

Przygotowanie populacji mapującej uzyskanej ze skrzyżowania odmian 'Elsanta' i 'Senga Sengana' dla analizy regionów QTL sprzężonych z wybranymi cechami użytkowymi gatunku *Fragaria*.

Preparation of the mapping population derived from the cross of 'Elsanta' and 'Senga Sengana' sutble for analysis of QTL regions linked to selected *Fragaria* traits.

Sylwia Keller-Przybyłkowicz[®]1⊠, Agnieszka Masny[®]1, Bogusława Idczak[®]1, Krystyna Strączyńska[®]1, Abdelrahmen Mostafa Abdelwahab Mohamed[®]2

¹ Zakład Hodowli Roślin Ogrodniczych, Instytut Ogrodnictwa, ul. Konstytucji 3 Maja 1/3, 96–100 Skierniewice, ² Minia University, Faculty of Agriculture, 61517 Elminia, Egypt,

e-mail: sylwia.keller@inhort.pl

Celem przeprowadzonych badań było przygotowanie populacji mapującej uzyskanej w wyniku skrzyżowania odmian 'Elsanta' i 'Senga Sengana', przydatnej do badań genotypowo-fenotypowych, poprzedzonych sporządzeniem 'szkieletu' mapy genetycznej.

Pierwszym etapem badań była ocena molekularna roślin form rodzicielskich pod kątem stopnia polimorfizmu genetycznego. Na postawie analizy wytypowanych 450 markerów SSR w genomie odmiany 'Elsanta' zidentyfikowano łącznie 418 alleli polimorficznych, natomiast w genomie odminay 'Senga Sengana' – 337 alleli. Przeprowadzone badania potwierdzają wysoki stopień heterozygotyczności genomów obu wytypowanych do badań odmian.

Kolejnym etapem prac była analiza molekularna siewek uzyskanych w wyniku krzyżowania obu heterozygotycznych form rodzicielskich oraz ocena satusu genetycznego genotypów potomnych. Badania te potwierdziły, że w obrębie roślin populacji mapującej 'Elsanta' i 'Senga Sengana' występują genotypy pochodzące tylko z kontrolowanego zapylenia. Ponadto, analiza segregacji, w populacji mapującej, alleli heterozygotycznych, zidentyfkowanych w genomach form rodzicielskich, umożliwiła sporządzenie szkieltu zintegrowanej mapy obu badanych genomów truskawki. Wstępna mapa genetyczna, do sporządzenia której zastosowano wybranych 44 polimorficznych markerów SSR, zawiera łącznie 27 grup sprzężeń, na których zidentyfikowano loci 53 alleli polimorficznych, pokrywających 1 033 cM genomu truskawki.

W wyniku przeprowadzonych testów potwierdzono, że uzyskana populacja stanowi wartościowy materiał do badań związanych z opracowaniem mapy genetycznej truskawki. Ponadto, sporządzony 'szkielet' mapy 'Elsanta' × 'Senga Sengana' poszerza bazę do dalszej lokalizacji genów i identyfikacji regionów QTL sprzężonych z ważnymi cechami użytkowymi truskawki.

Słowa kluczowe: allele heterozygotyczne, genom Fragaria, mapa genetyczna, SSR

The aim of the study was to generate a mapping population derived from an 'Elsanta' and 'Senga Sengana' cross, so as to be useful for genotypic-phenotypic studies, and subsequently, to construct a 'skeleton' of the strawberry genetic map.

The first stage of the research was based on molecular assessment of parental plants for genetic polymorphism. After analysis of 450 selected SSR markers, 418 polymorphic alleles were identified in the genome of the 'Elsanta', and 337 alleles in the genome of the 'Senga Sengana'. The study confirms the high degree of genetic heterozygosity of both of the strawberry varieties.

In the next stage of the work, molecular analysis of seedlings resulted from the cross of the heterozygous parental forms, as well as the confirmation of genetic status of hybrid genotypes were conducted. These studies confirm that the origin of the prepared mapping population was the result of the controlled pollination. Moreover, segregation of heterozygous alleles in the mapping population enabled the preparation of the 'skeleton' of an integrated map of 'Elsanta' x 'Senga Sengana'. Herein, the initial genetic map was found to contain 27 linkage groups representing the loci of 53 polymorphic allele, covering 1 033 cM of the strawberry genome.

Generally, as a result of the tests, we confirmed that the obtained population represents valuable material for research related to the development of a strawberry genetic map. Additionally, the 'skeleton' of 'Elsanta' x 'Senga Sengana' genetic map enlarged the database for further gene localization and for identifying QTL regions linked to important strawberry traits.

Key words: Fragaria genome, genetic map, heterozygous alleles, SSR

Wstęp

Truskawka (*Fragaria* × *ananassa* Duchesne ex Rozier) jest ważnym gatunkiem uprawianym niemal we wszystkich szerokościach geograficznych. Na świecie produkuje się rocznie około 9 mln ton owoców truskawek, w tym połowę w państwach europejskich (FAOStat, 2019).

Hodowla twórcza gatunku $F. \times$ ananassa, ukierunkowana jest na wytwarzanie odmian, o najkorzystniejszym zestawie cech fenotypowych, przystosowanych do zróżnicowanych warunków uprawy (takich jak: zasolenie), różnych warunków agroklimatycznych (tj. mróz, susza), zróżnicowanej presji czynników biotycznych (np: choroby grzybowe tj. wertycylioza, antraknoza) i abiotycznych, jak również do zróżnicowanych preferencji konsumentów (jędrność i trwałość owoców, zawartość kwasu askorbinowego czy cukrów) (Darrow, 1966; Hancock, 2008).

Badania genetyczne, wspierające światową hodowlę tego gatunku, pozwoliły na zidentyfikowanie molekularnych markerów m.in. cech związanych z jakością owoców, zakwitaniem czy odpornością na patogeny. Dla wielu z nich, zidentyfikowano także loci/miejsce na fragmentarycznych mapach genetycznych różnych genomów tego gatunku (Denoyes-Rothan i in. 2004; 2005, Sargent i in. 2011, Sargen i in. 2012).

Na podstawie doświadczeń genetycznohodowlanych stwierdzono zarówno monogeniczny (odporność na fytoftorozę i alternariozę), jak i poligeniczny charakter dziedziczenia cech użytkowych truskawki (Lerceteau-Kohler i in., 2002). W wyniku addytywnego (poligenowego) współdziłania genów ma miejsce kumulacja ich alleli w genomie, a każdy genotyp wykazuje inną chrakterystykę fenotypowa, zależnie od własnego potencjału genetycznego (Semagn i in., 2006; Hancock i in. 2008). Ma to szczególne znaczenie podczas prowadzenia badań, których celem jest sporządzanie map różnych genomów. Wówczas warunkiem przystąpienia do takich prac jest uzyskanie odpowiedniej puli roślin potomnych tzw. populacji mapującej, (przyjmuje się min. 100 – 150 genotypów mieszańcowych), w obrębie której wszystkie genotypy pochodzą z zaplanowanego krzyżowania, a formy rodzicielskie reprezentują wysoki stopień heterozygotyczność (Liebhard i Gessler 2000). Podejście takie daje pewność prawidłowej analizy segregacji zidentyfikowanych alleli markerów molekularnych, przydatnych do wysycaania map genetycznych. Właściwy dobór i przygotowanie materiału roślinnego są zatem kluczowymi etapami w badaniach nad identyfikacją regionów genomu warunkujących ważne cechy użytkowe gatunku Fragaria.

Celem prowadzonych badań było przygotowanie populacji mapującej, przydatnej do utworzenia 'szkieletu' mapy genomu i identyfikacji regionów genomowych (QTL) sprzężonych z ważnymi cechami użytkowymi truskawki takimi jak: odporność na choroby wywołane grzybami (*V. dahliae, Colletotrichum acutatum, Phytophthora cactorum*); jakość owoców (zawartość substancji prozdrowotnych); odporność na czynniki abiotyczne tj; tolerancja na niskie temperatury czy deficyt wody).

Materialy i Metody

Materiał do badań stanowiły rośliny mieszańcowe, uzyskane w wyniku krzyżowania roślin rodzicielskich odmian 'Elsanta' i 'Senga Sengana' (*CP – cross polination*). Wybrane formy rodzicielskie skrajnie różnią się pod względem wielu cech, w tym podatności na czynniki biotyczne i abiotyczne oraz jakością owoców (Van Ooijen 2002, Masny i in. 2002).

Przygotowanie materiału roślinnego

Nasiona, uzyskane w programie krzyżowań (2014), po wysuszeniu i stratyfikacji wysiewano do doniczek wypełnionych mieszaniną substratu torfowego i piasku w stosunku 3:1. Pozyskane tym sposobem młode siewki potomne (200 roślin), stanowiące populację mapującą, w fazie minimum dwóch liści przesadzono do tac wielodoniczkowych (54 komórki o wymiarach 55 × 55 × 62 mm i objętości 90 cm³). Rośliny utrzymywano w szklarni. Następnie uzyskane młode siewki wysadzono w kwaterze polowej. Systematycznie prowadzono prace uprawowo-pielęgnacyjne, jak nawadnianie i nawożenie uzyskanych roślin, spulchnianie podłoża oraz zwalczanie chorób i szkodników (Program Ochrony Roślin, opryski na mączniaka; Signum 33 WG, przędziorka chmielowca; Nissorum Strong 250 SC oraz inne szkodniki i patogeny zagrażające uprawie), obejmujące zarówno formy rodzicielskie, jak i mieszańce F₁.

