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ThE APPLICATIoN of oRThogoNAL CoNTRASTS To DETERMINE 
hoMogENEoUS gRoUPS

AbstrAct

The paper presents a modified approach to analysis of data obtained from experiments carried out according to clas-
sical factorial designs. four examples were discussed in order to present details of proposed method. Modification 
of the analysis of variance presented here enables more effective use of information on how studied factors affect 
the means of dependent variable. The specificity of this approach is based on alternative multiple comparison procedure 
incorporating orthogonal contrasts to determine homogeneous groups.
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IntroductIon

from the nineteenth century, comparative experiments were frequently used 
in various fields of science. however, results of such experiments may be affected 
by errors if groups of experimental units are not equivalent at the start of the exper-
iment. R. A. fisher pointed out that if the experimental units (plots) are random-
ly assigned into groups, their equivalence should be guaranteed at least in terms 
of arithmetic means (fisher, 1925, 1935; Cochran & Cox, 1957). Thus, his experi-
mental designs provide both comparisons and randomization which eliminates also 
an unconscious bias of the experimenter. Random selection guarantees an impartial-
ity towards each factor, even though its meaning is not known to the experimenter.
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According to fisher, consider the simplest randomized complete one-factor 
design, where each observation may be described by the following linear model: 
 
 

where: – value of the dependent variable for the i-th level of factor A  and the j-th 
replication; – general mean; – effect of i-th level of factor A; – experimental 
error for the i-th level of factor A and the j-th replication; – number of levels 
of factor A; – number of replications for i-th level of factor A; – total number 
of observations. Assuming that and 

The analysis of variance for such experimental data takes into account two types 
of variation: within object variation, arising from the variability ( ) of the random 
deviations, and between object variation, arising from the variability ( ) of tested 
effects . The ratio of between-to-within object variation (called the F statistics) 
given as:

has the F distribution under the null hypothesis written as:

If compared with the critical value of f distribution at certain significance 
level (α) the F statistics is the basis to confirm (if ) or deny (if 

) the veracity of the null hypothesis given by formula (3) (fisher, 
1925; Cochran & Cox, 1957; Elandt, 1964; Searle, 1971; Wójcik & Laudański, 
1989; Laudański, 1996; Mańkowski, 2002; Box et al., 2005; Montgomery, 2005).

Considering comparative experiments the most familiar procedure following 
rejection of null hypothesis (compared objects differ significantly) involves multi-
ple comparisons in order to determine exactly which levels of given effect (factor) 
are equivalent in terms of analyzed response (usually mean value). Such proce-
dures, called sometimes post hoc tests or mean separation tests, allow to extract 
specific subgroups of compared objects, homogeneous in terms of mean values 
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of the response, i.e. subgroups within objects which do not differ significantly 
between each other considering mean value of dependent variable. There are many 
methods of conducting multiple comparisons which differ with kind of comparisons 
they make (pairwise or with control) as well as with the type of error they control 
(individual or interval error rates). The list of mean separation tests includes a lot 
of procedures, like those of Tukey, Tukey-Kramer/Spjotvoll-Stoline or Student-
Newman-Keuls, each based on the distribution of studentized range, Duncan – based 
on the distribution proposed by the author and individual error rates, Bonferroni – 
based on a modified usage of Student's t-distribution or Scheffe – based on the F 
distribution (Tukey, 1953; Dunnett, 1955; Cornifield & Tukey, 1956; Schéffe, 1959; 
Elandt, 1964; Duncan, 1975; Biegun & gabriel, 1981; hochberg & Tamhane, 1987; 
hochberg, 1988; Wójcik & Laudański, 1989; hsu & Nelson, 1998; Rafter et al., 
2002). Moreover, multiple comparisons may be realized using the method of mini-
mized within-group sum of squares (Wagner, 1977) and procedures derived from 
cluster analysis (Caliński & Corsten, 1985).

Probably the most versatile and frequently used for multiple comparisons 
is Tukey's procedure and its variants. It can be used to compare group means derived 
from orthogonal designs characterized by the same number of observations for each 
object, as well as from non-orthogonal ones characterized by an uneven number 
of observations for objects. for example, Student-Newman-Keuls or Duncan proce-
dures should not be used for comparison of group means obtained from non-orthog-
onal designs as generally standard errors of mean differences may vary for each pair 
of compared object means.

