reference SAND family gene, which also served as a base line here. The fold difference is
designated as log2 value. Gene designation is in Table 1. The 95% confidence intervals
were obtained based on the mean difference +t-value x SE
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Corrélations

We examined the correlation between FA levels and gene expression across
DAF for each cultivar. The data support a common trend in gene expression
among the three cultivars with gene expression tending to decrease over time;
except for LPAAT, which tended to increase (Electronic Supplementary Table
S3). In our subsequent determination of the correlation between the level of FAs
and expression of genes by individual cultivar, we observed no consistent rela-
tionship between FA and gene expression, rather these correlations seem to de-
pend on the individual cultivar (Table 2). Forty-eight (red) and 27 (green) coef-
ficients displayed significant (P<0.05) positive and negative correlations, re-
spectively. Of these, 43, 29, and 3 were associated with Bronowski, Q2, and
Westar, respectively. The correlation coefficients ranged from a positive corre-
lation of 0.88 for f-CT and a-linolenic acid in Bronowski, to no correlation be-
tween FatB and erucic acid in Westar, to a highly negative correlation of -0.95
between FAD6 and erucic acid in Bronowski. Interestingly, for Bronowski and
Q2, 52% (r2=0.72) or more of the variation in the expression of f-CT was re-
lated to variation in the level of palmitic acid, a-linolenic acid, and eicosenioc
acid. In this case for Bronowski and Q2, expression of f-CT was positively cor-
related with levels of palmitic acid and a-linolenic acid, whereas levels of eicos-
enioc acid were negatively correlated with 5-CT. For oleic acid, the correlations
coefficients for most genes were positive for Bronowski but negative for Q2
and Westar; although most of the correlation coefficients were not significantly
different. There were no significant correlations between the level of any fatty
acid for the three cultivars and expression of KAS3, Oleosin, and Caleosin
genes when correlations were computed across DAF.

DISCUSSION

We designed this investigation of B. napus seed development after a similar
study by Hu et al. (2009). They examined an older high erucic acid cultivar
Zhongyou 821 (ZY821) and a low erucic acid descendant of ZY821, Zhong-
shuang 9 (ZS9). In turn, we employed several cultivars important for breeding
improved germplasm adapted to a region of the U.S. where 80% of the spring
canola is produced. The level of seed oil at maturity in our three greenhouse
grown cultivars was 2.7 to 7.7% lower than the content reported for seeds of
these cultivars from field grown plants (Bronowski 41.7%, Westar 43.3%, and
Q2 47.8%), but were similar to the level in rapeseed cultivars (2Y821 39.8% ,
759 42%, respectively).

The abundance of FA in our three cultivars was typical relative to another
report with oleic acid > linoleic > a-linolenic (Vuorinen et al. 2014). The
VLCFAs, eicosenioc acid and erucic acid, as reported previously Finlayson et
al., 1973, were higher in Bronowski at the expense of oleic acid, which is the
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economically important FA component. In contrast to the level of eicosenioc
acid in Bronowski (17%), the level in ZY821 was reduced by about one-half
(9.75%); whereas, the level of erucic acid in Bronowski (21%) was reduced by
about one-half the level in ZY821 (42%) (Hu et al. 2009). These difference
likely reflect dissimilarity in genetic background of the cultivars.

We examined nearly the same set of genes as reported by Hu et al. (2009),
but direct comparison is problematic because different reference genes (S-actin
vs. SAND) were utilized for qRT-PCR normalization, different statistical proce-
dures were employed, and we expressed our data on a log2 scale. To compare
fold differences between relative copy number data (Hu et al. 2009) and our
log2 scale data would require numerical data for the qRT-PCR done by Hu et
al. (2009). This is because fold estimates are not possible when the relative
copy number value is close to zero as is the case for many of the genes they ex-
amined. Nevertheless, similarities and differences in general trends can be dis-
cerned (see Fig. 2 (Hu et al. 2009)). For example, the biosynthesis of FAs be-
gins with ACCase catalyzing the carboxylation of acetyl-CoA to malonyl-CoA.
Expression of S-CT, a gene encoding for B-carboxyltransferase, one of four
components of the heteromeric ACCase, is nearly the same in the two studies,
increasing by about 2 fold from 10 to 15 DAF and thereafter decreasing about 2
fold by 35 DAF. Expression of FAEI, a component of a multienzyme complex
involved in VLCFA biosynthesis, increases by 5 fold from 25 to 40 DAF in
7ZY821 and thereafter decreased to the 25 DAF level; whereas, the expression
peaks (log2 = 7) around 15 DAF in Bronowski and thereafter decreases 128 fold
by 40 DAF (log2 = 0).