Dodatkowo, z roślin matecznych pobierano i wysadzano młode sadzonki rozłogowe celem utrzymania puli tych samych genotypów mieszańcowych, które następnie stanowiły materiał do doświadczeń fenotypowych.

Materiał do badań molekularnych

Izolacje genomowego DNA form rodzicielskich 'Elsanta' i 'Senga Sengana' oraz 200 roślin populacji mapującej przeprowadzono zgodnie z metodą opisaną przez Doyle i Doyle (1990). Tkankę liściową (0,2 g) ucierano w ciekłym azocie, zawieszano

w buforze ekstrakcyjnym CTAB i inkubowano w temp. 65 °C przez 30 minut. W celu dokładnego odseparowania fazy wodnej (zawierającej kwasy nukleinowe) zawiesinę rozdrobnionej tkanki mieszano z równoważną ilością roztworu chloroform/alkohol izoamylowy (24:1 v/v) i wirowano (15 000 g). Następnie uzyskane DNA wytrącano alkoholem izopropylowym (1:3 v/v), suszono w temperaturze pokojowej i rozpuszczono w buforze TE. Cząsteczki RNA wytrawiano stosując RNazę A (10 µg ml⁻¹, 37 °C/ 1 h). Czystość preparatów DNA oceniano na podstawie elektroforegramów w 0,9% żelu agarozowym oraz w oparciu o pomiar współczynników ekstynkcji próbki, przy długości fali 230, 260 i 280 nm (Gene Quant Pro Amersham Pharmacia Biotech). Koncentrację DNA w preparacie określano poprzez porównanie z DNA faga λ o znanych stężeniach (315, 157 i 79 ng μ l⁻¹).

Amplifikacja alleli polimorficznych (SSR-PCR)

W oparciu o bazę sekwencyjną GDR (Genome Database for Rosaceae, ww.rosaceae.org) dla rodzaju *Fragaria* oraz na podstawie dostępnych danych literaturowych, zsyntetyzowano i przetestowano w reakcjach PCR, 450 par starterów mikrosatelitarnych. Mieszanina reakcyjna (13 µl) zawierała 5 ng DNA – wyizolowane z odmian 'Elsanta' i 'Senga Sengana' oraz genotypów potomnych uzyskanych w wyniku ich krzyżowania, 0,325 U polimerazy (Ampli Taq, Applied Biosystems), 10 × PCR-bufor II z 1,5 mM MgCl₂, 1,25 mM dNTP (Applied Biosystems) i 0,35 µM starterów SSR. Reakcje Touch-down PCR prowadzone były w zoptymalizowanych warunkach termicznych: 94°C – 30 s, 55°C – 45 s, 72°C – 60 s/10 cykli, 94°C – 30 s, 50°C – 45 s, 72°C – 60 s/25 cykli. Wygenerowane amplikony rozdzielano w 7% żelach poliakrylamidowych, które następnie wizualizowano w świetle białym po wybarwieniu w 0,4% roztworze azotanu srebra.

Określenie położenia (loci) markerów

Badania przeprowadzono na matrycach DNA wydzielonych z form rodzicielskich oraz z 200 roślin należących do populacji 'Elsanta' × 'Senga Sengana' o potwierdzonym statusie mieszańca. Do sporządzenia szkieletu mapy genomów obu odmian wytypowano zestaw markerów dostępnych w bazie danych (www.rosaceae.org) oraz opisanych dla map genetycznych dzikich gatunków *F. nubicola, F. vesca* oraz odmian 'Redgauntlet' i 'Hapil'.

Rys. 1. Wzory prążkowe (reprezentują parę obu form rodzicileskich) przedstawiające wielkości alleli zidentyfikowanych dla 30 przkładowych markerów SSR, różnicujące genom odmiany 'Elsanta' (I ścieżka z pary) oraz 'Senga Sengana' (II ścieżka z pary).

Fig. 1. Band patterns (in pairs of both parental forms) representing the alleles identified for 30 SSR markers, differentiating the genome of 'Elsanta' (1st path from pair) and 'Senga Sengana' (2nd path from pair) cultivars. Amplifikację specyficznych fragmentów DNA prowadzono zgodnie z w/w procedurą.

Do sporządzenia 'szkieletu' mapy genetycznej 'Elsanta' × 'Senga Sengana' użyto 44 markerów SSR (ARFL002, ARSFL022, EMFn017, BFACT004, EMFn214, ARSFL011, FvH4180, FvH4153, FvH4164, FvH4160, FvH4154, ARSFL100, UDF009, BFACT017, BFFv09-11-02, EMFv018, EMFv007, CO816733, EMF132, FvH4163, BFACT045, FvH4169, BFACT036, UDF001, FvH4161, FvH4155, FvH4177, FvH4165, FvH4173, CFVC0316, BFACT002, ARSFL015, EMFn213, CFACT111, ARSFL012, CFVC015, BFACT003, COBRA, CO817054, BEFv14-29, FvH4171, EMFn049, FvC103. EMFn021).

Skład mieszaniny reakcyjnej oraz warunki reakcji touch-down PCR były takie same dla wszystkich par oligonukleotydów (temperatura annealingu w zakresie od 60° C do 55° C – 10 cykli, spadek temperatury 0,5°C na cykl), natomiast w przypadku markerów z grupy ARSFL, przez pierwsze 10 cykli temperatura malała o 0,5°C (z 55°C do 50°C). Ostatecznie końcowe przyłączanie oligonukleotydów prowadzono w stałej temperaturze 55 i 50°C.

Szkielet mapy skonstruowano przy użyciu oprogramowania JoinMap v.3.0 (Biometrics, Kyazma NL) (van Ooijen i Voorrips 2001). Typ segregacji alleli badanych markerów genetycznych w populacji mapującej weryfikowano testem χ^2 na podstawie wartości odchylenia pomiędzy ich rozkładem teoretycznym (mendlowskim) i obserwowanym. Przynależność markerów do poszczególnych grup sprzężeń określano na podstawie wartości progu LOD (Logarytm Odd Ratio) >3.0. Odległości mapowe zostały oszacowane przy użyciu funkcji mapującej *Kosambi*. Uzyskane grupy sprzężeń przedstawiono w formie graficznej, za pomocą z programu MapChart 2.1.

Wyniki

Ocena stopnia heteryzotyczności genomów odmian 'Elsanta' i 'Senga Sengana'.

W testach PCR, przeprowadzonych na matrycy DNA roślin 'Elsanta' i 'Senga Sengana' z 450 parami starterów mikrosatelitarnych, produkty polimorficzne uzyskano dla 228 z nich (Tab. 1). Łącznie przeprowadzono 3 532 reakcje SSR-PCR.

Wyniki amplifikacji fragmentów genomów uzyskanych na matrycy DNA z roślin 'Elsanta' i 'Senga Sengana' z 30 przykladowymi starterami mikrosatelitarnymi przedstawiono na poniższym elektroforogramie (Rys. 1). Wielkości zidentyfikowanych alleli polimorficznych, różnicujących formy rodzicielskie, oraz sekwencje zastosowanych do rekacji PCR oligonukleotydów zestawiono w tabeli 1.

Liczbę alleli heterozygotycznych zidentyfikowanych w genomach obu form rodzicielskich przedstawiono w tabeli 2.

Tabela 1

Table 1

Wielkości produktów różnicujących odmiany 'Elsanta' i 'Senga Sengana' (allele segregujące) w reakcji SSR oraz sekwencje starterów generujących powyższe allele heterozygotyczne.

Lp.	Mrker Mol. marker	produkty różnicujące (pz) Size of the amplicons (pb)		starter F	starter R	
INO.		Elsanta	Senga Sengana	Farward Frimer	Revers Primer	
1	FvH4004	480, 600	300, 560	cccagatetecetacetttace	agttetaccccettttcagacc	
2	FvH4005	270, 275	-	tcaagttacgtcgcttacatgg	ttgctgtttcaagaccactagc	
3	FvH4006	290, 350	270, 315	cgagtactccaccttcaattcg	atgagagatcttccgtcgtagg	
4	FvH4009	480	450	ttggctgttccagtttgaga	ccaaagggactggtggtaaa	
5	FvH4014	150, 400	130, 300	tgacctcaatctcttgaacc	atccctactcaaaaccgtcagc	
6	FvH4019	200	220, 600	catctcagttggatcagaatcg	caaggaatcaaggatcataggc	
7	FvH4022	-	200, 560, 565	agttctggaacgtcctttaggc	acacaagcacatacccaaaacc	
8	FvH4023	595, 600	-	tactgggggcaatatgtttgg	gccccttgtaaacttctactgg	
9	FvH4025	260	-	gttcagttgagagccataatgc	gaatgatgaaaggcagctaagg	
10	FvH4031	520	-	teteaceteateeaaatettee	agtgggaatggttcctttttgg	
11	FvH4033	150, 190	110	ctccacaaacctaataccaacg	gacgacgacttcttcaaaacg	

BIULETYN IHAR Nr 291 / 2020

Tabela 1 cd. Table 1 cd.

