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SPATIAL VARIABILITY AND EFFICIENCY OF TREATMENT
MEAN COMPARISONS IN AN EXPERIMENT WITH FODDER

PEA USING MODERN STATISTICAL METHODS

ABSTRACTS

It is typical of breeding experimentation to conduct experiments on large breeding material tested on
small plots with a limited number of replications. Under such conditions, observations made on adjacent
plots are biased by the effect of autocorrelation and fertility trends. The actual treatment effects can be
masked and the capability of the breeder to detect true treatment differences is impaired.

This paper deals with the problem of the estimation of effects of spatial variability and their impact on
the efficiency of treatment comparisons. The considerations are based on the results from a breeding ex-
periment with 25 treatments of fodder pea arranged according to the partially balanced incomplete block
design (IBD) with 4 replications.

Plant height and seed yield were analysed with the conventional statistical method ANOVA, the near-
est neighbour analysis (NNA) and kriging. Eventually, the efficiency of the neoclassical methods relative
to the completely randomised design (CRD) and randomised block design (RBD) was calculated.

The estimation of the treatment effect on plant height was accomplished most efficiently with the
NNA, whereas the efficiency of the alternative methods in the estimation of seed yield was comparable to
the efficiency of the RBD.
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INTRODUCTION

The primary aim of plant breeding is to obtain and improve genotypes of
crops. Breeding programmes start with the selection of initial plant mate-
rial, which is then improved through certain breeding techniques. Efficient
testing of new breeding material is an essential methodological problem. On
the one hand, the breeder must assure that his decision on the selection of
objects for further breeding work is unquestionable, on the other hand any
exclusion of undesirable objects should be burdened with the smallest pos-
sible error margin.

Communicated by Ludwik Spiss

P L A N T B R E E D I N G A N D S E E D S C I E N C E

Volume 45 Number 1 2001



Testing of newly obtained breeding material is conducted under condi-
tions of a field experiment. Due to a short supply of seeds at the initial steps
of a breeding programme, testing experiments are conducted on microplots,
on which a large number of entries are tested with a relatively low number of
replications.

Under such conditions, observations from adjacent plots are frequently
correlated. Effects of autocorrelation in conjunction with spatial effects re-
lated to soil variability influence the estimated experimental error, and con-
sequently the capacity of the experiment to demonstrate the true entry
effects. Biased entry effects lead to erroneous decisions, which may destroy
or delay the outcome of the breeder’s work. Also, cost of research increases.

Recently, researchers investigating field experimentation methods have
tried to create a new approach to data analysis in which spatial variability is
given more importance, a new approach that will be supplementary or alter-
native to the traditional analysis of variance for a given experimental de-
sign. The new type of analyses incorporates additional information on the
location of an entry on a field, which constitutes a starting point for further
correction of the value of a trait observed on the plot. Of the new ap-
proaches, the following deserve our attention: methods of analyses of trends
in soil fertility, Papadakis’s method called the nearest neighbour method
(NNA) and kriging (Bartlett 1978, Krige 1966, Matheron 1963, 1971,
Papadakis 1937)

The objective of the present study was (i) to present and discuss some data
analysis methods which include information on spatial variability of the ex-
perimental field; (ii) to evaluate spatial variability of the experimental field
on which two traits of 25 entries (genotypes) of fodder pea were tested in
terms of soil acidity and nutrient availability (iii) to compare the efficiency
of different data analysis methods.

METHODS

The study was based on the results obtained from a field experiment with
fodder pea (Pisum sativum L.) conducted in 1998. The experiment was located
on a field of the Experimental Station of the Olsztyn University of Agriculture
and Technology in Tomaszkowo. A partially balanced square lattice design
with 25 entries in 4 replications was applied in the experiment.

Prior to the establishment of the experiment, soil samples were taken to
make chemical analyses on soil acidity and content of available nutrients
(P2O5, K2O, Mg). A total of 98 samples, including 50 samples for the pea
experiment and 48 samples from the adjacent experiment with a yellow
lupine experiment, were taken from the part of the experimental field cov-
ered with the two experiments: one with pea and the other with yellow lupine.
A 4 m × 6 m measuring net was applied. The plot size of the experi-
ment was 1.5 × 3m. Spring wheat was used as an intercrop between the
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plots. The mean height of plants was recorded on plots at harvest, after
which the plants were threshed and the seeds were weighed.

Statistical analysis of the results was composed of the analysis of vari-
ance, for completely randomised design (CRD), randomised block design
(RBD), incomplete block design (IBD) as well as the analysis of covariance
with concomitant variables determined according to Papadakis’s method
(NNA) (Papadakis 1937, Bartlett 1978) and kriging (Go³aszewski 1997,
Webster and Oliver 1990). Efficiency of the considered methods of data
analysis was determined (Steel and Torrie 1980).

