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IMPROVEMENT OF RESISTANCE TO PLANT PATHOGENS AND
PESTS BY DNA TECHNOLOGY

ABSTRACT

To improve crop yield, DNA technology has been used to enhance plant resistance toward patho-
gens and pests. Genes identified through understanding of host—pathogen interactions in viral,
bacterial and fungal diseases, the mechanism of hypersensitive reaction in Arabidopsis and insect
toxicity of natural peptides are used for their expression in plants. Progress on the use of simple se—
quence repeats (SSR) markers for resistance gene identification, development of virus—specific an—
tibody gene expression in plants for virus control, construction of genes for multi—pathogen
resistance, and use of viral vectors for gene efficiency evaluation are discussed.

INTRODUCTION

Since the introduction of the cultivation of agricultural crops, selec—
tion and breeding have produced crop varieties with many improved
agronomical and horticultural properties including high productivity.
However, in recent years, plant improvement for higher yields with
conventional methods seems to have reached a plateau. Also, crop yield
is reduced mainly due to unfavorable environments such as inclement
weather, drought, disease and pest infestation. The actual figures for
global crop yield loss due to diseases and pests are not available. In a
worldwide estimation, plant disease loss is reported at 60 billion dollars
per year, and nearly one eighth of agricultural products are damaged by
harmful insects (Gatehause et al. 1992).

With the exception of virus and viroid diseases, control measures in—
cluding chemical, biological and other integrated management have
been effective against diseases caused by fungi, bacteria and nematodes,
as well as infestation by insects. In order to achieve the maximal pro-—
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duction of agriculture crops, huge amounts of resources have to be used
for chemical application. The long—term application of synthetic chemi—
cals may have detrimental effect on many non-targeted organisms in
our ecosystem. Nondegradable chemical residues may also contaminate
the environment and threaten food safety. With increasing public
awareness, the development of new, effective, environmentally friendly
measures for disease and pest control are strongly needed.

DNA technology has made it possible to transfer useful and desirable
traits to a number of important agricultural crops. Direct introduction of
genes determining specific traits into plants has several advantages
over conventional breeding (Cheng et al. 1995). It is a fast procedure
without disturbing the genomic balance of the targeted plants. Further—
more, there is no restriction on the source of transgenes. Genes from un-
related plant species or even those from outside of the plant kingdom
could be used. DNA technology also provides precise manipulation of a
gene at the molecular level for its proper regulation and expression. The
enhancement of plant resistance toward diseases and insect pests has
been the most successful example of plant genetic engineering.

PLANT BACTERIAL AND FUNGAL DISEASE RESISTANCE

Molecular markers associated with various disease resistance in
plants have been identified using simple sequence repeats (SSR), ran—
dom amplified polymorphic DNA (RAPD), restriction fragment length
polymorphism (RFLP) and repetitive sequence—based polymerase chain
reaction (rep—PCR)(Jdrve et al. 2000, Kawchuk et al. 1998, Molnar
et al. 2000). These markers have been used to construct molecular ge—
netic maps of the plant and to select disease resistance lines in plant
breeding. SSR markers, which identify high levels of allelic diversity in
plant genetics and produce selective PCR products with specific prim-
ers, have been developed in soybean and wheat. A total of 606 SSR loci
have been assigned to 20 linkage groups based on three soybean cross—
ing populations (Cregan et al. 1999). Also, in a preliminary study,
(TAA/ATT), microsatellites were found to be the most abundant and
the most polymorphic in wheat cultivar ‘Chinese Spring’ (Song et al.
2002). With the aid of ditelosomic and nullisomic—tetrasomic lines of the
standard wheat cultivar ’Chinese Spring’, the chromosomal location of
these (TAA/ATT), microsatellite markers has been determined (Song
and Cregan, personal communication). The availability of these SSR
markers in wheat can be used for future gene mapping studies and the
identification of quantitative trait loci (QTL) of disease resistance and
other agronomically important characters.