Wielkości produktów różnicujących odmiany 'Elsanta' i 'Senga Sengana' (allele segregujące) w reakcji SSR oraz sekwencje starterów generujących powyższe allele heterozygotyczne.

Lp.	Mrker Mol. marker	produkty różnicujące (pz) Size of the amplicons (pb)		starter F	starter R	
No.		Elsanta	Senga Sengana	- Farward Primer Revers Primer		
12	FvH4041	200, 250	220	cagctgcatctatttgatctgg	cgageteaactetettetaece	
13	FvH4042	280	-	aacaggagcttatacggaatcg	aggagetcaatetcateateg	
14	FvH4049	250, 260	-	acggctactctagggaagatgg	ctctccaccctttgcattagc	
15	FvH4050	185, 200	210	tagcatccatagttccatacgc	caatacaatctcccaactcacc	
16	FvH4052	170, 175	320	caagaggtcgttaggtgaaatg	gtgttcaagcccagaaatgatg	
17	FvH4056	-	450	gggggtattttgaagtgtaagc	gcgaaaaatatgagaggagagaggg	
18	FvH4057	200, 225, 280, 310	235, 240, 300, 380	agtttggaccgggtcaagagg	agetetteeteeteacaacg	
19	FvH4058	220	-	gttagagaagcagtggatgacg	gggcatctacacatgttgacc	
20	FvH4059	450	-	tgcacatagagcaacagtataggg	ttgttagcatgaagtgcaaagc	
21	FvH4061	-	200	accaactccatactccacaagc	gcctccctctctagctcttcc	
22	FvH4082	-	495	cggtttacctaactccaactgc	cctgcaagaaatctctactgtcg	
23	FvH4083	360, 600	300, 470	aattgggggtgtgacaatgc	gcttcaaatttgggatctgg	
24	FvH4086	-	600	acaccccaagcaaattacagg	tgctatttaggcaactcettee	
25	FvH4088	-	400, 450	cctcagtcttaacgaacgaacc	tagagagagcaccgactcaagg	
26	FvH4090	320	330	cagttgatgtgttgctgagtcc	agtttttgttttcatcttttgg	
27	FvH4091	220, 300, 400	200	tcaccggttccttctttatagc	taatttettgeaggaegtteg	
28	FvH4102	600	610	tttccttttggttgaaaactcc	tcataggaagcttttattcatacc	
29	FvH4104	240, 250	510	agactgctcatcctcttttgc	atcatgggagagaacattaggg	
30	FvH4105	-	320, 330	cgttggagatctggtaaactcc	taacetteecetegtgaaatee	
31	FvH4106	155, 215	220	tacaaaggacttgcctcttagg	tcactttcgttgtcctacatcc	
32	FvH4112	265, 320, 330	210, 460	tttcaacaaattaaggcaaacg	gccatagaaaaccagaaaaacc	
33	FvH4113	125	110	tgactagcaatagtgcaacagc	cggcagagaacccagtaagc	
34	FvH4114	200, 380, 400	-	gcagcatgagagacaagatgc	gttagcagaagggaaatgaacc	
35	FvH4116	290, 405	380	ggacattgaccaagcatttacg	tacggtcaggaagattgagacc	
36	FvH4117	295, 305	300	actttgcttggctagttgtcg	gagggttctggagtctaagtgc	
37	FvH4121	400	-	tacacagtgacatagccgatgc	gtcctaggtttcctcgttctcc	
38	FvH4123	240	245	gttgaagcaaccttgaatgc	ggaggacaactccaatttatgg	
39	FvH4124	240, 285	385	gcacagttccatcagtttttca	acaattgatcccttggaaattg	
40	FvH4127	180, 200, 385	170, 195, 485	accaccacaacctagtctctgc	tccctaagttttctctccatcc	
41	FvH4131	135	-	cagactcagcagagtgatttgg	ctaatggcccgtatcttctcc	
42	FvH4134	100	-	aagtgaaggagggaagaagg	gcttcataaaacagccactgc	
43	FvH4136	190, 580, 600	-	ttcctgatcaagctaggaatgc	ccttggtgtactctcaaactcg	
44	FvH4145	205, 280, 410	300, 420	aaagtcttgggggagtaaaagg	ggtacatggtgatgtgtcatcc	
45	ChFaM 149	-	165, 595, 600	ccctcttcccgtaaagtcca	cggactcaccggtcactaga	
46	ChFaM 262	400	-	actcggtgaggaaagacgaa	agagaagaccgctgaggatg	
47	ChFvM 232	320	330	gcttcttgggacagcaacac	tgaaccetgcattteetetg	
48	ChFvM 243	330	340	tcctttctcgctcactgtca	aaacaaaggaaaggctggtg	
49	ChFvM 245	-	510	tcaaccacaccgctactcct	cttgctgagctcgtccttgt	
50	ChFaM 009	410	-	tccaagttccagagctcctt	cgtcgagctcagacatgaaa	
51	ChFaM 010	200, 580	210	tatcgcctgcaattcatctg	gctggctctgtggagtgagt	
52	ChFaM 011	95, 300, 360	80, 90, 210, 270	tcctctccttctttcccttca	cgagateteecgagaetgag	
53	ChFaM 017	80, 90, 160, 250, 295	415	ctcactctctgcgaacttgc	caactcaccttgcaccgatt	

Tabela 1 cd. Table 1 cd.

Wielkości produktów różnicujących odmiany 'Elsanta' i 'Senga Sengana' (allele segregujące) w reakcji SSR oraz sekwencje starterów generujących powyższe allele heterozygotyczne.

Lp. Mrker Mol. marker		produkty różnicujące (pz) Size of the amplicons (pb)		starter F	starter R	
No.	Wol. marker	Elsanta	Senga Sengana	Farward Primer Revers Primer		
54	ChFaM 022	185, 200, 495	-	gggccactcctacttcttca	ttggccttgagagcttcgat	
55	ChFaM 026	100	-	tcgtctctcgtttctctaaaagc	atcaagtgctcgtccacgta	
56	ChFaM 030	300, 335	-	ccatgaagcagtgaagtcca	agaaaatcccgagagccttt	
57	ChFaM 031	300, 310	200, 210	gctagcaaagccctaagcaa	acggtgggcacacttaaaga	
58	ChFaM 032	-	410	ggtccctgcttcttctttt	ttcagccccattttccagta	
59	ChFaM 033	110, 505	115, 510	cacaaatccacacagcag	cccaggaaggtaaccacaaa	
60	ChFaM 036	130	135	gcagcctcaagaagtgaagg	ccatcttgatatcacaggcataa	
61	ChFaM 037	505	-	acgacgatcaccacaaggac	aageteegtegttteetett	
62	ChFaM 040	-	205, 300	agtggtcatcagcaccatca	taaccgggaacggtactctg	
63	ChFaM 041	185	180, 280, 490	ccacacgaaggagaaggaga	aacgtgtcattcgaccacaa	
64	ChFaM 044	170, 615	165, 310, 410, 595	cgctgagtcgttctaatttca	ttttgttgacgagcgagatg	
65	ChFaM 046	195, 300, 310	-	ccatttccatggccttgttt	ggccttgttgggtctgagag	
66	ChFaM 047	235	200, 215, 240, 260	tcatttctctctcccctcgat	gatgtgatttacggcgaagg	
67	ChFaM 056	195, 260	265, 510, 600	aaaacgtcgtcgttcaggat	cgtactgctgttgctgctgt	
68	ChFaM 058	140, 195, 205, 210, 300, 420, 500	550, 560, 580	gacccaaacacaccctgaac	ctccccattctgggaaatct	
69	ChFaM 060	165, 550, 560, 580	280, 590, 610	tgagetaceaceaagaacee	aataccettggtacceetcg	
70	ChFaM 063	120, 300	125, 195	gacgtctccgatccgttgat	ctggctcgcgtacgactttc	
71	ChFaM 064	285	190, 280	caccaacttcgacaacctca	gactcttctttggcgagctg	
72	ChFaM 065	220, 245, 250, 265	200, 250	gaccgggagagataacagca	atagaagccaatgcgtgatg	
73	ChFaM 066	110, 590	115, 280, 310, 580	attttggccacgaagaattg	cgatgtcaggaacgaactga	
74	ChFaM 068	420	200, 425	catctccagttccttggctc	acgaccattcctcttcctca	
75	ChFaM 070	280, 630	-	agcattgaattcccagttttg	ccttgcagcaggaactaagg	
76	ChFaM 072	385	-	tggcagaaatttccaaaagg	ctcccccagaagtccagatt	
77	ChFaM 077	250, 320, 400, 440	270, 300, 395, 410	gaaagggctggacatggata	atgttgttatttggcctgct	
78	ChFaM 078	245, 285, 290, 300, 315, 390, 410	235	cagcetcattgcaaatetga	cttaccggtttcgatgtggt	
79	ChFaM 080	530, 560	160, 540	ttcggtgccggtaaagatac	aagttccaccaccatgcaat	
80	ChFaM 081	-	295, 300, 310, 340, 415	aactgagctctcggcaagtc	gaatactcgcggaggaagtg	
81	ChFaM 082	230, 235	220, 245	agtacggcaattgaagctcg	gatctcggttgaagatcgga	
82	ChFaM 083	220, 250	-	ttttctggcttttggattgg	gcactttttcatcacaggca	
83	ChFaM 086	280	225	tttggagetcaatcccatctg	atttggccagcctccgtct	
84	ChFaM 088	660	140	ggtggcaaaactcatggaga	gggaagcgaagttgaagagg	
85	ChFaM 092	110	-	acccaagttcccttcgactc	atgcgctttgcataacaggt	
86	ChFaM 093	285, 290, 300, 390, 395	-	cgccctcaaatccctctaac	gaagtgagtgttccgctgct	
87	ChFaM 094	180	175, 185	atggagggcgctactgaaaa	aatggcgagcttggactttc	
88	ChFaM 095	210	-	gccagaagcaaaaaccagaa	gggaagttgaaattgtcgga	
89	ChFaM 097	275, 325, 250, 400, 450, 470	265	gccaaaggttggttctttga	gccattttggaagaggtgaa	
90	ChFaM 098	305, 495, 520	205, 215	gtgagagtcagcccacccta	gcgacgaggatgaagaagag	
91	ChFaM 100	100, 170	120, 190	ttggaacccagaaaatcgaa	cagcggagagagaaacaagg	
92	ChFaM 101	150, 500	220, 240, 520	ggagtaagctgatcactctgt	actccgaggctgtaatccct	

