Preparation of the mapping population derived from the cross of ‘Elsanta’and ‘Senga Sengana’ sutble for analysis of QTL regions linked to selected Fragaria traits.

Sylwia Keller-Przybyłkowicz

sylwia.keller@inhort.pl
Zakład Hodowli Roślin Ogrodniczych, Instytut Ogrodnictwa, ul. Konstytucji 3 Maja 1/3, 96‒100 Skierniewice (Poland)
http://orcid.org/0000-0002-3473-9706

Agnieszka Masny


Zakład Hodowli Roślin Ogrodniczych, Instytut Ogrodnictwa, ul. Konstytucji 3 Maja 1/3, 96‒100 Skierniewice (Poland)
http://orcid.org/0000-0002-6727-5653

Bogusława Idczak


Zakład Hodowli Roślin Ogrodniczych, Instytut Ogrodnictwa, ul. Konstytucji 3 Maja 1/3, 96‒100 Skierniewice (Poland)
http://orcid.org/0000-0002-7883-4908

Krystyna Strączyńska


Zakład Hodowli Roślin Ogrodniczych, Instytut Ogrodnictwa, ul. Konstytucji 3 Maja 1/3, 96‒100 Skierniewice (Poland)

Abdelrahmen Mostafa Abdelwahab Mohamed


Minia University, Faculty of Agriculture, 61517 Elminia, Egypt (Egypt)

Abstract

The aim of the study was to generate a mapping population derived from an 'Elsanta' and ‘Senga Sengana’ cross, so as to be useful for genotypic-phenotypic studies, and subsequently, to construct a 'skeleton' of the strawberry genetic map.
The first stage of the research was based on molecular assessment of parental plants for genetic polymorphism. After analysis of 450 selected SSR markers, 418 polymorphic alleles were identified in the genome of the 'Elsanta', and 337 alleles in the genome of the 'Senga Sengana'. The study confirms the high degree of genetic heterozygosity of both of the strawberry varieties. In the next stage of the work, molecular analysis of seedlings resulted from the cross of the heterozygous parental forms, as well as the confirmation of genetic status of hybrid genotypes were conducted. These studies confirm that the origin of the prepared mapping population was the result of the controlled pollination. Moreover, segregation of heterozygous alleles in the mapping population enabled the preparation of the 'skeleton' of an integrated map of 'Elsanta' x 'Senga Sengana'. Herein, the initial genetic map was found to contain 27 linkage groups representing the loci of 53 polymorphic allele, covering 1 033 cM of the strawberry genome.
Generally, as a result of the tests, we confirmed that the obtained population represents valuable material for research related to the development of a strawberry genetic map. Additionally, the 'skeleton' of 'Elsanta' x 'Senga Sengana' genetic map enlarged the database for further gene localization and for identifying QTL regions linked to important strawberry traits.

Supporting Agencies

Badania finansowano ze środków projektu MRiRW: Badania podstawowe na rzecz postępu biologicznego w produkcji roślinnej, decyzja HOR. hn.802.4.2019 z dnia 14.05.2019 r. Zadanie nr 74.

Keywords:

Fragaria genome, genetic map, heterozygous alleles, SSR

Bringhurst, R. S. (1990). Cytogenetics and evolution in American Fragaria. Hortic. Sci. 25: 879–881.
Google Scholar

Darrow, G. M. (1966). The Strawberry - History Breeding and Physiology. The New England Inst.for Med. Res..
Google Scholar

Davik, J. Sargent, D. J., Brurberg, M. B., Lien, S., Kent, M., Alsheikh. (2015)a. A ddRAD based Linkage map of the cultivated strawberry, Fragaria annassa. PLOS ONE 10(9): doi:10.1371/journal.pone.0137746
Google Scholar