If the null hypothesis is not rejected, there is no basis to conclude that objects 
are significantly different which means that all of them form one homogeneous 
group of means. Thus, the experimenter may sometimes fail to formally confirm 
a guess about diversity of tested objects.

In this paper we present an alternative multiple comparison procedure incorporat-
ing orthogonal contrasts to formally confirm an assumption about diversity of test-
ed objects and to determine homogeneous groups.

The presented analyzes were performed in the IBM®SPSS program.

ExAmplEs And dIscussIon

Example 1
In a preliminary experiment 17 lines and 3 cultivars of rye has been studied. 

The unbalanced experiment was performed in 20 incomplete blocks, each split into 
plots of 10 m2. Rye yield expressed in kilograms per plot was a dependent variable.
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Analysis of variance for this experiment (Table 1) showed no differences between 
studied objects in terms of mean yield obtained from plot (p = 0.2175). The exper-
imental accuracy for comparisons of mean yields calculated for analyzed objects 
(percentage ratio of standard deviation for object means to overall mean – coeffi-
cient of variation) ranged from 8.26% to 9.48%, whereas mean comparison accura-
cy was 8.92%. These values indicate that the experiment was carried out properly.

Considering Tukey procedure, mean yields for tested objects did not differ signif-
icantly (mean value of honestly significant difference hSD at α = 0.05 was equal 
to 2.712, which means that mean comparison accuracy was 33.8%), whereas t-test 
showed significant difference between objects 16th and 9th (least significant differ-
ence LSD = 1.446 < 9.057‒7.399 = 1.658) at the significance level α = 0.05 (mean 
comparison accuracy in this case, i.e. percentage ratio of LSD to overall mean, was 
20.7%).

Splitting tested objects according to the results of the comparison by the Student's 
procedure into two subgroups and performing analysis of variance for such a data-
set will be equivalent to performing analysis in a cross-hierarchical design: blocks×-
objects within subgroups. Thus, it is possible to confirm the existence of differences 
between mean yields calculated for subgroups, even though variation of mean yields 
for objects within each subgroup is not significant.

otherwise, if 20 objects are split into subgroups, group 1: (16, 13, 6, 20, 18, 17, 
15, 8, 7, 10, 11) and group 2: (2, 4, 1, 14, 19, 5, 12, 3, 9), mean yields obtained 
for these subgroups will be 8.419 and 7.549 respectively (Table 2). The F test (Table 
3) confirms significance of differences between subgroups in terms of mean yields 
(Femp=18.2058), whereas differences of mean yields obtained for objects within 
each subgroup are not significant (Femp=0.3927).

This example proved that the analysis of variance cannot give fully satisfacto-
ry results of multiple mean comparisons. This happens because ANoVA is based 
on comparison of all possible independent differences between pairs of means.  
If the analysis concerns of many small differences and only few large ones then glob-
al null hypothesis cannot be rejected, because sum of squares which measures these 
differences is too small relative to degrees of freedom corresponding to a number 
of comparisons. Such situation may occur quite frequently in practice, therefore 
modification of ANoVA technique to obtain homogeneous subgroups is justified.  
It should be noted that the analysis of variance described above (a comparison of two 
subgroups of analyzed objects) is nothing but a comparison known as a contrast 
between effects of tested objects.

Table 1
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Analysis of variance for experimental data

Source df SS MS p-value

Blocks 19 11.6468 0.6130 0.8830 0.6039

objects 19 17.5452 0.9234 1.3303 0.2175

Residual 41 28.4613 0.6942

Table 2

postulated division into groups

group I

object 16 13 6 20 18 17 15 8 7 10 11

Mean 9.057 8.794 8.744 8.662 8.648 8.489 8.322 8.054 8.013 7.917 7.904 8.419

group II

object 2 4 1 14 19 5 12 3 9

Mean 7.796 7.701 7.611 7.597 7.470 7.458 7.454 7.453 7.399 7.549

Table 3

complex analysis of variance for experimental data

Source df SS MS p-value

Blocks 19 11.6468 0.6130 0.8830 0.60394

objects 19 17.5452 0.9234 1.3303 0.21754

including:

Between groups 1 12.6380 12.6380 18.2058 0.00011

Within groups 18 4.9072 0.2726 0.3927 0.98235

Residual 41 28.4613 0.6942

orthogonAl contrAst constructIon

Consider a modified technique of analysis of variance for the model (1): rand-
omized complete one-factor design. The hypothesis (2) for this design is that 
all mean values calculated for tested objects represent one homogeneous group 
centered around the estimated experimental mean (m).