BIULETYN IHAR Nr 291 / 2020

Tabela 1 cd. Table 1 cd.

Wielkości produktów różnicujących odmiany 'Elsanta' i 'Senga Sengana' (allele segregujące) w reakcji SSR oraz sekwencje starterów generujących powyższe allele heterozygotyczne.

Lp.	Mrker Mol. marker	produkty różnicujące (pz) Size of the amplicons (pb)		starter F	starter R	
No.	Wior. marker	Elsanta	Senga Sengana	Farward Primer	Revers Primer	
93	ChFaM 105	170, 180	160, 175	cctccaaacacaatccacca	tctgaggtttatgcgggact	
94	ChFaM 106	170, 190, 230, 335	120, 410	accaaccgaggcgagagag	cgtcatctgcacctgcttc	
95	ChFaM 107	-	500	tgccaaacaaacaaatgttga	catatcgatgtccttcataggg	
96	ChFaM 108	520	170	catggaaagagagcgaaagc	cgaggaatgagggaggaatc	
97	ChFaM 109	-	420, 450	aagctgcttgcgaagaacaa	ggctgatgccagtccattta	
98	ChFaM 110	310, 605, 615	-	ttttcctttggtggttttgg	ccagagaaagccatttaggc	
99	ChFaM 111	145, 180	135	gcccaaccgagtctctctct	cgggcttcaatttgctcaat	
100	ChFaM 112	495	485	ttcaagettttettetteetete	catettcacetgacecetet	
101	ChFaM 114	-	145, 275, 495	tgtggtgccttggtttacaa	cgcctctctctctaatcc	
102	ChFaM 115	460, 480	280, 285	cctcggcttcttcatctttg	accacactgacaggacgatg	
103	ChFaM 120	130, 200, 210, 420	255, 300, 320, 330	ggtttcatcagagggcgtctt	taaagctcccagcaggcatt	
104	ChFaM 122	245, 255, 260	-	gactcacagtctctcccagtgt	tgatattgagcaacgggtga	
105	ChFaM 126	270	-	gttagggagtccgggaatga	ttccaatcccatctgacgac	
106	ChFaM 129	195	-	agatcaacatcgcctccaac	tgctcgttgtccataacctg	
107	ChFaM 130	240, 260, 300	195, 310	gccagtcacaagaagccaaa	tgctctgaaacccctttatctg	
108	ChFaM 144	390,	-	cacgtettggetteetette	cggagcagattttcttggag	
109	ChFaM 146	170	150, 155	acgagggaagaatggagcac	agatggtcctgactggatgg	
110	ChFaM 147	350, 360	-	acgagggtcacctgagactg	ccaggagaaggtaccgaagg	
111	ChFaM 148	-	210	ccctccatcaaagccagtt	cattagaccccgacttgtca	
112	ChFaM 151	200	-	accaccaccgttttctcctc	accaccgactcgtccttctt	
113	ChFaM 159	285	-	tctctctcatcgccccagag	acccatccacagggttettg	
114	ChFaM 160	-	300, 480	ccactccccaaaagagcaca	ctgcctccacaatectcacc	
115	ChFaM 161	210, 510, 615	270	cgaggccttgtcttctttgt	gcggaggtagctgttgtagc	
116	ChFaM 163	150, 265	155	ttcgggtcttgtattgctttga	ttcaattccgaaggcacaac	
117	ChFaM 164	235	200	cactcagccagatccagagc	gcgccaaggatggtcttaat	
118	ChFaM 174	140, 175	160, 195	gagggagatggcacggagat	ctccggcattgaaatcgaga	
119	ChFaM 177	245, 265, 400	-	cctgcagagtgcaagagaga	cactcacaaggcatgagagcta	
120	ChFaM 178	165, 280, 325	320	aaacgaagaaaggaagtcttcaa	agctgtgcaggggtttatgt	
121	ChFaM 194	-	175, 195	cccttccttgccagtcattt	cccatcccacagttgttctc	
122	ChFaM 196	-	305	ceteteacetetttetetetaaaa	agcgcatgagtctgctgtta	
123	ChFaM 203	480	-	cgagggtcacggctactaaa	tgagtatgaccaatccgaaaga	
124	ChFaM 209	-	295	cccccaaaaccctctattct	atcatteccaagecactgte	
125	ChFvM 028	168, 505	170, 507	aatggcatcaacttctgcac	cagcctgctgctgtagttct	
126	ChFvM 049	-	500, 505	atggttggtgatcaatggtg	ttcatatgcaatttgatggaac	
127	ChFvM 087	280, 295	300	gaaaggggaagccttttcat	tgggacgaaagttcccaata	
128	ChFvM 125	-	150, 520	gcgactgccatcgtaaccta	tctccaatgttttcgccaag	
129	ChFvM 140	-	185	ccacttcccataccactgga	cgtcgtaggttcggtctctg	
130	ChFvM 181	175	155, 165	ggagaactgctttggtaggg	acgtacaccagcagatgagc	
131	ChFvM 182	400, 435, 515	470	ggaaccaaacgaacaccaac	gcggaggagtgagtgaagac	
132	ChFvM 184	255	235, 240, 340, 350, 600	gcactttggggttttgggta	ttgcaagaacccccttccta	
133	ChFvM 191	245, 535	255, 285, 300, 350	ccagcagaatcetcaaatge	gtgccaacaagcccattg	
134	ChFvM 192	-	265, 275, 450	tgaggtcagtctgtgagaattg	tttccgagagtggagagcat	

Tabela 1 cd. Table 1 cd.

Wielkości produktów różnicujących odmiany 'Elsanta' i 'Senga Sengana' (allele segregujące) w reakcji SSR oraz sekwencje starterów generujących powyższe allele heterozygotyczne.

