Introgressions of genes from taxonomically related species in improvement of wheat Triticum aestivum L. and other cultivated plants

Józef Pilch

j.pilch@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin — PIB, Zakład Roślin Zbożowych, Kraków (Poland)

Abstract

The paper presents achievements in use of wild/related species in breeding of plants with application of generative interspecific and intergeneric hybridization, particularly focused on cereals. Biodiversity of species, methodology of production of F1 — bridge hybrids and identification of the hybrids, their stability, transfer of the genes and the end-effects are presented. The recent progress is outlined in improvement of cultivated plants with the use of introgressions of alien genes influencing response to biotic and abiotic stress, yield level and its quality, use of heterosis in plant production. Further directions in modern breeding of new cultivars are postulated. Original taxonomic nomenclature, applied in the original publications, has been used for the plant species, genes, diseases and pathogens.

Supporting Agencies

The works were carried out under the Multiannual Program of IHAR-PIB No. 2.1. rump. 3-2-00-0-01

Keywords:

Poaceae (Triticeae), alien genes, biodiversity, improvement, introgression, wide crosses, wild/related species

Adolf K., Winkel A. 1985. A new source of spontaneous sterility in winter rye — preliminary results. Proc. Eucarpia Meeting of the Cereal Section on Rye, Svalov, Sweden: 293 — 306.
Google Scholar

Aghaee-Sarbarzeh M., Singh H., Dhaliwal H. S. 2008. A microsatellite marker linked to leaf rust resistance transferred from Aegilops triuncialis into hexaploid wheat. Plant Breed. 120, 3: 259 — 261.
Google Scholar

Anderson E. 1949. Introgressive hybridization. London: Chapman and Hall: 1 — 49.
Google Scholar

Anderson E., Hubricht L. 1938. Hybridization in Tradescantia. III. The evidence for introgressive hybridization. Am. J. Bot. 25: 396 — 492.
Google Scholar

Barclay A. 2004. Feral play: Crop scientists use wide crosses to breed into cultivated rice varieties the hardiness to their Wild kin, Rice Today, January 2004: 14 — 19.
Google Scholar

Bayuelo-Jimenez J. S., Debouck D. G., Lynch J. P. 2002. Salinity tolerance in Phaseolus species during early vegetative growth. Crop Sci. 42: 2184 — 2192.
Google Scholar

Boguslavski R. L. 1978. Spontannaja guibridizatzia u vidov roda Aegilops L. v uslovijah yuzhnogo Dagestan. (in Russia) Bull. VIR 84: 65 — 68.
Google Scholar

Brar D., Kush G. 1997. Alien introgression in rice. Plant Mol. Biol. 35: 35 — 47.
Google Scholar

Brar D. 2005. Broadening the gene pool and exploiting heterosis in cultivated rice. In: Rice is life: scientific perspectives for the 21st Century. Proc. of the World Rice Res. Conf., Tokyo and Tsukuba, Japan, Nov. 4–7, 2004. (Eds: Toriyama K. Heong K.L., Hardy B.): 59 — 72.
Google Scholar

Chen P. D., Tsujimoto H., Gill B. S. 1994. Transfer of Ph I genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor. Appl. Genet. 88: 97 — 101.
Google Scholar

Ciaffi M., Dominici L., Umana E., Tanzarella O. A., Porceddu E. 2000. Restriction fragment length polymorphism (RFLP) for protein disulfide isomerase (PDI) gene sequences i Triticum and Aegilops species. Theor. Appl. Genet. 101: 220 — 226.
Google Scholar

CIMMYT 2004. Wild Wheat Relatives Help Boost Genetic Diversity. (Ed. CIMMYT — Mexico, El Batan): 1 — 159.
Google Scholar

COBORU. 2001. Wstępne wyniki plonowania odmian ozimych w doświadczeniach rejestrowych. (Red. E. Gacek, COBORU, Słupia Wielka) zesz. 15: 7 — 28.
Google Scholar

Crute I. R. 1992. From breeding to cloning (and back again ?): a case study with lettuce downy mildew. Ann. Rev. Phytopathol. 30: 485 — 506.
Google Scholar