Rephrase our problem as follows: there are subgroups of examined objects having 
estimated mean values centered around the subgroup mean (subgroup centroid) 
similar as in the model (1) all object means are centered around an overall mean. 
one can always guess the existence of such subgroups but they must be properly 
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identified to ensure rejecting the null hypothesis of equality between subgroup 
means (centroids) without rejecting the null hypothesis of differences between 
means within these subgroups.

We will use one of hierarchical cluster analysis methods known as centroid clus-
tering to identify such object subgroups. In centroid clustering distance between 
two clusters is defined as distance between their centers of gravity (here: between 
means/average point in the multidimensional space defined by values of analyz-
ed variables). Agglomeration procedure assumes that each object creates initially 
a separate cluster. Assuming that there is at most p object subgroups, agglomera-
tion procedure results in subsequent divisions into separate subgroups of objects 
as number of subgroups is reduced from p–1 to 2 based on an arbitrary distance 
measure, for example Euclidean or square Euclidean distance between means 
of each subgroup. Distances of Student or fisher which take into account experi-
mental design may be also used (Laudański, 1996; Mańkowski, 2002). The fisher 
distance may be expressed as:

whereas Student distance may be determined as:

In both formulas s and t are indicators of subgroup means  and  respective-
ly,  and  denote numbers of observations that correspond to subgroup means 
and are combined into one subgroup containing  observations while reduc-
ing the number of subgroups from (v + 1) to v. Note that the formula (4) expresses 
sum of the squares of contrast between groups identified with subscripts s and t. 
In analysis of variance contrast is defined as linear function of object means 
of known constant coefficients sum of which is equal to 0. In other words, if vector 

, where , expresses estimated contrast (comparison) 
between means (components of vector a) established as  then sum of squares 
calculated for the following hypothesis:

is equal to

where c is a matrix such that the covariance matrix of vector a is equal to .
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In particular case, if  and  while other coefficients are zero, then Q 
expresses the sum of squares of F statistic which tests equality of means calculated 
for subgroups s and t. Mindful of the relationship  one may apply 
Student’s t statistic instead of F statistic to test hypothesis expressed by formula (6). 
Note that Student’s test may be one-sided, i.e. may verify hypothesis written as:

If so, then testing statistic takes the form of   and consequently the null  
 
hypothesis formulated in equation (8) should be rejected on the significance level α,  
 
if  or by analogy if. .

Example 2
Consider data from Table 4 to introduce procedure described above. Table 

4 presents ANoVA results obtained for experiment carried out for 5 corn cultivars. 
The experiment was performed in completely random design with 6 replications. 
Corn yield expressed in kilograms per plot (experimental unit) was a depend-
ent variable. Mean yields per plot are presented in Table 5. Assuming the exist-
ence of 5 subgroups (each cultivar corresponds to separate subgroup) matrices 
of fisher distances (tab. 6) between subgroup means may be determined according 
to the formula (4). As a final result two subgroups (Tab. 7) are obtained with fisher 
distance equal to:

Table 4

Analysis of variance for experimental data

Source df SS MS p-value

objects 4 5267.9284 1316.9821 190.3427 2.49E–18

Residual 25 172.9751 6.9190

Table 5

object means values ( ) 

objects 5 2 1 4 3

Means 107.75 105.65 97.15 87.05 71.75 93.87
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Table 6

matrix of Fisher distances

Step 1

object 2 1 4 3

5 13.23 337.08 1285.47 3888.00

2 × 216.75 1037.88 3447.63

1 × × 306.03 1935.48

4 × × × 702.27

Step II

object 1 4 3

5,2 364.81 1544.49 4886.01

1 × 306.03 1935.48

4 × × 702.27

Step III

object 1,4 3

5,2 1278.96 4886.01

1,4 × 1656.49

Table 7

mean values of groups

groups (1,2,4,5) (3)