Lp.	Mrker Mal marker	produkty różnicujące (pz) Size of the amplicons (pb)		starter F	starter R	
No.	Mol. marker	Flsanta	Senga Sengana	Farward Primer	Revers Primer	
135	ChFvM 193		140	catcagaaccatcaatcatcg	tactoccoggagaatgaaca	
136	ChFvM 201	-	245, 285, 325, 335	tgattcaactccagcgaagc	atcagcaggcgaatcettet	
137	ChFvM 202	225, 235	-	caaagggctccagctatctc	aggatcotcagctaggagga	
138	ChFvM 205	220	125, 185	gcgaaaccctatggattett	acaaccaccaaatteecatt	
139	ChFvM 210		185, 265, 540	tecceacatttteettattt	otootottootoaotooaoa	
140	ChFvM 212	150, 170, 190	195	caaatetteaacggtetetetee	acggaggaggaggaggagtcat	
141	ChFvM 213	195, 245, 330, 350, 450	280	aaccctaggaggctgaaacc	ataccccgggtggtacttgt	
142	AW06432	250, 270, 280, 500, 570	-	tgagctgaagaaggtgctga	aagggaaactggaggtagcaa	
143	CO378933	150, 500	-	cgaggcttgtctctgtgttg	cacgaccttgacacccttct	
144	CO379009	105	-	tgtgattgggagagaggagg	ctgccccaaacttggtttta	
145	CO379012	-	145	cacgaggattgtttgaaccc	accaacacaaaagctgctg	
146	CO379659	250, 400	140, 200	aggggaggcctcacttagag	tatccatgagatcccagcct	
147	CO380151	-	150	cgagggtttgatcgagtctg	aacatgatcacaaggccaca	
148	CO381174	275	445, 455	ccacaagaaaggagacgagc	tcaggagcatgaatcaatcg	
149	CO381539	272	270, 265	gtctgcccctgttacgctac	ctgtgtagctccggcacata	
150	CO381605	-	300	ccacccctttacctttcaca	caatteegaaggeacaaett	
151	CO381897	230	-	agaggctgaggatcatggtg	ggcaaatacaatgctaaacca	
152	CO382008	-	125, 145, 385	gcccttgcttagttgctttg	atgcatggctatggcttgtt	
153	CO816733	275, 300, 400, 480, 570	310, 350	teccaacaceteaettgtee	attcagccaggtctgagcat	
154	CO816806	-	205	cgagggagaaaccctaacct	ggacgatcccttgtagtgga	
155	CO816840	270, 340	150, 215, 295, 305	cagcettgatgtetegttga	ccatgacatectetgeettt	
156	CO816936	300	380, 520	ttetetecgatettetecga	categactggetteteette	
157	CO817004	220, 240	225	cgtcagccctaagaagatgg	acgaccaatacagaccaggg	
158	CO817138	250	285, 500, 590	tgaaaacttttgctctgggc	tcaggccatgaaacactctg	
159	CO817185B	195, 400, 510, 565	260, 500	tcatccactgggaagaaagg	catcaatcatgcacacacga	
160	CO817242	-	150, 520, 525	aatccccaaatcctcaaacc	ctccacgctcttcttgttcc	
161	CO817330	-	270, 405, 430, 505, 510, 550	getteatggettegttette	gtggcattcagttgggctat	
162	CO817364	285, 295	260	gccttccccttcttcaaatc	gtccattttccagtggtgct	
163	CO817505	120, 280	-	tcctgaagcaacgatgactg	cacttgccgcagaagaaaa	
164	CO817509	130, 140, 195	215	tcaccgtcctccttctcaac	cgaagaggaaattgagccag	
165	CO817772	-	500	tcacaaccgacgagtttcag	tttetteactgecetgetet	
166	CO817850	-	300	gtgttgagcaagaatggggt	tagtgcccagaatgaggctt	
167	CO817919	270, 280	-	cagaatccaccggcttacat	cgctagcttttctgctcgat	
168	CO818131	250, 315	295	ccttcctccgaaaccctact	gggctcaggttatacgagca	
169	CX661091	180	235	aagccatgactacctccacg	atgaagccgaaatcgaaatg	
170	CX661274	-	215	tataacaacgttgggccctc	tacgccagctcataccacag	
171	CX661428B	295, 330	-	gaagacggtggatgaggtgt	ctgctgaaacccgaatccta	
172	CX661749	-	500	tagatttttcccattccccc	atetgacecaacaaaaceca	
173	CX661752	-	165, 175	acctgacctgaccaaaccag	tggggatgaggatgagagtc	
174	CX661843	245, 515	-	ctcccatagatgcctcgaac	ttgaacagcgagaagtggtg	

BIULETYN IHAR Nr 291 / 2020

Tabela 1 cd. Table 1 cd.

Wielkości produktów różnicujących odmiany 'Elsanta' i 'Senga Sengana' (allele segregujące) w reakcji SSR oraz sekwencje starterów generujących powyższe allele heterozygotyczne.

Lp.	Mrker Mol. marker	produkty różnicujące (pz) Size of the amplicons (pb)		starter F	starter R	
No.	Wol. marker	Elsanta	Senga Sengana	Farward Primer	Revers Primer	
175	CX661893	-	190, 610	cgggttcttctacttcgtcg	gcccaaagacaggcctagat	
176	CX661895A	100	-	gtagccatggaatcgtccac	actgcgagcaagtgtcttga	
177	CX662065	170, 495	-	acagagagccagaaacggaa agcgagagagagagagcgaa		
178	CX662065A	-	190, 235, 360, 500	atgaccacagcaacctctcc	gcgtgtttgggattgagact	
179	CX662153	115, 120, 175	130	gaaactcccccgaatttacg	tctcgggtgagctgagaaat	
180	CX662162	290, 505	-	tcaccacatgaaaagttgcc	atagaaagagcggcacgaaa	
181	CX662184	155	145, 160	acgetettettteacteeca	gagagagatgtgcggagagg	
182	CX662207	265,285, 290	310	agcagccggtcagatgatag	atcacggtcaaagccaactc	
183	CX662235	220, 255, 340, 345	-	cctctcttccccacactcaa	gtagctctttccgaacgtgg	
184	FvA 108	150	-	acaaagagaccaccaactacc	gatagccaaaagagcagtga	
185	FvA 110	185, 245	255, 265	caacettteetageateaacte	actcgatctgaaatcgttgtct	
186	FvA 114	120, 270, 315	150, 295	attggctaatgaatctccg	ggcaagggaatggataata	
187	FvA 115	98, 370, 450	100, 445	acaagttcgcagggtatga	gggaaaacacagaaatctcc	
188	FvA 117	110, 295	-	ccattttacattgtcacaacg	gttagggtttcatgtggactc	
189	FvA 119	280, 400	120, 150, 265	gcccttgatgacagaaaag	cccttcgttggagataatg	
190	FvA 123	-	310	gcaatgttgttactgaaatgtg	agcatctcttagtgcctcatc	
191	FvA 125	420	-	atccaagggctaagagagg	cagaaatacccaccaaagttc	
192	FvA 127	95, 215	195	tctccctcatccacaatcaac	accggagtgaaaccctaattc	
193	FvA 129	145	-	gaaaggagtctgttttgtgtcc	actgggctcatcatacgc	
194	FvA 2	250, 270	252, 262	gttccatcacttacagacatcc	cctgattatgtgcctttattc	
195	FvA 5	120	85, 135	aagggagagaagagagaaagtg	acaacctatcggctcattaac	
196	FvA 7	-	550	cagtgaagacttccgcactag	gcatatcgtcattatgtgc	
197	FvA 9	570, 580	610	gaggtgctccttgtgaatg	aacccatcaaccagtttgg	
198	FvB 1	290, 315, 450, 480	620	agagcagaagaaaaccatagc	cctccctggaaatagatacac	
199	FvB 101	175, 195, 480, 485	120	tcaagtctcgaccaaaataact	cgttgtcacttccattagagg	
200	FvB 108	300, 455, 495	130, 215	ggttgacatgagtgcatattc	gaaggtataggagtgcaaagtg	
201	FvB 110	215, 225	-	ctaccgcaccataatttagaag	catccaaatgaacctattcaag	
202	FvB 111	270, 275, 280, 520	190, 195	ttaggttttgcgaagttgaag	aggagaaccgcgctagtg	
203	FvB 112	165, 195, 205, 285, 600	290, 335, 250	ggcaacgaagagtaaggc	caaccataataccctcattttc	
204	FvB 113	-	230	tgacccagaaatgaaagaagg	agaaagaacctgctgcttgag	
205	FvB 116	200	215, 225	cctccatccctaactttcc	gctctttgtcttcgtcagc	
206	FvB 119	330, 385	380, 390	acccattgccatccctact	ccacctgaacaaccaccac	
207	FvB 120	220, 240	-	ataccctcatctcttgctcttg	gattcttcatgtgatcgtctga	
208	FvB 123	-	360, 370, 390	gaaacacttttgcccttgtg	ggtttactgggggtcag	
209	FvB 124	190, 220, 250, 260	205, 240	agacaaacaagcagcaatagtg	agaaagggaagtgcctaagtg	
210	FvB 126	125	110, 180	gagcatcggcactacacc	catggctggcttcagatc	
211	FvB 127	420, 500	265, 270	tttcaaggcaaatccactatc	gcatcggaagcatcaagt	
212	FvB 129	510, 550	-	gcgatgaaacagtagcagc	gaagaaggggggaagaatc	
213	FvB 132	220, 250	260	aaggeteeccetgtttag	gaacctgtaggctgtgtagaaa	
214	FvB 2	230, 340, 350	600	ttgaggcacttgaaaaaagac	aagggaggtggaaaggtg	
215	FvB 8	280, 300, 400, 420	275, 290, 320, 410	ggtgagtggtatttgcctaac	cttcattacggtggagtctg	

Tabela 1 cd. Table 1 cd.

Wielkości produktów różnicujących odmiany 'Elsanta' i 'Senga Sengana' (allele segregujące) w reakcji SSR oraz sekwencje starterów generujących powyższe allele heterozygotyczne.

Sizes of PCR amplicons (segregating alleles) differentiating 'Elsanta' and 'Senga Sengana' genomes and the sequences of oligos generating the above heterozygous alleles.

Lp.	Mrker Mol. marker	er produkty różnicujące (pz) arker Size of the amplicons (pb) Elsanta Senga Sengana		starter F	starter R	
INO.				Farward Frinter	Revers Primer	
216	FvC 10	295, 350, 380	255, 285, 300, 460	cctccatgtcgatcctcttatc	gccaattccgattattcttgag	
217	FvC 103	200, 215, 250, 395	-	tcctccaactccaacttctc	cgaatctatgtcccctatcg	
218	FvC 105	270, 350	-	gggtggtcaagtctccag	actccgattactgttttccag	
219	FvC 107	205, 480	180	ggcaaattacatgatgaaccag	gaatggagtccttggagaactc	
220	FvC 108	275	345, 255, 495	tcccgtgaacagtgtcag	agcaaagaggtagagaacgag	
221	FvC 109	165, 210, 520, 590	260	agggcgagacttgaaatatg	aagcettacetggaaattace	
222	FvC 110	420	450	ctgtttcttcctcagattgttc	gtcattgtaactgctgtgtg	
223	FvC 111	215, 260, 270, 290, 340, 415	200, 240, 315, 400	ccattettegeceettaac	caaaactgtcactgcctcaaa	
224	FvC 112	145, 160, 170	147, 150, 280	ggtacgaattgtgggaattg	cggcctgattgtattatctg	
225	FvC 113	220, 250, 260, 270	180	ccctcctcttttctctttcc	ggcagacagatccgaga	
226	FvC 12	-	190, 250	ggaggacagcgatagagatatg	gggtccatttctgtttaacaac	
227	FvC 122	320, 385	300	tetteatacceatacceactac	ccagacacccatctaattctac	
228	FvC 123	170	140, 250	gaccacaaacccactaatc	caaacaccgagacttctgag	

Tabela 2 Table 2

Liczba produktów SSR-PCR różnicujących genomy odmian 'Elsanta' i 'Senga Sengana'.