Below you will find a presentation of some methodological aspects re-
lated to the application of relatively new procedure like the NNA and
kriging methods to the analysis of experimental results.

Papadakis’s method - NNA

The method elaborated by Papadakis (1937) is also known as the Near-
est Neighbour Analysis (NNA). According to Brownie et al. (1993), the
term „Neighbour Analysis” stands for all types of analyses based on the
information from adjacent (neighbour) plots in the estimation of spatial
variability.

The approach suggested by Papadakis is intuitive and, although raising
many doubts of the statistical nature, it is commonly applied in method-
ological studies (Kempton and Howes 1981, Wilkinson et al. 1983). In
essence, this is a covariance method with an „untypical” concomitant
variable. Untypical in the sense that it is determined on the data for a de-
pendent variable.

Generally, the method consists in the 'removal’ of entry variability from
plot values, followed by the determination of the means of residuals from
the adjacent plots, which are used as a concomitant variable in the analysis
of covariance. For the purpose of this study, one variant of the method sug-
gested by Bartlett (1978) was applied. The concomitant variable is deter-
mined by the iterative process, which helps stabilise the object mean and
square error mean in covariance analysis. The calculation algorithm (i. e.
the first differences) used in this paper can be sketched as follows:

1. Setting up the data according to the design on a field.
2. Determination of residuals of the trait measured on each plot from

the entry means.
3. Determination of a concomitant variable for each plot minus the entry

variability, which is the mean of diversions from the adjacent plots.
4. Correction of the entry means according to the neighbours.
5. Points 2-4 repeated - subsequent iterations.
6. Covariance analyses with concomitant variables from subsequent it-

erations.
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Kriging

Kriging allows the researcher to predict the values for points of the field in
which the measurements have not been made. Unlike interpolation meth-
ods, kriging makes use of the information on spatial variability of the prop-
erty or trait analysed. Semivariance fixed for different distances (lag h)
between the sampling points serves as a measure of spatial variability. De-
tailed statistical assumptions and description of the methods one can find in
the books by Journel and Huijbregts (1978) and Cressie (1991), application
of the spatial analyses in pedology in the book by Webster and Oliver
(1990), and practical aspects of the utilisation of the methods in the book by
Clark (1979), respectively. Besides, in polish journals the papers of
Kristensen and Ersboll (1992) and Go³aszewski (1997) deal with the meth-
ods from the perspective of field experimentation methodology.

One-dimensional semivariance is calculated according to the formula:
for i = 1, 2, 3, ..., N(h); where N(h) - number of pairs observations [z(i), z(i

+ h)] spaced by lag h
The above procedure deals with pairs of observations recorded in one di-

rection, but the idea applies to all possible directions according to the net of
measurements. Lag h is an integer, and a multiple of subsequent distances
between the points of measurements.

Graphically, semivariance distribution related to distance h, called a
variogram, may have different shapes, depending on the character of
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Fig.1. The scheme of semivariance calculation for complete observations – a, and missing
observations - b  (acc. to Go³aszewski 1997)
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spatial variability of the variable analysed. A model of such a variogram is
described with the function for which the dispersion of the semivariance
values is the smallest. The model, which allows the researcher to estimate
relationship between semivariances and distances can be linear, logarith-
mic, exponential, spherical, etc., but the question which form to chose is dif-
ficult and requires some experience on behalf of the researcher. The key to
the problem is that any model is no more than an approximation of the actual
variogram; if defined incorrectly, it may become the main source of a bias of
the results interpolated with kriging. Only two models: linear and spherical,
seem to be of practical importance in field experimentation (Go³aszewski
1997, Trangmar et al. 1985, Stroup et al. 1994).

A linear model of semivariogram with a threshold is as follows:

and a spherical model of semivariogram has a form:
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Fig.2. Theoretical semivariogram



Typically, a semivariogram is defined with the following parameters
(Fig.2):

- range (a)
defines the spatial boundary depending on the observation (it is as-

sumed that semivariances exceeding range a equal s
2 and are ac-

counted for by random variability)
defines the maximum radius, within which adjacent observations are
collected for kriging.

- nugget variance (nugget effect) (C0)
defines non-continuity of the variogram in relation to the central point
of the coordinate system,

results from measurement errors and microvariability at distances
smaller than sampling.

- structural variance (C)
a true spatial component of a sample variance; defines this part of vari-
ance which results from the spatial aspect of the observation.