Dewey D. R. 1984. The genomic system of classification as a quid to intergeneric hybridization with the perennial Triticeae. (In J. P. Gustafson, Ed. Gene manipulation in plant improvement, New York USA, Plenum Press): 209 — 279.
Google Scholar

Dover G. A., Riley R. 1972. Prevention of pairing of homoeologous meiotic chromosomes of wheat by an activity of supernumerary chromosomes of Aegilops. Nature Lond. 240: 159 —161.
Google Scholar

Dudnik N. S., Thormann I., Hodgkin T. 2001. The extent of use of plant genetic resources in research — a literature survey. Crop Sci. 41: 6 — 10.
Google Scholar

Eenink A. H., Groenwold R., Dieleman F. I. 1982. Resistance of lettuce (Lactuca) to the leaf aphid Nasonovia ribisnigri. I. Transfer of resistance from L. virosa to L. sativa by interspecific crosses and selection of resistant breeding lines. Euphytica 31: 291 — 300.
Google Scholar

Escalant J., Sharrock S., Frison E. 2002. The genetic improvement of Musa using conventional breeding and modern tools of molecular and cell biology. International Network for the Improvement of Banana and Plantain: 38 — 51.
Google Scholar

Evans G. M., Macefield A. J. 1973. The effect of B chromosomes on homoeologous pairing in species hybrids. 1. Lolium temulentum ×Lolium perenne. Chromosoma 41: 63 — 73.
Google Scholar

Falk D. E., Kasha K. J. 1981. Comparison of the crossability of rye (Secale cereale) and Hordeum bulbosum on to wheat (Triticum aestivum). Can. J. Genet. Cytol. 23: 81 — 88.
Google Scholar

Fedak G., Jui P. Y. 1982. Chromosomes of Chinese Spring wheat carrying genes for cross ability with Betzes barley. Can. J. Genet. Cytol. 24: 227 — 233.
Google Scholar

Forster B., Miller T. E. 1985. A 5B deficient hybrid between Triticum aestivum and Agropyron juniceum . Cer. Res. Comm. 13: 93 — 95.
Google Scholar

Geiger H. H., Schnell F. W. 1970. Cytoplasmic male sterility in rye ( Secale cereale L.). Crop Sci. 10: 590 — 593.
Google Scholar

Gill B. S., Huang L., Kuraparthy V., Raupp W. J., Wilson D. L., Friebe B. 2008. Alien genetic resources for wheat leaf rust resistance, cytogenetic transfer, and molecular analysis. Australian J. of Agricultural Research 59 (3): 197 — 2005.
Google Scholar

Godron D. A. 1854. De la fecondation naturelle et artificielle des Aegilops par le Triticum. (In French) Am. Sci. Nat. 3: 215 — 222.
Google Scholar

Gotsov K., Panayotov I. 1972. Natural hybridization of male sterile lines of common wheat × Ae. cylindrical Host. Wheat Inf. Serv. 33/34: 20 — 21.
Google Scholar

Guadagnuolo R., Savova-Bianchi D., Felber F. 2001. Gene flow from wheat (Triticum aestivum L.) to joined goat grass (Aegilops cylindrica Host.) as revealed by RAPD and microsatellite markers. Theor. Appl. Genet. 103: 1 — 8.
Google Scholar

Gur A., Zamir D. 2004. Unused natural variation can lift yield barriers in plant breeding. PLOS Biol. 2: 1610 — 1615.
Google Scholar

Hajjar R., Hodgkin T. 2007. The use of wild relatives in crop improvement: A survey of development over the last 20 years . Euphytica 156: 1 — 13.
Google Scholar

Hanna W. W. 1989. Characteristics and stability of a new cytoplasmic-nuclear male sterile source in pearl millet.. Crop Sci. 29: 1457 — 1459.
Google Scholar

Hanna W. W., Hill G. M., Gates R. N., Wilson J. P., Burton G. W. 1997. Registration of Tifleaf 3 pearl millet. Crop Sci. 37: 1388.
Google Scholar

Hartel K. D., Berzonsky W., A., Kianian S. F., Ali S. 2008. Expression of a Triticum turgidum var. dicoccoides source of Fusarium head blight resistance transferred to synthetic hexaploid wheat. Plant Breed. 123, 6: 516 — 519.
Google Scholar