Grupa starterów Group o teste	liczba par starterów testowa- nych z danej grupy	liczba starterów w grupie, w reakcji z którymi obserwowano produkty polimorficzne	liczba produktów różnicujących od- miany Number of polimorfic PCR products		
markers	Number of primer pairs test- ed from the merker group	Number of primers in the group in which polymorphic products were observed in the reaction	Elsanta	Senga Sengana	
FvH	151	44	80	52	
ChFvM	135	97	178	155	
СО	48	27	35	42	
CX	33	15	20	16	
FvA	29	14	23	17	
FvB	27	18	45	30	
FvC	27	13	37	25	

Number of SSR-PCR products differentiating 'Elsanta' and 'Senga Sengan' genomes.

W genomie odmiany 'Elsanta' dla wszystkich badanych grup markerów molekularnych, zidentyfikowano łącznie 418 alleli polimorficznych, natomiast w genomie odminay 'Senga Sengana' – 337 alleli. Przeprowadzone badania potwierdzają wysoki stopień heterozygotyczności genomów obu wytypowanych do badań odmian.

Aanliza populacji mapującej. Uzyskana mapa gentyczna badanych genomów.

Do badań wykorzytsano matryce DNA wyizolowane z genomów form rodzicielskich,

dla których potwierdzono wysoki poziom zróżnicowania genetycznego oraz z roślin potomnych, uzyskanych w wyniku ich krzyżowania. W reakcji z 44 wybranymi markerami SSR zidentyfikowano 53 allele, które segregowały w genotypach populacji mapującej. Na podstawie analizy rozkładu i frekwencji rekombinacji, oznaczono położenie i dystans mapowy loci tych alleli (Tab. 3). Skolekcjonowane dane użyto do przygotowania 'szkieletu' mapy genomów odmian 'Elsanta' oraz 'Senga Sengana'. Zintegrowana mapa genetyczna skonstruowana dla populacji 'Elsanta' × 'Senga Sengana' zawiera łącznie 27 grup sprzężeń (LG, *Linkage groups*), wykazujących wysoki stopień homologii do: chromosomów II i VI (LG2 i LG6 obejmowały homologi a-d), chromosomów I, III i VII (LG1, LG3 i LG7 obejmowały homologi a-c) oraz chromosomów IV i V (LG4 i LG5 obejmowały homologi a i b) opracowanych dla gatunku Fragaria.

Łącznie, na chromosomie I udało się zlokalizować loci 7 markerów, na chromosomie II – osiem, na chromosomie III i VI – po dziesięć, na chormosomach IV i V – po pięć, a na chromosomie VII – loci czterech markerów SSR. Wielkość uzyskanego zmapowanego fragmentu genomu (bin map) wyniosła 1 033,50 cM (Rys. 2).

> Tabela 3 Table 3

Wyniki analizy rozkładu alleli i frekwencji rekombinacji w populacji mapującej oraz dystans genetyczny zidentyfikowa-

nych loci markerów SSR.

Allele distribution, recombination frequency in the mapping population and genetic distance of identified SSR markers.

Grupa sprzęż. Linkage group	Locus1	Locus2	Frekwencja rekombinacji/od- ległość mapowa (cM) Recombination	Typ segregacji alleli w populacji Segregation type	Test X2 Chi-square test	Rozkład alleli w populacji Alleles distribu-
			frequency (cM)	of alleles		population
	EMFn049	FvC103	19	nnxnp	0.8	3:1
LG1A	EMFn049	COBRA	25	nnxnp	2.2	3:1
LGIA	FvC103	COBRA	6	mlxll	7.8	3:1
LCID	COBRA	CO817054	24,3	nnxnp	0.3	3:1
LGIB	CO817054	FEFv14-29	20,7	mlxll	4.9	3:1
	BFACT003	FvH4171	21,7	mlxll	0.2	3:1
LG1C	FvH4171	ARSFL002	28,3	nnxnp	0.6	3:1
	BFACT003	ARSFL002	50	nnxnp	10.4	3:1
	ARSFL012	CFVCT015	30	abxab	3.0	1: 2: 1
LG2A	ARSFL012	BFACT002	42	abxab	3.5	1: 2: 1
	CFVCT015	BFACT002	12	nnxnp	0.4	3:1
LG2B	EMFn214	CFACT111	34,3	mlxll	3.5	3:1
LG2C	BFACT002	ARSFL015	18,4	mlxll	0.1	3:1
LG2D	FvH4173	CFVC0316	24,3	mlxll	1.7	3:1
	UDF0001	FvH4161	18,4	nnxnp	4.3	3:1
	UDF0001	FvH4155	26,6	mlxll	0.2	3:1
	UDF0001	FvH4177	46,4	mlxll	0.4	3:1
	UDF0001	FvH4165	70,7	mlxll	2.1	3:1
LG3A	FvH4161	FvH4155	8,2	nnxnp	0.2	3:1
	FvH4161	FvH4177	28	nnxnp	0.0	3:1
	FvH4161	FvH4165	51,6	mlxll	0.8	3:1
	FvH4155	FvH4177	19,8	mlxll	0.7	3:1
	FvH4155	FvH4165	43,4	nnxnp	2.3	3:1
	FvH4177	FvH4165	23,6	mlxll	2.6	3:1
LG3B	FvH4169	BFACT036	44,3	mlxll	0.4	3:1
	FvH4163	FvH4153	36	nnxnp	3.3	3:1
LG3C	FvH4163	BFACT045	68	nnxnp	1.8	3:1
	FvH4153	BFACT045	32	abxab	5.8	1: 2: 1
	EMFn132	FvH4164	34,3	abxab	0.3	1: 2: 1
LG4A	EMFn132	FvH456	42	abxab	3.6	1: 2: 1
	FvH4164	FvH4156	8	nnxnp	0.4	3:1
LG4B	CO816733	EMFv007	21,7	nnxnp	0.0	3:1

Tabela 3 Table 3

Wyniki analizy rozkładu alleli i frekwencji rekombinacji w populacji mapującej oraz dystans genetyczny zidentyfikowanych loci markerów SSR.

Allele distribution, recombination frequency in the mapping population and genetic distance of identified SSR markers.

Grupa sprzęż. Linkage group	Locusl	Locus2	Frekwencja rekombinacji/od- ległość mapowa (cM) Recombination frequency (cM)	Typ segregacji alleli w populacji Segregation type of alleles	Test X2 Chi-square test	Rozkład alleli w populacji Alleles distribu- tion in mapping population
	FvH4164	BFFv09-11-02	18,4	nnxnp	4.1	3:1
LG5A	FvH4164	EMFv018	26,6	mlxll	0.2	3:1
	BFFv09-11-02	EMFv018	8,2	mlxll	5.5	3:1
LG5B	UDF009	BFACT017	24,3	nnxnp	1.7	3:1
	FvH4164	FvH4160	18,4	mlxll	12.6	3:1
	FvH4164	FvH4159	21,6	nnxnp	2.0	3:1
	FvH4164	FvH4154	26,4	nnxnp	4.9	3:1
	FvH4164	ARSFL100	50,7	mlxll	0.5	3:1
LCGA	FvH4160	FvH4159	3,2	nnxnp	0.3	3:1
LG0A	FvH4160	FvH4154	8	mlxll	2.9	3:1
	FvH4160	ARSFL100	32,3	mlxll	0.6	3:1
	FvH4159	FvH4154	4,8	nnxnp	0.1	3:1
	FvH4159	ARSFL100	29,1	mlxll	4.3	3:1
	FvH4154	ARSFL100	24,3	abxab	0.6	3:1
LG6B	FvH4180	FvH4163	25	mlxll	2.5	3:1
LG6C	ARSFL002	ARSFL022	28,1	abxab	1.1	1: 2: 1
LG6D	EMFn017	ARSFL022	34,9	nnxnp	0.0	3:1
LG7A	BFACT004	EMFn213	25,2	nnxnp	2.4	3:1
L C7P	ARSFL011	EMFn213	7,1	nnxnp	5.2	3:1
LG\R	EMFv021	EMFn213	15,5	mlxll	0.2	3:1

Rys. 2. Schemat szkieletu zintegrowanej mapy 'Elsanta' × 'Senga Sengana'.

Fig. 2. The 'skeleton' (bin map) of the integrated genetic map of 'Elsanta' × 'Senga Sengana'.

BIULETYN IHAR Nr 291 / 2020 Sylwia Keller-Przybyłkowicz, Agnieszka Masny, Bogusława Idczak...