Davis, T. M., DiMeglio, L. M., Yang, R. H., Styan, S. M. N., Lewers, K. S. (2007). Assessment of SSR transfer from the cultivated strawberry to diploid strawberry species: Functionality, linkage group assignment, and use in diversity analysis. J. Amer. Soc. Horti. Sci. 131: 506–512.
Google Scholar

Denoyes-Rothan, B., Guerin, G., Lerceteau-Kohler, E., Risser, G. (2005). Inheritance of a race-specific resistance to Colletotrichum acutatum in Fragaria × ananassa. Phytopathology 95: 405-412.
Google Scholar

Denoyes-Rothan, B., Lerceteau-Kohler, E., Guerin, G., Bosseur, S., Bariac, J., Martin, E., Roudeillac, P. (2004). QTL analysis for resistance to Colletotrichum acutatum and Phytophthora cactorum in octoploid strawberry (Fragaria × ananassa). Acta Hort. 663: 147-151.
Google Scholar

Doyle, J. J., Doyle, J. L.. (1990). Isolation of plant DNA from fresh tissue. Focus, 12: 13-15.
Google Scholar

FAOSta. (2019). Food and Agriculture http://www.fao.org/faostat/en/#data/QC
Google Scholar

Federova, N. J. (1946). Cross ability and phylogenetic relationships in the main European species of Fragaria. Natl. Acad. Sci. USSR. 52: 545–7.5.
Google Scholar

Griffiths, P. L., Dougan, G., Connerton, I. F. (1996). Transcription of the Campylobacter jejuni cell division gene ftsA. FEMS Micr. Lett. 143(1): 83-87.
Google Scholar

Hancock, J. F.. (1999). Strawberries. CAB International, Oxford, U Hancock, K.
Google Scholar

Hancock, J. F. (2008)., Temperate fruit crop breeding: germplasm to genomics, Springer Science +Business Media, B.V. New York. USA.
Google Scholar

Hittalmani, S., Girish, T. N., Biradar, H., Maughan, P. J.. (2008). Mapping populations: Development, Descriptions and Deployment; Principles and Practices of Plant Genomics: Vol.1: Genome Mapping; Chapter 3, Kolle, C. and Abbott, A.G. Sci. Publishers USA: 69-92.
Google Scholar

Hummer, K. E., Janick, J. (2009). Rosaceae: Taxonomy, economic importance, genomics. In: Folta, K. Gardiner, S. (eds), Genetics and Genomics of Rosaceae. Springer Science+Business Media, New York, USA, 1-18.
Google Scholar

Isobe, S. N., Hirakawa, H., Sato, S., Maeda, F., Ishikawa, M., Mori, T., Yamamoto, Y., Shirasawa, K., Kimura, M., Fukami, M., Hashizume, F., Tsuji, T., Sasamoto, S., Kato, M., Nanri, K., Tsuruoka, H., Minami, C., Takahashi, C., Wada, T., Ono, A., Kawashima, K., Nakazaki, N., Kishida, Y., Kohara, M., Nakayama, S., Yamada, M., Fujishiro, T., Watanabe, A., Tabata, S. (2013). Construction of an integrated high density simple sequence repeat linkage map in cultivated strawberry (Fragaria × ananassa) and its applicability. DNA Res. 20: 79–92.
Google Scholar

Kole, C., Abbott, A. G.. (2008). Fundamentals of plant genome mapping. W: Kole, C., Abbot, A. G., Principles and practices of plant genomics. Genome mapping. Science Publishers USA: 2-67.
Google Scholar

Lerceteau-Kohler, E., Roudeillac, P., Markocic, M., Guerin, G., Praud, K., Denoyes-Rothan, B. (2002). The use of molecular markers for durable resistance breeding in the cultivated strawberry (Fragaria × ananassa). Acta Hort. 567: 615-618.
Google Scholar

Liebhard, R., Gessler, C. (2000). Possible errors in genome mapping. Integrated Control of Pome Fruit Diseases IOBC wprs Biulletin 23(12): 127-135.
Google Scholar