- threshold (C0 + C)
defines the value at which the variance becomes stabilised; corresponds
to lack of spatial correlation of variables Z (x) and Z (x+h), the fact
which can be interpreted as a spatial independence of the observation,
with the best estimator - mean value of variability for the whole field,
pure nugget effect and an increasing variance of sample s2 suggest the
occurrence of microvariability, which becomes evident at larger dis-
tances,
the threshold is defined by the value of C when spatial variability of the
observation is present and C0 does not occur.

RESULTS AND DISCUSSION

Kriging of chemical properties of soil

For the study presented in this paper, no spatial relation was determined
for pH, P and K (Fig.3). Estimates of semivariances set for subsequent dis-
tances between points of soil sampling were grouped around the variance of
a sample. Magnesium semivariance distribution was described by the linear
model with a parameter which determined the nugget variance C0 = 0.1053.
Contour maps of the soil properties analysed in the study, presented in
Fig.4, were produced with kriging, therefore they contain information on
spatial variability. The parameters included in the kriging of pH, P and K re-
ferred to the maximum scope of sampling and sample variance, but the
kriging of Mg additionally included the variance of nugget. In order to com-
pare the effect of the introduction of additional nugget variability to kriging,
a map of the Mg content was produced using the assumption of absence of
spatial variability in the observation.
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Fig.4. Contour maps of pH and available macronutrients produced by kriging in the experimental field (16 m of
the field breadth corresponds to the pea experimental stripes).
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Fig.3. Semivariances of pH and available mineral compounds in the soil (mg/100 g soil)



Figure 5 shows the values of pH predicted by kriging and the content of
mineral components for each pea experimental plot in successive replica-
tions. A possibility of producing a semivariance model and defining model
parameters was reflected in the distributions obtained. The Mg content
showed a high dimensional uniformity, with any large local variations ruled
out. As regards the other soil properties, the variability of the values pre-
dicted between the plots was much higher.

Mean squares of error (MSE) from covariance analysis

Table 1 contains mean squares of error from the analysis variance and
analysis of covariance with the concomitant variable according to the NNA
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Fig.5. pH and available mineral components in plots at succesive replications (I, II, III, IV) of the experiment
with pea (data after kriging).



for the first ten iterations for the classical designs: the CRD and RBD. The
mean square error for the plant height became stabilised from iteration II,
and for the seed yield - from iteration IV.

Table 2 shows the mean square errors for the plant height and seed
yield in the analyses of variance and analysis of covariance with
concomitant variables obtained by kriging for the completely random-
ised deign (CRD) and randomised block design (RBD). For both traits,
the highest reduction of error relative to the mean square error from the
analysis of variance in the completely randomised design was observed
for the analysis of covariance with the concomitant variable determined

Spatial variability and efficiency of treatment mean comparisons .... 95

Table 1
Mean square error in ANOVA and ANCOVA in the following iterations according to NNA for CRD and

RBD.

Specification
Plant height Seed yield

CRD RBD CRD RBD

Analysis of  variance (ANOVA): 498 485 136335 121572

Analysis of covariance (ANCOVA):

Iterations:

I 479 487 132001 123282

II 467 478 120751 118466

III 467 478 121086 118744

IV 466 477 120276 118172

V 466 477 120318 118214

VI 466 477 120228 118145

VII 466 477 120235 118153

VIII 466 477 120222 118142

IX 466 477 120223 118143

Table 2
Mean square error in ANOVA and ANCOVA with concomitant variables obtained by kriging for CRD

and RBD.

Specification
Plant height Seed yield

CRD RBD CRD RBD

Analysis of variance (ANOVA) 498.0 485.0 136335 121572

Analysis of covariance (ANCOVA):

Concomitant variables:

pH 498.0 494.2 136335 123283

Mg 499.7 460.5 120726 123047

K2O 495.2 485.8 133380 120730

P2O5 504.5 493.1 131313 120443

pH, Mg, P2O5, K2O 500.2 468.6 121519 119284

NNA1 467.0 477.7 120751 118466

1- concomitant variables from iteration II for plant height and iteration IV for seed yield.



according to the NNA method and kriging with the content of Mg as a con-
comitant variable.

Relative efficiency of different methods of data analysis

Table 3 presents an evaluation of the relative efficiency (RE) of different
methods of data analysis. The results of variance analysis for the completely
randomised design (CRD) and randomised block design (RBD) served as a
reference point for the analysis methods.

Results obtained in the pea experiment discussed in this paper should be
analysed with the analysis of variance according to incomplete block de-
sign. Real variability of the experimental field made the efficiency of in-
complete blocks minimal relative to the RBD method. In a case of the plant
height its efficiency was only 101.5%, and for the seed yield it was equal to
100.2%. In a similar experiment with pea performed by Go³aszewski (1999)
established by the incomplete block method in a balanced design, the effi-
ciency of incomplete blocks relative to the RBD was equal to 120% for the
plant height and 100% for the seed yield.