Recent progress in the understanding of host—pathogen interactions,
systemic acquired resistance (SAR) and host hypersensitive reaction
(HR) enables us to use genetic engineering to enhance plant disease re—
sistance (Mourgues et al. 1998, Rommens and Kishore 2000, Shirasu
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and Schulze-Lefert 2000). A family of plant resistance (R) genes related
to disease resistance has been isolated by map-based cloning tech-
niques (Brommonschenkel et al. 2000, Gassmann et al. 1999, Milligan et
al. 1998). These plant R genes reportedly encode a group of proteins
which contains potential nucleotide-binding site domains (NBS) spe—
cific for kinase activity and leucine rich repeats (LRR) at their C—termi-
nal. The LRR regions of different plant R genes can recognize and form a
complex with specific C-terminal regions of bacterial avirulence gene
proteins (Axtell et al. 2001, Leister and Katagiri 2000, Shan et al. 2000).
The recognition of pathogen invasion by plant R gene products on the
plasma membrane initiates a series of pathological reactions and leads
to plant disease resistance. It is evident that usage of a strong promoter
for high R gene expression and cloning of a modified R gene containing
recombinant LRR sequence will raise the level of plant resistance
against the particular pathogen and other unrelated pathogens (Ellis et
al. 1999, Tang et al. 1999).

Another important component of plant defense responses is the accu—
mulation of salicylic acid (SA) and subsequent induction of SAR near the
infection site (Alvarez 2000, Delaney 2000, Yu et al. 1997). Several key
gene products which transmit the SA signal and activate
pathogenesis—-related (PR) gene expression, such as NPR1 and Pad4 in
Arabidopsis and Prfin tomato, have been recently identified. Over—ex—
pression of these genes would activate the SAR pathway and ward off a
broad spectrum of pathogens (Cao et al. 1998, Jirage et al. 1999, Perlak
et al. 1991). SA is proposed to be a product of the phenylpropanoid me—
tabolism pathway formed via L-phenylalanine, trans—cinnamic acid
and benzoic acid in tobacco (Lee et al. 1995). In application, cloning and
expressing two bacterial alternative SA synthesis genes encoding
isochorismate synthase and isochorismate pyruvate lyase enzymes in
tobacco were reported to enhance SA accumulation, induce PR gene ex—
pression and confer SAR to viral and fungal infection (Verberne et al.
2000). Nevertheless, the level of SA induction should be optimally con—
trolled since the highly active SA signaling pathway could lead to severe
tissue senescence (Morris et al. 2000). Most recently, the possible in—
volvement of nitric oxide (NO) in molecular signaling toward SAR and
plant disease resistance has drawn significant attention (Delledonne et
al. 2000, Durner et al. 2000, Klessig et al. 2000). It was shown that NO
synthase activity was highly increased in resistant tobacco after infec—
tion with tobacco mosaic virus. Feeding of NO donor to tobacco and soy—
bean cells triggers the expression of PR protein and phenylalanine
ammonia lyase genes, and induces hypersensitive cell death. So far no
gene isolation related to NO accumulation and signalings has been re—
ported.

The locally transient massive production of hydrogen peroxide (H;O5)
and reactive oxygen intermediates (ROI) in incompatible plant—patho—
gen interactions may also play an important role in plant disease resis—
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tance (Baker et al. 1997, Hilder and Boulter 1999). This oxidative burst
which is accompanied by the accumulation of SA and the localized
change in peroxidase activity may reinforce the plant cell wall, exert
antimicrobial activity, induce localized programmed cell death, and
confer plant disease resistance (Bestwick et al. 1998, Leon et al. 1995).
Barley genes, Rar 1 and Rar2, which are required for the functioning of
powdery mildew resistance gene, Mla12, were shown to be involved in
the accumulation of ROI at the sites of fungal invasion (Hiickelhoven et
al. 2000). Genes encoding bacterial nonheme chloroperoxidase and two
H;0.—-generating enzymes, glucose oxidase and oxalate oxidase, have
been expressed in various transgenic plants for fungal disease control
(Rajasekaran et al.2000, Rommens and Kishore 2000, Wu et al. 1995).