The expression profile of the seed storage proteins was similar among
Westar, Q2, and Bronowski, which was similar to that observed based on
a comparison between Westar and Reston (Katavic et al. 2002), another high
erucic acid (26%) low oleic acid (30%) cultivar similar to Bronowski. However,
the expression profiles of the seed storage proteins between our cultivars and
ZY821 and ZS9 differed (see Fig. 2 (Hu et al. 2009)). For example, oleosin,
which is the major protein component of oil bodies, narrowly peaked at 40 DAF
in ZY821 with a relative copy number of 25,000 (log2 =14.6) and 12,500 for
ZS9 (log2 = 13.6); whereas in the cultivars we examined the broad peak oc-
curred around 25 DAF with alog2 = 7. However, the napin gene, which ac-
counted for over 75% of total transcription from all 32 genes assessed by Hu et
al. (2009), and displayed the highest level of expression among the genes we
assessed, had nearly the same level of expression at its peak; ZY821 and ZS9
peaked at 40 and 35 DAF, respectively with a similar relative copy number of
175,000 (log2 =17.4); whereas in the cultivars we examined the broad peak oc-
curred around 25 DAF with a log2 = 13. In any event, the seed storage protein
genes in both studies generally displayed the highest level of expression of the
genes assessed.
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Some of the genes we appraised were significantly correlated with fatty acid
accumulation, especially for the Bronowski and Q2 cultivars. In particular, the
level of several FAs was correlated with §-CT expression. f-CT encodes for one
of the subunits (a-CT, B-CT and BC) for the plastid localized heteromeric AC-
Case, which catalyzes the first committed step of fatty acid biosynthesis. This
gene is thought to be unique in that it is the only known lipid metabolism gene
that is encoded by the plastid genome (Elborough et al. 1996; Li-Beisson et al.
2013). In the high erucic acid cultivars Bronowski and ZY821, f-CT expression
was negatively correlated with erucic acid, whereas f-CT expression was posi-
tively correlated with palmitic acid, steric acid, a-linoleic acid in Bronowski,
but not in ZY821 (Hu et al. 2009). Perhaps there is a negative correlation be-
tween erucic acid levels and -CT expression because expression of this gene is
declining, while erucic acid levels increase after 25 DAF.

Different patterns of gene expression exists for FAE] between the high erucic
acid cultivars Bronowski and ZY821 (Hu et al. 2009). FAEI is a component of
the multi-enzyme complex involved in VLCFA biosynthesis; mutations in the
FAE] gene are responsible for the low erucic acid trait (Puyaubert et al. 2005).
Erucic acid levels peak by 30 DAF in Bronowski, whereas the levels substan-
tially increases in ZY821 until 40 DAF. Thus, the negative correlation coeffi-
cient (-0.78) that we observed for FAEI and erucic acid in Bronowski is consis-
tent with a large fold decrease in gene expression and slightly increased level of
erucic acid as Bronowski seeds mature. However, the positive correlation (0.78)
between erucic acid and FAE! for ZY821 is likely explained by the much dif-
ferent temporal pattern of FAEI expression and erucic acid accumulation (see
Fig. 2 (Hu et al. 2009)). The high level of FAEI expression in low erucic acid
cultivars such as Q2, ZS9 and other cultivars (Hu et al. 2009; Vuorinen et al.
2014) might seem inconsistent with the absence of VLCFAs. However, as men-
tioned, FAEI gene contains a mutation that result in the absence of 3-ketoaacyl-
CoA synthase protein, thus preventing the synthesis of VLCFAs (Puyaubert et
al. 2005; Wu et al. 2008). Interestingly, Westar contains a point mutation while
ZS9 contains a point mutation and four base pair deletion (Katavic et al. 2006;
Wu et al. 2008). Overall, appraisal of the correlation coefficients, which are
sometimes different between our cultivars and the Chinese cultivars investi-
gated by Hu er al. (2009), is instructive of the different patterns of gene expres-
sion in relation to a particular FA or storage protein.