Hazen S. P., Leroy P., Ward R. W. 2002. AFLP in Triticum aestivum L.: patterns of genetic diversity and genome distribution. Euphytica 125: 89 — 102.
Google Scholar

He R., Chang Z., Yang Z., Yuan Z., Zhan H., Zhang X., Liu J. 2009. Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat .Theor. Appl. Genet 118: 1173 — 1180.
Google Scholar

Hegde S. G., Waines J. G. 2004. Hybridization and introgression between bread wheat and wild and weedy relatives in North America. Crop Sci. 44: 1145 — 1155.
Google Scholar

Hoisington D., Khairallah M., Reeves T., Ribaut J. M., Skovmand B., Taba S., Warburton M. 1999. Plant genetic resources; what can they contribute towards increased crop productivity ? PNAS 96: 5937 — 5943.
Google Scholar

Jauhar P. P. 1995. Morphological and cytological characteristics of some wheat × barley hybrids. Theor. Appl. Genet. 90: 872 — 877.
Google Scholar

Jordan J., Butler D., Henzell B., Drenth J., McIntyre L. 2004. Diversification of Australian sorghum using wild relatives, New Directions for a Diverse Planet: Proc. of the 4th Int. Crop Sci. Congress, Brisbane, Australia 26 Sept. 1 Oct, 2004): 324.
Google Scholar

Kelly J. D., Kolkman J. M., Schneider K.1998. Breeding for yield in dry bean (Phaseolus vulgaris L.). Euphytica 102: 343 — 356.
Google Scholar

Kihara H. 1944. Discovery of the DD-analyser, one of the ancestors of vulgare wheats. Agric. Hort. 19: 13 — 14.
Google Scholar

Kimber G., Abu-Baker M. 1979. A wheat hybrid information system. Cer. Res. Comm. 7: 237— 260.
Google Scholar

Kobyljanskij V. D. 1962. Javlenie muzhskoj sterilnosti u rżi. Sel. i Semen. 3: 71 — 72.
Google Scholar

Kobyljanskij V. D. 1969. K genetikie cytoplazmaticzeskoj muzhskoj sterilnosti u ozimoj rżi. Genetika 9: 43 — 46.
Google Scholar

Krolow K. D. 1970. Untersuchungen über die Kreuzbarkeit zwischen Weizen und Roggen. Z. Pflanzenzuchtg 64: 44 — 72.
Google Scholar

Lage J., Warburton J., Crossa B., Skovmand B., Anderson S. B. 2003. Assessment of genetic diversity in synthetic hexaploid wheats and their Triticum dicoccum and Aegilops tauschii parents using AFLPs and agronomic traits. Euphytica 134: 305 — 317.
Google Scholar

Lage J., Skovmand B., Anderson S. B. 2002. Expression and suppression of resistance to greenbug (Homoptera: Aphididae) in synthetic hexaploid wheats derived from Triticum dicoccum ×Aegilops tauschii crosses. J. Econ. Ent. 96: 202 — 206.
Google Scholar

Lage J., Skovmand B., Anderson S. B. 2004. Field evaluation of emmer wheat derived synthetic hexaploid wheats for resistance to Russian wheat aphid (Homoptera: Aphididae). J. Econ. Ent. 97: 1065 — 1070.
Google Scholar

Lein A. 1943. Die genetische Grundlage der Kreuzbarkeit zwischen Weizen und Roggen. Z. Vererbungsl. 81: 28 — 61.
Google Scholar

Lelley T. 1976. The effect of supernumerary chromosomes of rye on homoeologous pairing in hexaploid wheat. Z. Pflanzenzüchtg. 77: 281 — 285.
Google Scholar

Lexer C., Lai Z., Rieseberg L. H. 2004. Candidate gene polymorphisms associated with salt tolerance in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploid hybrid species. New Phytol. 161: 225 — 233.
Google Scholar

Love S. 1999. Founding clones, major contributing ancestors and exotic progenitors of prominent North America on potato cultivars. Am. J. Potato Res. 76: 263 — 272.
Google Scholar