Means 99.40 71.75 93.87

24 6 30

Results presented in extended ANoVA table (tab. 8) for this experiment show that 
5 corn cultivars form 4 homogeneous groups. Mean yields calculated separately 
for cultivar 5 and 2 do not differ significantly between each other, while mean yield 
representing these two cultivars differs significantly from mean yields observed 
in other three cultivars each of which forms a separate homogeneous group. Table 
9 presents a series of contrasts which exhausts the set of all possible orthogonal 
contrasts available for this experiment. fisher distance corresponds to the sum 
of squares calculated for the contrast of compared objects. Different distance meas-
ures eg. Euclidean distance allows to obtain the same or a different set of orthogonal 



The application of orthogonal contrasts to determine homogeneous groups 39 

contrasts. for example, formula (9) for computing the square Euclidean distance 
takes the following form:

Table 8

complex/extended analysis of variance for experimental data

Source df SS MS p-value

objects 4 5267.928 1316.982 190.343 2.49E–18

 : Test subjects do not form a homogeneous groups

2 groups 1 3669.708 3669.708 530.381 2.37E–18

3 groups 1 1278.960 1278.960 184.847 4.73E–13

4 groups 1 306.0301 306.0301 44.230 5.72E–07

5 groups 1 13.230 13.230 1.9121 0.179

Residual 25 172.975 6.919

Table 9

set of orthogonal contrasts

objects 1 2 3 4 5 SS

Contrast 1 0 –1 0 0 1 13.230

Contrast 2 1 0 0 –1 0 306.030

Contrast 3 1 –1 0 1 –1 1278.960

Contrast 4 1 1 –4 1 1 3669.708

Example 3
Consider experiment conducted in randomized complete blocks where effect 

of corn cultivar on yield per plot was studied. Results of ANoVA for experimen-
tal data, extended by orthogonal contrasts, are presented in Table 10. The analysis 
showed that 8 corn varieties formed 4 homogeneous groups regarding mean yield 
per plot. Mean yields calculated for each cultivar, homogeneous groups obtained 
according to proposed method and well known multiple comparison procedures 
are summarized in Table 11. It should be noted that standard multiple compari-
son procedures resulted in inseparable homogeneous groups. Complete separation 
of homogeneous groups is rarely attainable in practice, particularly if a large number 
of analyzed objects (means) is taken into account. The application of orthogonal 
contrasts enables complete separation of homogeneous groups (mutually independ-
ent) in each case.
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Table 10

complex analysis of variance for experimental data

Source df SS MS p-value

Blocks 2 5.643 2.821 0.0595 0.94247

Cultivars 7 2347.247 335.321 7.0776 0.00099

 Test subjects do not form a homogeneous groups

2 groups 1 1476.056 1476.056 31.1549 0.00007

3 groups 1 601.142 601.142 12.6882 0.00313

4 groups 1 223.414 223.414 4.7156 0.04757

5 groups 1 43.867 43.867 0.9259 0.35226

6 groups 1 2.160 2.160 0.0456 0.83398

7 groups 1 0.327 0.327 0.0069 0.93497

8 groups 1 0.282 0.282 0.0059 0.93986

Residual 14 663.291 47.378

Table 11

homogeneous groups

Cultivar
orthogonal 
contrasts 
method

Tukey Newman–
Keuls Duncan Bonferroni Scheffe Student

1 104,87 a a a a a a a

4 104,40 a ab ab ab ab ab ab

8 94,43 b abc abc b abc ab b

6 93,23 b abc abc b abc ab b

2 87,73 c abc bc bc abc ab bc

7 87,30 c bc bc bc abc ab bc

3 82,83 c c c c bc b c

5 73,60 d c c c c b c

Example 4
An experiment discussed by Wagner (1977) will be used to present direct compar-