Dyskusja

Truskawka (*Fragaria* × *ananassa* Duch. ex Rozier) jest allopoliploidem (oktoploidem 2n=8x=56) (Davis i in. 2007), którego poliploidyzacja podczas procesów ewolucyjnych doprowadziła prawdopodobnie do zaburzeń liczby chromosomów w gametach (Hancock 1999). Jej genom powstał na skutek przypadkowej hybrydyzacji dwóch gatunków poziomki *Fragaria chiloensis* Ehrh. (Chile) i *Fragaria virginiana* (USA).

W oparciu o badania cytogenetyczne i molekularne opracowano kilka modeli genomów allopoliploidalnych tego gatunku. Zgodnie z zapisem Y1Y1Y1Y1ZZZZ/Y1Y1Y1'Y1'ZZZZ (Rousseau-Gueutin i in. 2009) i AAAABBCC (Fedorova 1946) w skład genomu *F. × ananassa* wchodzić mogą dwa (Y1, Z) bądź trzy rodzaje sub-genomów (Y1, Y1', Z lub A, B, C), a zapis AAA'A'BBB'B' (Bringhurst 1990) sugeruje udział nawet czterech z nich (A, A', B, B') (Hummer i Janick 2009).

Skomplikowany układ genomu klasyfikuje truskawkę jako bardzo trudny obiekt dla zaawansowanych badań genetyczno-hodowlanych, czego skutkiem jest brak w literaturze doniesień na temat interakcji między genami warunkującymi różne cechy F. × ananassa. Niemniej jednak próby tworzenia zagęszczonych map genetycznych, służących "rozlokowaniu" genów warunkujących określone cechy na odpowiednich chromosomach, podejmowano w ostatnich latach w kilku współpracujących ośrodkach europejskich, USA i Japonii (Kole i Abbott, 2008, Sargent i in, 2011). Skutkiem tych badań jest dostępność map referencyjnych tego gatunku, sporządzonych dla roślin diploidalnych F. vesca i F. bucharica $FV \times FB$, (Sargent i in. 2006, 2007, 2008; Zorrilla-Fontanesi i in. 2011) oraz oktoploidalnych $F \times ananassa$ (Isobe i in. 2013, Sargent i in. 2012; Davik i in. 2015). Mapy te zagęszczone są licznymi markerami mikrosatelitarnymi, które (uwzględniając zasadę kolinearności od 15 do 80% (Mohamed 2014)) stanowią bazę danych do sporzadzania map genetycznych genomów nowych odmian gatunku Fragraia.

Punktem krytycznym podczas generowania map genetycznych jest dobór populacji mapującej. Użycie populacji mapującej będącej wynikiem krzyżowania form rodzicielskich niewystarczająco zróżnicowanych pod względem fenotypowym i genotypowym, prowadzi do problemów z interpretacją typu segregacji alleli, a w efekcie do błędnego odczytu położenia genów na mapie (Liebhard i Gessler, 2000; Rungis i in., 2005; Semagn i in., 2006; Kole i Abbott, 2008; Myles i in., 2009). Najprostszą metodą uzyskiwania populacji mapującej jest krzyżowanie heterozygotycznych form rodzicielskich CP (Cross Polination, zastosowana również w niniejszych badaniach), ale zależnie od typu dziedziczenia alleli cech stosowane są również populacje F2, BC czy F23, wywodzące się z krzyżowania genotypów homozygotycznych (Knapp i in. 1990; Reiter i in., 1992; Yu i in., 2000; Philips i Vasil, 2001; Vinod, 2006; Hittalmani i in., 2008; Kole i Abbott, 2008). Przygotowanie populacji CP ma zwykle charakter kontrolowanego, wewnatrzgatunkowego krzyżowania genotypów o znanym pochodzeniu. Krytyczny podczas badania takiej populacji może być zbyt niski stopień polimorfizmu genetycznego form rodzicielskich oraz towarzyszące obcopylności występowanie potomstwa z nieplanowanych zapyleń (Van Ooijen i Voorrips, 2001). Dlatego przed podjęciem prac nad mapowaniem genomów 'Elsanta' i 'Senga Sengana' przeprowadzono (1) ocenę stopnia heterozygotyczności genomów form rodzicielskich oraz (2) analizę statusu mieszańców uzyskanych w wyniku ich krzyżowania.

W przeprowadzonych badaniach, dzięki analize porówanwszej wzorów prążkowych uzyskanych w teastach SSR-PCR na matrycach DNA rodziców oraz genotypów mieszancowych, pochodzenie z kontrolowanego zapylenia potwierdzono dla wszystkich badanych siewek. Poandto, wysoki stopień polimorfozmu pomiędzy krzyżowanymi genotypami obserwowany w testach SSR-PCR, wskazuje na znaczny poziom heterozygotyczności odmian 'Elsanta' i 'Senga Sengana', co potwierdza ich przydatność do tworzenia populacji CP, stosowanej przy konstruowaniu map genetycznych.

Kolejnym ważnym elementem analizy populacji przydatnej do tworzenia map genetycznych genomów roślinnych jest także dobór markerów molekularnych (Ritter i in., 1990, Liebhard i Gessler 2000).

Zgodnie z definicją Schulmana i in. (2004), markery powinny być sprzężone z cechą, łatwe do wykrycia w testowanym materiale roślinnym i dziedziczone zgodnie z zasadami Mandla. Inna definicja zakłada również, że powinny one odzwierciedlać allele każdego z reprezentowanych przez nie genów/fragmentów genomu (Griffiths i in. 1996). W niniejszych badniach wykorzystno zatem tylko markery molekularne, które wyraźnie różnicowały krzyżowane formy rodzicielskie, a zidentyfikowane dla nich allele haterozygotyczne segregowały w genotypach mieszańców.

Uzyskana mapa genetyczna zawiera łącznie 27 grup sprzężeń, na których zidentyfikowano loci 53 alleli polimorficznych, pokrywających 1 033 cM genomu truskawki. Należy zwrócić uwagę, że sporządzona dla oktoploidalnych genomów odmian 'Redguntlet' i 'Hapil' mapa referencyjna zawiera 30 grup sprzężeń (chromosomów homologicznych) (Sargent i in. 2012), a odmian 'Sonata' i 'Babette' – 31 grup reprezentujących siedem chromosomów genomu *Fragaria* (Davik i in. 2015).

Uzyskana mapa stanowi istotną bazę dla podjęcia prac nad identyfikacją i potwierdzeniem obecności regionów regulujących cechy ilościowe (QTL, Quantitative Trait Loci) w genomach badanych odmian 'Elsanta' i 'Senga Sengana'.

Wiedza dotycząca lokalizacji precyzyjnych sekwencji w genomie pozwala na wskazanie potencjalnych markerów molekularnych, regulujących ważne agronomicznie cechy gatunku Fragaria, przydatnych do wczesnej selekcji genotypów hodowlanych wspierających konwencjonalne metody hodowli poprzez wdrożenie procesu MAS (Marker Assisted Selection) (Sargent i in. 2012).

Dotychczasowe, przeprowadzone m.in. dla odmian "Hanoye' badania potwierdzają bowiem obecność regionów QTL zawierających markery sprzężone z cechą jakości owoców truskawki, zidentyfikowane w obrębie chromosomów II, IV, V i VII (Zorrilla-Fontanesi i in. 2011, Verma i in. 2017) oraz z odpornością na różnego rodzaju patogeny, potwierdzone w regionach chromosomów III i VI (Denoyes Rothan i in. 2004, 2005; van Dijk i in. 2014; Davik i in. 2015).

Wnioski

- Uzyskana populacja roślin potomnych pochodzących ze skrzyżowania odmian 'Elsanta' i 'Senga Sengana' stanowi wartościowy materiał do badań związanych z opracowaniem mapy genetycznej truskawki.
- Wszystkie siewki z uzyskanej populacji mapującej reprezentowały wzory genetyczne wskazujące na segregację alleli pochodzących wyłącznie od form rodzicielskich 'Elsanta' i 'Senga Sengana'.
- Sporządzony szkielet mapy genetycznej 'Elsanta' × 'Senga Sengana' może stanowić bazę do dalszej saturacji i do lokalizacji genów i identyfikacji regionów QTL sprzężonych z ważnymi cechami użytkowymi truskawki.

Badania finansowano ze środków projektu MRiRW: Badania podstawowe na rzecz postępu biologicznego w produkcji roślinnej, decyzja HOR. hn.802.4.2019 z dnia 14.05.2019 r. Zadanie nr 74.