There are a wide variety of antimicrobial peptides present in plants.
Several small cysteine—rich peptides, such as cecropin and thionin, have
shown to be active in vitro against bacteria (Broekaert et al. 1997,
Garcia—Olmedo et al 1996, Segura et al. 1999, Shewry and Lucas 1997).
Expression of genes encoding these peptides in transgenic plants results
in enhanced tolerance to bacterial and fungal pathogens (Arce et al.
1999, Epple et al. 1997, Molina et al. 1997, Terras et al. 1995). Recently,
plant viruses with broad host plant ranges, such as cucumber mosaic vi-
rus, potato virus X and several potyviruses, have been manipulated as
transient vectors to deliver antimicrobial protein genes into plants
(Arazi et al. 2001, Choi et al. 2000, Rommens and Kishore 2000, Toth et
al. 2001, Zhao et al. 2001). The advantage of virus—based vectors is to
have a simple, quick delivery of target genes and rapid evaluation of
gene expression, antimicrobial property and host toxicity in the whole
plants. Once the expression and function of the gene in plants meets the
expectation, the gene would be stably incorporated into plants by plant
transformation.

PLANT VIRAL DISEASE RESISTANCE

Introducing resistance to viruses and their virus—transmitting insect
vectors into plant cultivars by gene transfer technology has been suc—
cessful in combating plant virus diseases (Dempsey et al. 1998). Several
approaches for producing transgenic virus-resistant plants have been
explored (Table 1)(Gutierrez—Campos et al. 1999, Hadidi et al. 1998).
Among these, plants expressing viral coat protein (CP) genes,
non-structural protein (NS) genes, or virus satellite ribonucleic acids
have been shown to offer the best control (Beachy 1999, Maiti et al. 1999,
Prins and Goldbach 1996). Plants expressing antisense viral RNAs,
ribozymes, pathogenesis-related proteins, or virus—specific antibody
genes may also confer resistance to viral infection (Hadidi et al. 1998).

Viral CP genes are most commonly cloned into transgenic plants to el-
evate virus disease resistance (Miller and Hemenway 1998). The con-
cept of CP protection in engineered plants is based on cross protection
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Table 1
Genes which were evaluated for their ability to control viral diseases in plants

Virus derived gene sequences
Coat proteins

Replicase

Movement proteins

Polyprotein proteases

Satellite RNAs

RNAs (Sense and antisense)
Plant derived transgenes
Pathogenesis-related proteins
Anti-viral proteins

Proteinase inhibitors

Natural resistance (R) genes
Lectins

Other transgenes and sequences
Virus-specific antibodies
Interferon-induced mammalian oligoadenylate synthetase
Antiviral ribozymes

Insect toxins

that infection of plants by a mild strain of one virus may prevent or in—
hibit the development of symptoms caused by a second more severe
strain of the same virus. The mechanisms of CP-mediated resistance
were discussed in a recent review (Reimann—Philipp 1998). One of pos—
sible roles for CP is to act as an avirulence gene to induce early oxidative
burst and elicit the resistance response within the host plants (Allan et
al. 2001, Knorr and Dawson 1988, Malcuit 2000, Saito et al. 2000,
Takahashi et al. 2001). The CP-mediated resistant plants against posi—
tive sense RNA viruses, a tospovirus, and a DNA geminivirus have been
developed (Beachy 1993, de Haan et al. 1996, Kunik et al. 1994).

Other viral genes encoding NS proteins, such as replicase and pro-
teases, are required for virus replication (Matthews 1991). Cloning of
these two NS protein genes in transgenic plants reported to provide high
degrees of resistance to many virus infections (Anderson et al. 1992,
Gatehouse and Gatehouse 2000, Longstaffet al. 1993, Maiti et al. 1993).
Steady expression of cucumber mosaic virus replicase gene in tobacco is
necessary for CMV resistance (Wintermantel and Zaitlin 2000). And to-
bacco mosaic virus replicase protein has been implicated as the virus
avirulence factor that triggers tobacco N gene-mediated resistance
(Erickson et al. 1999, Erickson et al. 1999).