ison of method based on minimal orthogonal contrasts with procedure based 
on minimal within-group sum of squares. The experiment concerned 14 cultivars 
of sugar beet and was realized in completely randomized block design with 6 repli-
cations. Sugar yield was a dependent variable and mean yields (dt/ha) obtained 
for each cultivar are presented in Table 12. Table 13 presents results of ANoVA, 
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extended by orthogonal contrasts for experimental data. Comparison procedure 
based on minimum within-group sum of squares resulted in 3 homogeneous groups 
of object means, while application of Tukey procedure allowed to obtain 2 homo-
geneous groups (Wagner, 1977). Method of minimal orthogonal contrasts based 
on fisher distance between object means resulted in distinguishing 4 homogeneous 
groups (Tab. 14). Thus the most numerous group discussed by Wagner (1977) had 
been split into 2 separate subgroups (group 1 and 2 in Tab. 15). It is not difficult 
to note that the application of orthogonal contrasts resulted in considerable span 
of mean sugar yields observed between groups, whereas within each group object 
means calculated for cultivars were concentrated around group mean.

Table 12

mean yield values of compared beet cultivars

Cultiv. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Yield 98.36 100.87 107.58 102.32 105.11 106.13 102.03 102.29 100.58 84.11 95.52 101.91 96.44 103.05

Table 13

complex analysis of variance for experimental data

Source df SS MS p-value

Blocks 5 193.05 38.61 2.175 0.067615

Cultivars 13 2610.79 200.83 11.314 3.53E–12

 : Test subjects do not form a homogeneous groups

2 groups 1 1725.174 1725.174 97.193 1.56E–14

3 groups 1 569.553 569.553 32.087 3.62E–07

4 groups 1 244.935 244.935 13.799 0.000425

5 groups 1 22.658 22.658 1.276 0.262796

Within groups 9 48.470 5.386 0.303 0.971258

Residual 65 1153.75 17.75



Zbigniew Laudański, Dariusz R. Mańkowski, Leszek Sieczko...42 

Table 14

Fishers distances matrix

object 11,13 1 2,4,7,8,9,12,14 3,5,6

10 563.588 609.188 1654.880 2210.453

11;13 × 22.658 323.167 762.855

1 × × 64.471 281.791

2,4,7,8,9,12,14 × × × 244.935

object 1,11,13 2,4,7,8,9,12,14 3,5,6

10 721.616 1654.880 2210.453

1,11,13 × 326.570 812.250

2,4,7,8,9,12,14 × × 244.935

object 1,11,13 2,3,4,5,6,7,8,9,12,14

10 721.616 1985.187

1,11,13 × 569.553

object 1,2,3,4,5,6,7,8,9,11,12,13,14

10 1725.174

Table 15

means division into homogenous groups

group 1

Cultivar 3 6 5

Yield 107.58 106.13 105.11 106.27

group 2

Cultivar 14 4 8 7 12 2 9

Yield 103.05 102.32 102.29 102.03 101.91 100.87 100.58 101.86

group 3

Cultivar 1 13 11

Yield 98.36 96.44 95.52 96.77

group 4

Cultivar 10

Yield 84.11 84.11
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conclusIons

The alternative multiple comparison procedure incorporating orthogonal contrasts 
to determine homogeneous groups of objects undergone analysis of variance enables 
complete separation of analyzed object means that means within homogeneous 
groups do not differ significantly between each other but between-group means 
(centroids) are significantly different. Moreover, significant association of group 
variation relative to the total object variation ensures optimal separation of object 
means into distinct homogeneous groups. Proposed procedure may be applied 
for each linear ANoVA model and analysis of covariance of classified data.

Commonly used multiple comparison procedures are based generally on compar-
ing the distances between means calculated for pairs of objects relative to the appro-
priate error that results from covariance matrix of these means (thus they correspond 
to the matrix of experimental design). Although these procedures are very useful 
for comparison selected objects to each other (answering the question: does cultivar 
A differ significantly from cultivar B in terms of mean value of studied feature) 
applying them to split objects into homogeneous subgroups results in an approx-
imate picture of possible separation, especially if number of objects is large. 
The procedure discussed in this paper consists in determination of orthogonal 
contrasts between means according to the criterion of minimum contrast and it 
seems to meet the expectations of practitioners.
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