The results of this investigation, which employed three publically available
cultivars from Canadian breeding programs, provide background data into the
transcriptional network for FA, TAG, and seed storage proteins. By comparing
the outcome of our investigation to that of Hu ef al. (2009), we further demon-
strated that genetic background of the cultivars from different breeding pro-
grams affects important metabolic and molecular responses during oilseed de-
velopment. In any event, these insights and benchmark data will be important
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for the success of the recent public spring canola improvement project we initi-
ated to develop germplasm adaptable to the Northern Plains of the U.S.
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Fatty acid and transcript profiling in developing seeds of three B. napus cultivars
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Fatty acid and transcript profiling in developing seeds of three B. napus cultivars

£67°67 LSY'8T LY9'8T 08L'8C  VNQPou £0€°8T €€8°LT Teoc oM (Tm orL) zdn @M OovD Tdn
0¥T'6C LTE'8T LLL'8T £€96'8T £€91°8C €20°8T L60°6T rcozresom (1M ovL) zdn (IMOvD) Tdn
0€S°6C L90°6C 080°6C L18°8T 0T$'6T L06'8T L§9°6T ogoc oM (0m orL) zdn (oM 0¥ Tdn
€9€°6C 0T8T 0rE'8T €01°8T L08'8T €16°LT L6L'LT 896170 (80 orL) zdn (8D 0¥L) Tdn
LLS'8T LTLLT €L1°8T €08°LC  VN@POU  YNQoou 08L'LT L9610 (LD orL) zdn (LOOvD Tdn
020°6C 019°LT 0L8°6C £V€°6C €€€'8T €€0'8T L£9'8T 996120 (90 ovL) zdn (90 0ovL) Tdn
VNQP ou LST'0€ 010'6C €15°8C €8L°LT LOT'8T 061°6  LO8I Dmouorg  (Lg 0rL) zdn (Ld0vL) Tdn
VNQP ou £€6'6C £€69°67 0€L'8T €9L°8T L99°LT €LT'8T 9081 Mismouorg (99 orL) adn (9d 0vL) Tdn
€L0°6T L9¥'8T €61°8T €LE'8T LEL'LT £€96°LT €65°67  S081 Mismouorg  (¢g orL) adn (s 0vL) Tdn
0¥8'6C LST'6T LLY'6T 00L'67  VNQPou LIT0E €17°0¢€ Te0c oM (Tm 6€L) (2) 1dn (Tm 60 1dN
€SL°6T LET'6T 0€8°6C £61°0€ 0€L'6T €6L°6T LYL0E TeozrEsopm  (ITM 6€L) (2) 1dn (1M 60 1dN
LST'6T 090°6T £€89°67 £89°6C £79°67 LIS'6T L9L°0€E ogocmsop  (0Mm 6€L) (2) 1dn (oM 6£0 1dN
€21°0€ 066'8T 016'8C L£9'6T LSLOE 065°6T LT¥'6T 896170 (80D 6€L) (2) 1dn (80 6£L) 1dN
£€96'8C 0€1°'8C 0L8'8T LEO'6T  VN@POU  YNQdou LYS'6T L9610 (LD 6€L) (2) 1dn (LD 6EL 1dN
€68'8C 0r1'8C €79°6C 0LT 1€ 01962 €0S°6C LYY'6T 9120 (90 6€L) (2) 1dn (90 6£L) 1dN
VNQP ou L6V'6C LY8'LT 065°LT L66°LT L8T'8T LTO0E  LOT Mismouorg  (Ld 6€L) (2) 1dn (Ld 60 1dn
Kep ot Kep ¢¢ Kep ¢ Kep ¢z Kep 0T fep g1 fep 01 KpueA doyorg  #Mwud oweuduen dayore

JOWILIJ QUIRU QU0)

penuuoo—gs ajge | Arejuswe|ddns



Marina Petkova et al...

32

600- €0°0- 00 950~ 9£0 790 S0 800 680 60 160 790- JeE
LSO~ o s0- 50 €0 L0 Lo 9¢0 6L0- 80 80~ Lo 20
€9°0- S1'o- 00 080~ 790- 6£0 €L°0 €0 18°0- 780 780~ 6L0- PEMOLO G
umejpniy  UBMIO0  UBBED  udeN  TIdWW  Lvvdl  2lvod ared vied dOoM  QOvMiaH  Tavd adAouweo
LT0 S60- 630 60 160 880 980~ 160 760- €8°0- 160 €8°0- JeE
cror 980 80 PLO 90 L9°0- 90 180 €L°0 PLO- 8L0- Lo 0
10°0- 80 €9°0- 6L0- 780 LLO- 780 €L°0- €8°0- 80 LLO- 9L0- PEMOLO G
Y2 2 ISVY  IWDW  9avd savd avd avs o4 104 Iov  asop)y  dfousn

JuedIjIUBs-UoU A|[eolISITels S1USI01Jo09d P J0J0D-UoU ‘APAI1adsa 1 ‘suoiep 1102 aAlrebou pue

anlsod pade|dsip S1UaI014j900 USS JH pue pal ‘9ouediiubis [ealisifels Joj 1918yl U| €S a|ge | Ariuews|ddng