In resistant transgenic plants cloned with potyvirus CP or replicase
genes, there are no high levels of transgenic RNA that can be detected in
plant tissues. The mechanism of virus resistance is hypothesized as a
post—transcriptional gene silencing (Jan et al. 1999, Jones et al. 1998).
In a recent important application, cloning of a chimeric gene construct
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which contains a full-length CP gene of turnip mosaic virus and a par—
tial nucleocapsid protein gene of tomato spotted wilt virus confers the
plants with multi-virus resistance (Jan et al. 2000).

Expression of virus—specific antibody genes in transgenic plants could
potentially interfere with the functions of virus encoded structural and
nonstructural proteins that are essential to the completion of the viral
replication cycle (de Jaeger et al. 2000). Antibodies that bind CPs can
affect virus uncoating, thus neutralizing initial establishment of the vi—
rus infection. They may also interfere with virus assembly or insect
transmission. Antibodies that bind replicase may prevent virus replica—
tion. The development of hybridoma monoclonal antibodies and gene
cloning techniques has made this strategy very appealing. Genes en—
coding antibodies or antibody fragments against tobacco mosaic virus
and tospoviruses have been expressed in transgenic plants for virus
protection (Franconi et al. 1999, Tavladoraki et al. 1993, Voss et al.
1995).

Control of virus-transmitting vectors by introducing insect toxins such as trypsin
inhibitor, lectin, and a-endotoxin (Bt) toxin genes into plants would un-
doubtedly contribute toward achieving the goal of controlling plant viral
diseases. Recently, the potato leafroll virus replicase gene and the cry3A
Bt gene were recombined and expressed in potato plants to confer high
levels of resistance to virus infection and virus transmission by the
aphid vector, Myzus persicae (Thomas et al. 2000).

PEST MANAGEMENT BY HOST RESISTANCE

Expression of bacterial d-endotoxin (Bt) genes in commercial crops to con—
fer insect resistance is the most successful example of applying DNA
technology for pest control (de Maagd et al. 1999, Gatehouse and
Gatehouse 2000, Jouanin et al. 1998, Navon 2000, Schuler et al. 1998).
The gram positive bacterium, Bacillus thuringiensis, was first found to
produce the insecticidal crystalline inclusion, 8-endotoxin, during its sporulation.
For the past forty years, Bt toxin has been the major bio—pesticide to control
lepidopteran pests (Hilder and Boulter 1999, Knowles 1994). The gene
encoding CrylA Bt toxin was cloned and subsequently transferred to to—
bacco and tomato for tobacco hornworm (Manduca sexta) and cotton
bollworm (Heliothus zea) resistance evaluation in the 1980’s (Barton
et al. 1988, Fischhoff et al. 1987, Schnepf and Whiteley 1981, Vaeck
et al. 1987). Since then, CrylA-cotton for cotton bollworm (H. zea) and
pink bollworm (Pectinophora gossypiella), Cry3A—potato for Colorado
potato beetle (Leptinotarsa decemlineata), and CrylA-elite maize for
European corn borer (Ostrinia nubilalis) control has been developed
(Armstrong et al. 1995, Perlak et al. 1993, Wilson et al. 1992). However,
these transgenic crops did not receive satisfactory results in field tests
mainly due to inconsistent, low Bt gene expression (Hilder and Boulter
1999). Several approaches have been developed to elevate Bt gene ex—
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pression in plants and enhance insect resistance. These include use of
specific promoters, such as CaMV34S, reconstructing the B¢ protein
coding sequence following the typical plant genetic code, and targeting
the unmodified Bt sequence to plant chloroplasts (Jansens et al. 1995,
Kotaet al. 1999, Koziel et al. 1993, Perlak et al. 1991). Based on the evo-
lutionary view, the plant chloroplast genome is evolutionally closely re—
lated to bacterial chromosome. An unmodified bacterial Bt toxin gene
has been stably integrated and highly expressed in tobacco chloroplasts
(McBride et al. 1995).