Łapiński M. 1972. Cytoplasmatic - genic type of male sterility in Secale montanum Guss. Wheat Inferv. Kyoto 35: 25 — 28.
Google Scholar

Ma H., Singh R. P., Mujeeb-Kazi A. 1995. Resistance to strip rust in Triticum turgidum, T. tauschii and their synthetic hexaploids. Euphytica 82: 117 — 124.
Google Scholar

Marais G. F., McCallum B., Marais A. S. 2008. Wheat leaf rust resistance gene Lr59 derived from Aegilops peregrina. Plant Breed. 127, 4: 340 — 345.
Google Scholar

Marais F., Marais A., McCallum B., Pretorius Z. 2009. Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta Req. ex Bertol. to common wheat. Crop Sci. 49: 871 — 879.
Google Scholar

Maurashi T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473 — 497.
Google Scholar

McFadden E.S. 1930. A successful transfer of emmer characters to vulgare wheat. Agron. J. 22: 1020 — 1034.
Google Scholar

McFadden E. S., Sears E. R.1946. The origin of Triticum spelta and its free threshing hexaploid relatives. J. Hered. 3: 81 — 89, 107 — 116.
Google Scholar

Miedaner T., Wilde F., Korzun V., Ebmeyer E. 2008. Phenotypic selection for high resistance to Fusarium head blight after introgression of quantitative trait loci (QTL) from exotic spring wheat and verification by simple sequence repeat markers a posteriori. Plant Breed. 127, 3: 217 — 221.
Google Scholar

Miller J. F., Seiler G. J. 2003. Registration of five oilseed maintainer (HA429-HA433) sunflower germplasm lines. Crop Sci. 43: 2313 — 2314.
Google Scholar

Moncada P., Martinez C., Borrero J., Chatel M., Gauch Jr. H., Guimares E., Tohme J., McCouch S. 2001. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an unpland environment. Theor. Appl. Genet. 102: 41 — 52.
Google Scholar

Morrison L. A., Riera-Lizarazu O., Cremieux L., Mollory-Smith C. A. 2002. Jointed goatgrass (Aegilops cylindrica Host) × wheat (Triticum aestivum L.) hybrids: Hybridization dynamics in Obregon wheat fields. Crop Sci. 42: 1863–1872.
Google Scholar

Mujeeb-Kazi A., Rosas V., Roldan S. 1996. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh (Aegilops squarrosa auct. non. L) in synthetic hexaploid wheats (T .turgidum L. s. lat. × T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet. Res. Crop. vol. 43: 129 — 134.
Google Scholar

Nassar N. M. A. 2003. Cassava Manihot esculenta Crantz genetic resources: VI. Anatomy of a diversity center. Genet. Mol. Res. 2: 214 — 222.
Google Scholar

National Potato Council. 2003. Potato statistics: Seed certification, approved acreage, Varieties planted and production (Ed. National Potato Council, USA): 1 — 169.
Google Scholar

Nguyen B., Brar D., Bui B., Nguyen T., Pham L., Nguyen H. 2003. Identification and mapping of the QTL for aluminum tolerance introgressed from the new source Oryza rafipogon Griff. into rice (Oryza sativa L.). Theor. Appl. Genet. 106: 583 — 593.
Google Scholar

Nweke F. 2004. New Challenges in the Cassava Transformation in Nigeria and Ghana. Environment and Production Technology Division. Intern. (Ed. Food Policy Res. Inst., Washington, USA): 1 — 253.
Google Scholar

Pilch J., Waląg H., Karkoszka U. 1992. Możliwości wykorzystania mieszańców miedzygatunkowych i międzyrodzajowych w hodowli pszenicy jarej. Biul. IHAR 181/182: 47 — 51.
Google Scholar

Pilch J., Głowacz E., Kubara-Szpunar Ł. 1993. Usefulness of some interspecific and intergeneric hybrids T.aestivum L. in breeding for resistance of hexaploid winter wheat. Biul. IHAR. 187: 7 — 12.
Google Scholar

Pilch J., Głowacz E., Kubara-Szpunar Ł., Gajda Z. 1995. Mieszańce oddalone Triticum aestivum L. jako źródła odporności na choroby kłosa. Biul. IHAR 194: 159 — 167.
Google Scholar