Masny A., Markowski J., Żurawicz E. (2002): Możliwości poprawienia jakości truskawek przez hodowlę nowych odmian. Zeszyty problemowe postępów nauk rolniczych 488:495-501
Google Scholar

Mohamed, A. M. W. (2014). The genetic map of strawberry (Fragaria × ananassa) based on ‘Elsanta’ × ‘Senga Sengana’ mapping population. Praca doktorska. Instytut Ogrodnictwa, Skierniewice pp.108.
Google Scholar

Myles, S., Peiffer, J., Brown, P. J., Ersoz, E. S., Zhang, Z., Costich, D. E., Buckler, E. S. (2009). Association mapping: Critical considerations shift from genotyping to experimental design. The Plant Cell 21. (2194)-2202.
Google Scholar

Philips, R. L., Vasil, I. K. (2001). DNA based markers in Plants. Kluwer Acad. Publ, Dordrecht, The Netherlands 42: 227-238.
Google Scholar

Reiter, R. S., Williams, J. G. K., Feldman, K. A., Rafalski, J. A., Tingey, S. V., Scolnik, P. A. (1992). Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs. PNAS 89. (1477)-1481.
Google Scholar

Ritter, E., Gebhardt, C., Salamini, F. (1990). Estimation of recombination frequencies and constructing of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 125: 645-654.
Google Scholar

Rousseau-Gueutin, M., Gaston, A., Äınouche, A., Ainouche, A., Ainouche, M. L., Olbricht, K., Staudt, G., Richard, L., Denoyes-Rothan, B. (2009). Tracking the evolutionary history of polyploidy in Fragaria, L. (strawberry): new insights from phylogenetic analyses of low-copy nuclear genes. Mol. Phylogenet. Evol. 51: 515–530.
Google Scholar

Rungis, D., Hamberger, B., Berube, Y., Wilkin, J., Bohlmann, J., Ritland, K. (2005). Efficient genetic mapping of single nucleotide polymorphisms based upon DNA mismatch digestion. Molecular Breeding 16: 261-270.
Google Scholar

Sargent, D. J., Cipriani, G., Vilanova, S., Gil-Ariza, D., Arús, P., Simpson, D. W., Tobutt, K. R., Monfort, A. (2008). The development of a bin mapping population and the selective mapping of 103 markers in the diploid Fragaria reference map. Genome 51: 120–127.
Google Scholar

Sargent, D. J., Clarke, J., Simpson, D. W., Tobutt, K. R., Arús, P, Monfort, A., Vilanova, S., Denoyes-Rothan, B., Rousseau, M., Folta, K. M., Bassil, N. V., Battey, N. H. (2006). An enhanced microsatellite map of diploid Fragaria. Theor. Appl. Genet. 112. (1349)–1359.
Google Scholar

Sargent, D. J., Kuchta, P., Lopez Girona, E., Zhang, H., Davis, T. M., Celton J. M., Marchese, A., Korbin, M., Folta, K., Shulaev, V., Simpson, D. W. (2011). Simple Sequence Repeat Marker Development and Mapping Targeted to reviously Unmapped Regions of the Strawberry Genome Sequence. Crop Science Society of America - The Plant Genome 4:165–177.
Google Scholar

Sargent, D. J., Passey, T., Šurbanovski, N., Girona, L. L., Kuchta, P., Davik, J., Harrison, R., Passey, A., Whitehouse, A. B., Simpson, D. W. (2012). A microsatellite linkage map for the cultivated strawberry (Fragaria × ananassa) suggests extensive regions of homozygosity in the genome that may have resulted from breeding and selection. Theor. Appl. Genet. 124. (1229)–1240.
Google Scholar

Sargent, D. J., Rys, A., Nier, S., Simpson, D. W., Tobutt, K. R. (2007). The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera. Theor. Appl. Genet. 114: 373–384.
Google Scholar