Literatura

- Bringhurst, R. S. (1990). Cytogenetics and evolution in American *Fragaria*. Hortic. Sci. 25: 879–881.
- Darrow, G. M. (1966). The Strawberry History Breeding and Physiology. The New England Inst.for Med. Res..
- Davik, J. Sargent, D. J., Brurberg, M. B., Lien, S., Kent, M., Alsheikh. (2015)a. A ddRAD based Linkage map of the cultivated strawberry, *Fragaria annassa*. PLOS ONE 10(9): doi:10.1371/journal.pone.0137746
- Davis, T. M., DiMeglio, L. M., Yang, R. H., Styan, S. M. N., Lewers, K. S. (2007). Assessment of SSR transfer from the cultivated strawberry to diploid strawberry species: Functionality, linkage group assignment, and use in diversity analysis. J. Amer. Soc. Horti. Sci. 131: 506–512.
- Denoyes-Rothan, B., Guerin, G., Lerceteau-Kohler, E., Risser, G. (2005). Inheritance of a race-specific resistance to *Colletotrichum acutatum* in *Fragaria* × *ananassa*. Phytopathology 95: 405-412.
- Denoyes-Rothan, B., Lerceteau-Kohler, E., Guerin, G., Bosseur, S., Bariac, J., Martin, E., Roudeillac, P. (2004). QTL analysis for resistance to *Collectorichum acutatum* and *Phytophthora cactorum* in octoploid strawberry (*Fragaria × ananassa*). Acta Hort. 663: 147-151.
- Doyle, J. J., Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12: 13-15.
- FAOSta. (2019). Food and Agriculture http://www.fao.org/faostat/en/#data/QC
- Federova, N. J. (1946). Cross ability and phylogenetic relationships in the main European species of *Fragaria*. Natl. Acad. Sci. USSR. 52: 545–7.5.
- Griffiths, P. L., Dougan, G., Connerton, I. F. (1996). Transcription of the *Campylobacter jejuni* cell division gene *ftsA*. FEMS Micr. Lett. 143(1): 83-87.
- Hancock, J. F. (1999). Strawberries. CAB International, Oxford, U Hancock, K.
- Hancock, J. F. (2008)., Temperate fruit crop breeding: germplasm to genomics, Springer Science +Business Media, B.V. New York. USA.
- Hittalmani, S., Girish, T. N., Biradar, H., Maughan, P. J.. (2008). Mapping populations: Development, Descriptions and Deployment; Principles and Practices of Plant Genomics: Vol.1: Genome Mapping; Chapter 3, Kolle, C. and Abbott, A.G. Sci. Publishers USA: 69-92.
- Hummer, K. E., Janick, J. (2009). Rosaceae: Taxonomy, economic importance, genomics. In: Folta, K. Gardiner, S. (eds), Genetics and Genomics of Rosaceae. Springer Science+Business Media, New York, USA, 1-18.
- Isobe, S. N., Hirakawa, H., Sato, S., Maeda, F., Ishikawa, M., Mori, T., Yamamoto, Y., Shirasawa, K., Kimura, M., Fukami, M., Hashizume, F., Tsuji, T., Sasamoto, S., Kato, M., Nanri, K., Tsuruoka, H., Minami, C., Takahashi, C., Wada, T., Ono, A., Kawashima, K., Nakazaki, N., Kishida, Y., Kohara, M., Nakayama, S., Yamada, M., Fujishiro, T., Watanabe, A., Tabata, S. (2013). Construction of an

integrated high density simple sequence repeat linkage map in cultivated strawberry (*Fragaria* \times *ananassa*) and its applicability. DNA Res. 20: 79–92.

- Kole, C., Abbott, A. G.. (2008). Fundamentals of plant genome mapping. W: Kole, C., Abbot, A. G., Principles and practices of plant genomics. Genome mapping. Science Publishers USA: 2-67.
- Lerceteau-Kohler, E., Roudeillac, P., Markocic, M., Guerin, G., Praud, K., Denoyes-Rothan, B. (2002). The use of molecular markers for durable resistance breeding in the cultivated strawberry (*Fragaria* × *ananassa*). Acta Hort. 567: 615-618.
- Liebhard, R., Gessler, C. (2000). Possible errors in genome mapping. Integrated Control of Pome Fruit Diseases IOBC wprs Biulletin 23(12): 127-135.
- Masny A., Markowski J., Żurawicz E. (2002): Możliwości poprawienia jakości truskawek przez hodowlę nowych odmian. Zeszyty problemowe postępów nauk rolniczych 488:495-501
- Mohamed, A. M. W. (2014). The genetic map of strawberry (*Fragaria* × *ananassa*) based on 'Elsanta' × 'Senga Sengana' mapping population. Praca doktorska. Instytut Ogrodnictwa, Skierniewice pp.108.
- Myles, S., Peiffer, J., Brown, P. J., Ersoz, E. S., Zhang, Z., Costich, D. E., Buckler, E. S. (2009). Association mapping: Critical considerations shift from genotyping to experimental design. The Plant Cell 21. (2194)-2202.
- Philips, R. L., Vasil, I. K. (2001). DNA based markers in Plants. Kluwer Acad. Publ, Dordrecht, The Netherlands 42: 227-238.
- Reiter, R. S., Williams, J. G. K., Feldman, K. A., Rafalski, J. A., Tingey, S. V., Scolnik, P. A. (1992). Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs. PNAS 89. (1477)-1481.
- Ritter, E., Gebhardt, C., Salamini, F. (1990). Estimation of recombination frequencies and constructing of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 125: 645-654.
- Rousseau-Gueutin, M., Gaston, A., Äinouche, A., Ainouche, A., Ainouche, M. L., Olbricht, K., Staudt, G., Richard, L., Denoyes-Rothan, B. (2009). Tracking the evolutionary history of polyploidy in *Fragaria*, L. (strawberry): new insights from phylogenetic analyses of low-copy nuclear genes. Mol. Phylogenet. Evol. 51: 515–530.
- Rungis, D., Hamberger, B., Berube, Y., Wilkin, J., Bohlmann, J., Ritland, K. (2005). Efficient genetic mapping of single nucleotide polymorphisms based upon DNA mismatch digestion. Molecular Breeding 16: 261-270.
- Sargent, D. J., Cipriani, G., Vilanova, S., Gil-Ariza, D., Arús, P., Simpson, D. W., Tobutt, K. R., Monfort, A. (2008). The development of a bin mapping population and the selective mapping of 103 markers in the diploid *Fragaria* reference map. Genome 51: 120–127.
- Sargent, D. J., Clarke, J., Simpson, D. W., Tobutt, K. R., Arús, P, Monfort, A., Vilanova, S., Denoyes-Rothan, B., Rousseau, M., Folta, K. M., Bassil, N. V., Battey, N. H. (2006).

An enhanced microsatellite map of diploid *Fragaria*. Theor. Appl. Genet. 112. (1349)–1359.

- Sargent, D. J., Kuchta, P., Lopez Girona, E., Zhang, H., Davis, T. M., Celton J. M., Marchese, A., Korbin, M., Folta, K., Shulaev, V., Simpson, D. W. (2011). Simple Sequence Repeat Marker Development and Mapping Targeted to reviously Unmapped Regions of the Strawberry Genome Sequence. Crop Science Society of America - The Plant Genome 4:165–177.
- Sargent, D. J., Passey, T., Šurbanovski, N., Girona, L. L., Kuchta, P., Davik, J., Harrison, R., Passey, A., Whitehouse, A. B., Simpson, D. W. (2012). A microsatellite linkage map for the cultivated strawberry (*Fragaria* × *ananassa*) suggests extensive regions of homozygosity in the genome that may have resulted from breeding and selection. Theor. Appl. Genet. 124. (1229)–1240.
- Sargent, D. J., Rys, A., Nier, S., Simpson, D. W., Tobutt, K. R. (2007). The development and mapping of functional markers in *Fragaria* and their transferability and potential for mapping in other genera. Theor. Appl. Genet. 114: 373–384.
- Schulman, A. H., Flavell, A. J., Ellis, T. H. N. (2004). The Application of LTR Retrotransposons as Molecular Markers in Plants. In: Miller, W. J., Capy, P. (eds) Mobile Genetic Elements. Methods in Molecular Biology 260: Humana Press
- Semagn, K., Bjornstad, A., Ndjiondjop, M. N. (2006). Principles, requirements and prospects of genetic mapping in plants. African Journal of Biotechnology 5(25). (2569)-2587.
- Verma, S., Zurn, J. D., Salinas, N., Mathey, M. M., Denoyes, B., Hancock, J. F., Finn, C. E., Bassil, N. V., Whitaker, V. M. (2017). Clarifying sub-genomic positions of QTLs for flowering habit and fruit quality in U.S. strawberry (Fragaria×ananassa) breeding populations using pedigree -based QTL analysis. Horticulture Research 4. (1706)2; doi:10.1038/hortres.2017.62
- Van Dijk, T., Pagliarani, G., Pikunova, A., Noordij, Y., Yilmaz-Temel, H., Meulenbroek, B., Visser, R., van de Weg, E. (2014). Genomic rearrangements and signatures of breeding in the allo-octoploid strawberry as revealed through an allele dose based SSR linkage map. BMC plant biology 14: 55.
- Van Ooijen, J. W., Voorrips, R. E. (2001). JoinMap 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands, s. 78
- Vinod, K. K. (2006). Genome mapping in plant populations. Proceedings of the training programme on "Modern Approaches in Plant Genetic Resources". – Collection,
- Yu, K., Park, S. J., Poysa, V., Gepts P. (2000). Integration of simple sequence repeats (SSR) markers into a molekular linkage map of common bean (*Phaseolus vulgaris* L.). The Journal of Heredity 91(6): 429-434.
- Zorrilla-Fontanesi, Y., Cabeza, A., Torres, A. M. (2011). Development and bin maping of strawberry genic-SSRs in diploid *Fragaria* and their transferability across the Rosoideae subfamily. Mol. Breed. 27: 137–156.