Plant proteinase inhibitors (PIs) which interfere with the insect di—
gestive system by disrupting protein and amino acid metabolism have
been used as a source of transgenes for insect resistance study. Plant
serine PIs which have two active sites inhibiting trypsin and
chymotrypsin activity are reported to affect larval growth and develop—
ment, and cause insect death (Gatehouse et al. 1992, Hilder et al. 1987).
Genes encoding Pls from various plant and insect sources have been
cloned and expressed in alfalfa, cotton, tobacco and sweetpotato to pro—
vide protection against various insects (Ishimoto et al. 1999, Thomas et
al. 1995a, Thomas et al. 1995b, Thomas et al. 1994, Voss et al. 1995,
Wasmann et al. 1994, Yeh et al. 1997). Most of the transgenic plants
harboring PI genes showed increased levels of pest resistance. However,
control of some insect species is unsuccessful since they have the ability
to overcome the plant PI’s activity by switching protein and amino acid
metabolism to an alternative pathway (Hilder and Boulter 1999).

Plant lectins are a group of sugar-binding proteins which have
chronic effects on the survival and development of certain insect species
(Czapla and Lang 1990, Powell et al. 1995, Shukle and Murdock 1983).
The lectins reportedly have low insect toxicity to many insects, except
those sap—sucking species in the Order Hemiptera (Hilder et al. 1995). A
lectin gene from pea (Pisum sativum) was transferred and expressed in
tobacco for control of Heliothus virescens (Boulter et al. 1990 ).

PEST CONTROL BY NATURAL ENEMIES

Usage of recombinant DNA to produce genetically improved strains of
natural insect enemies and biocontrol agents also receives certain at-
tention (Harrison and Bonning 2000, Hoy 1994, Hoy 2000, Hoy et al.
1997, Hughes et al. 2000, Pfeifer and Grigliatti 1996). Parasitoid wasps
are the major natural enemy of many insect pests but are sensitive to
chemical insecticide sprayings (Schuler et al. 1999). Recently, the
braconid wasp (Cardiochiles diaphaniae) was genetically modified by
maternal microinjection with a plasmid carrying organophosphorus
dehydrogenase (opd) gene to enhance their insecticide (paraoxon) resis—
tance (Presnail and Hoy 1992, Presnail and Hoy 1996). Transposable el-
ements, microbial symbionts and plasmid vectors have been used
commonly for gene transformation of non—drosophilids and some medi—
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cally important insects (Ashburner et al. 2000, Durvasula et al. 1997,
Heilmann et al. 1994, Jasinskiene et al. 1998, Loukeris et al. 1995,
O’Brochta et al. 1996, Robertson et al. 1992).

Research on genetic engineering of insect pathogens in order to en-
hance their pesticidal properties has also been carried out (Bonning and
Hammock 1996, de Vault et al. 1996, Harrison and Bonning 2000). Ex—
tensive work has been conducted in bacteria and viruses, but the study
of nematodes and fungi is still in the early stages.

PERSPECTIVE

Usage of resistant plant cultivars for disease and pest control is by far
one of the modern approaches to raise world crop production. DNA tech—
nology undoubtedly will play a significant role in new crop development
and economic growth of many parts of the world. However, the release of
agricultural biotechnology products in the United States markets and
other countries has recently been closely scrutinized and criticized due
to increasing public concerns on human health, and possible environ-—
mental and ecological impacts. Recently, a “U.S. Risk Assessment Pro-
tocols” act was implemented by the U.S. government legislature. Proper
application of DNA technology and thorough analyses of transgenic ag—
ricultural products will allow an effective management of disease and
pest control while maintaining the long—term interests of agricultural
productivity and the environment.
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