Schulman, A. H., Flavell, A. J., Ellis, T. H. N. (2004). The Application of LTR Retrotransposons as Molecular Markers in Plants. In: Miller, W. J., Capy, P. (eds) Mobile Genetic Elements. Methods in Molecular Biology 260: Humana Press
Google Scholar

Semagn, K., Bjornstad, A., Ndjiondjop, M. N. (2006). Principles, requirements and prospects of genetic mapping in plants. African Journal of Biotechnology 5(25). (2569)-2587.
Google Scholar

Verma, S., Zurn, J. D., Salinas, N., Mathey, M. M., Denoyes, B., Hancock, J. F., Finn, C. E., Bassil, N. V., Whitaker, V. M. (2017). Clarifying sub-genomic positions of QTLs for flowering habit and fruit quality in U.S. strawberry (Fragaria×ananassa) breeding populations using pedigree-based QTL analysis. Horticulture Research 4. (1706)2; doi:10.1038/hortres.2017.62
Google Scholar

Van Dijk, T., Pagliarani, G., Pikunova, A., Noordij, Y., Yilmaz-Temel, H., Meulenbroek, B., Visser, R., van de Weg, E. (2014). Genomic rearrangements and signatures of breeding in the allo-octoploid strawberry as revealed through an allele dose based SSR linkage map. BMC plant biology 14: 55.
Google Scholar

Van Ooijen, J. W., Voorrips, R. E. (2001). JoinMap 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands, s. 78
Google Scholar

Vinod, K. K. (2006). Genome mapping in plant populations. Proceedings of the training programme on “Modern Approaches in Plant Genetic Resources”. – Collection,
Google Scholar

Yu, K., Park, S. J., Poysa, V., Gepts P. (2000). Integration of simple sequence repeats (SSR) markers into a molekular linkage map of common bean (Phaseolus vulgaris L.). The Journal of Heredity 91(6): 429-434.
Google Scholar

Zorrilla-Fontanesi, Y., Cabeza, A., Torres, A. M. (2011). Development and bin maping of strawberry genic-SSRs in diploid Fragaria and their transferability across the Rosoideae subfamily. Mol. Breed. 27: 137–156.
Google Scholar


Published
2020-12-09

Cited by

Keller-Przybyłkowicz, S. (2020) “Preparation of the mapping population derived from the cross of ‘Elsanta’and ‘Senga Sengana’ sutble for analysis of QTL regions linked to selected Fragaria traits”., Bulletin of Plant Breeding and Acclimatization Institute, (291), pp. 3–19. doi: 10.37317/biul-2020-PB80.

Authors

Sylwia Keller-Przybyłkowicz 
sylwia.keller@inhort.pl
Zakład Hodowli Roślin Ogrodniczych, Instytut Ogrodnictwa, ul. Konstytucji 3 Maja 1/3, 96‒100 Skierniewice Poland
http://orcid.org/0000-0002-3473-9706

Authors

Agnieszka Masny 

Zakład Hodowli Roślin Ogrodniczych, Instytut Ogrodnictwa, ul. Konstytucji 3 Maja 1/3, 96‒100 Skierniewice Poland
http://orcid.org/0000-0002-6727-5653

Authors

Bogusława Idczak 

Zakład Hodowli Roślin Ogrodniczych, Instytut Ogrodnictwa, ul. Konstytucji 3 Maja 1/3, 96‒100 Skierniewice Poland
http://orcid.org/0000-0002-7883-4908

Authors

Krystyna Strączyńska 

Zakład Hodowli Roślin Ogrodniczych, Instytut Ogrodnictwa, ul. Konstytucji 3 Maja 1/3, 96‒100 Skierniewice Poland

Authors

Abdelrahmen Mostafa Abdelwahab Mohamed 

Minia University, Faculty of Agriculture, 61517 Elminia, Egypt Egypt

Statistics

Abstract views: 220
PDF downloads: 254 PDF downloads: 17


License

Copyright (c) 2020 Sylwia Keller-Przybyłkowicz

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.