Analysis of covariance with concomitant variables set according to the
NNA and kriging for seed yield with the completely randomised design was
more efficient as compared to ANOVA with the randomised block design
(RBD). This is in accord with the methodological suggestion of the superi-
ority of the randomised block design over the completely randomised de-
sign, as it rules out effects of soil variability between replications from
mean square experimental error.

Regarding the plant height, a morphological trait, the analysis of
covariance with such concomitant variables as the Mg content, and the four
parameters of the chemical status of the soil - pH, Mg, P and K, together
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Table 3
Relative efficiency (in %) of different methods of data analysis to CRD and RBD.

Specification
Plant height Seed yield

CRD RBD CRD RBD

Analysis of variance (ANOVA)

Randomized Block Design (RBD) 101.3 - 109.2 -

Incomplete Block Design (IBD) - 101.5 - 100.2

Concomitant variables Covariance analysis (ANCOVA)

pH 98.2 98.5 99.5 98.1

Mg 99.6 106.2€ 112.9 98.7

K2O 98.3 98.9 103.4 100.5

P2O5 100.2 100.4 101.8 100.3

pH, Mg, P2O5, K2O 103.5 104.4 111.9 101.9

NNA1 110.7 102.0 111.2 100.2

1- concomitant variables from iteration II for plant height and iteration IV for seed yield.



with the values of the trait on the adjacent plots (NNA), turned out to be effi-
cient.

As far as the seed yield is concerned, the mean square error in the
covariance analysis with the concomitant variables set according to the
NNA and kriging was comparable to ANOVA for the randomised block de-
sign (RBD). It was only when all the analysed soil properties were intro-
duced to the analysis as a concomitant variable, that the efficiency was 2%
higher relative to the RBD method. According to the publication by
Go³aszewski (1999) cited earlier, the respective efficiency was 10% higher.

In the literature on spatial methods there are many papers in which authors
consider various methodological aspects of field trials data elaboration with
spatial statistics, but only a few examples of use the methods in experimen-
tation practice (Binns 1986, Brownie et al. 1993, Stroup et al. 1994,
Go³aszewski 1999).

In conclusion, in the pea experiment presented hereby the analysis of
covariance with the concomitant variable set according to the nearest neigh-
bour analysis produced more accurate comparisons between entries in terms
of the plant height than the analysis of variance with the CRD and the RBD.
On the other hand, the seed yield can be efficiently analysed with the stan-
dard analysis of randomized block design.

The results from the pea experiment presented above are an example that
the application of much sophisticated methods dealing with spatial variabil-
ity can not be done routinely, even if the soil is heterogeneous. In our case
the efficiency of the spatial methods were relatively low in comparison with
standard data elaboration methods. It is clear that field trials conducted on
spatially variable soil should be carefully designed by selection of experi-
mental design, appropriate block orientation, proper selection of plot shape
and size but it is the first step to the efficient treatment comparison. These
obvious rules of field experimentation do not secure before possible soil
trends or interplot interference. It suggests that quick methods for evalua-
tion of purposefulness of correction the data on spatial variability should be
incorporated. It could be done on the data of our interest or on the additional
data. Of the two possibilities, the former could be based on the analysis of
residuals by the autocorrelation technique or in the case of block designs by
the calculation of intrablock correlation and Smith’s index of soil heteroge-
neity (Go³aszewski 2000). In this case, the confirmed effect of
autocorrelation or low value of Smith’s index point to low efficiency of
blocking and should lead to neighbour analysis. It can be said that these
kinds of information are also the good prerequisites for application of spa-
tial methods and use of additional data to improve efficiency of treatment
comparisons.

The best additional information on spatial variability of the experi-
mental field in macroscale (trend) is to measure soil properties that deter-
mine soil fertility. Including the information on a single or a complex
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soil proprieties predicted by kriging for each plot as concomitant variable
(s) in ANCOVA seems to be the natural way to further increment of experi-
ment precision. However, mainly due to costs the measurements are not
made commonly before establishing of every experiment and when they are
done the sampling net is usually not appropriate to valid estimation of spa-
tial variation of the soil property. One can assume that in the future the mea-
sure of soil properties will be made directly in the field and their cost will be
relatively low. On the other hand, the soil fertility trend can be assessed not
only by direct measure of soil properties but also by the use of some acces-
sory easy measurable plant traits noted from check plots in the block or in
the vicinity of the experiment. In further methodical research the usefulness
of these traits for spatial analysis should be evaluated in relation to the real
factors of soil fertility.
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