Pilch J., Głowacz E. 1997. Międzygatunkowe i międzyrodzajowe krzyżowania jako sposób ulepszania cech kłosa i ziarna w hodowli pszenicy heksaploidalnej Triticum aestivum L. Biul. IHAR 204: 15 — 31.
Google Scholar

Pilch J., Cygankiewicz A., Głowacz E. 1999. Wartość wypiekowa ziarna mieszańców pszenicy pochodzących z krzyżowań międzygatunkowych i międzyrodzajowych. Biul. IHAR 210: 71 — 83.
Google Scholar

Pilch J. 2002. Wartość technologiczna introgresywnych form pszenicy ozimej ( Triticum aestivum L.). Biul. IHAR 223/224: 95 — 109.
Google Scholar

Pilch J. 2003. Wpływ genomów A, B Triticum durum Desf. na wartość technologiczną ziarna pszenicy ozimej Triticum aestivum L. Biul. IHAR 230: 43 — 54.
Google Scholar

Pilch J. 2004. Wykorzystanie hybrydyzacji introgresywnej w podwyższaniu wartości technologicznej ziarna pszenicy ozimej Triticum aestivum L. Pam. Puł. 135: 247 — 257.
Google Scholar

Pilch J. 2005 a. Możliwości wykorzystania krzyżowania introgresywnego w hodowli pszenicy ozimej Triticum aestivum L. Część I. Zastosowanie systemów genetycznych pszenicy T.aestivum L. do otrzymania mieszańców pomostowych F1. Biul. IHAR 235: 31—41.
Google Scholar

Pilch J. 2005 b. Możliwości wykorzystania krzyżowania introgresywnego w hodowli pszenicy ozimej Triticum aestivum L. Część II. Efektywność w ulepszaniu cech kłosa i jakości ziarna. Biul. IHAR 235: 43—55.
Google Scholar

Pilch J. 2005 c. Genetyczne możliwości ulepszania jakości ziarna pszenicy ozimej Triticum aestivum L. w efekcie hybrydyzacji introgresywnej z Triticum durum Desf. Biul. IHAR 236: 5 — 15.
Google Scholar

Pilch J. 2006. Allelic variation at high molecular weight glutenin loci associated with superior breadmaking characteristics in hexaploid introgressives of Triticum aestivum L. and Triticum durum Desf. Plant Breed. Seed Sci. 54: 39 — 52.
Google Scholar

Pilch J. 2007 a. Efektywność introgresji genów Glu-1 wysokocząsteczkowych glutenin w zwiększaniu wartości wypiekowej ziarna zbóż — przegląd literatury. Biul IHAR 243: 25 — 45.
Google Scholar

Pilch J. 2007 b. Improving grain quality in winter wheat (Triticum aestivum L.) by introgression alien HMW glutenin genes from tetraploid Triticum and diploid Aegilops species. Plant Breed. Seed Sci. 56: 3 — 30.
Google Scholar

Plucknett D., Smith N., Williams J., Murthi N. 1987. Gene Banks and the World‘s Food. (Eds Plucknett, Smith, Williams Murthi, Princeton University Press, Princeton, NJ): 1 — 98.
Google Scholar

Prescott-Allen C., Prescott-Allen R.1986. The First Resource: Wild Species in the North American Economy. (Eds: Prescott-Allen C. and Prescott-Allen, Yale Univ., New Haven): 1 — 112.
Google Scholar

Prescott-Allen C., Prescott-Allen R. 1988. Genes from the wild: using wild genetic resources for food and raw materials. (Eds: Prescott-Allen C. and Prescott-Allen, Int. Inst. For Environment and Development, London): 1 — 123.
Google Scholar

Qi L. L., Pumphrey M. O., Friebe B., Chen P. D, Gill B. S. 2008. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor. Appl. Genet. 117: 1155 — 1166.
Google Scholar

Qu L. J., Foote T. N., Roberts M. A., Money T. A., Aragon-Alcaide L., Snape J. W., Moore G. 1998. A simple PCR-based method for scoring the ph1b deletion in wheat. Theor. Appl. Genet. 96: 371 — 375.
Google Scholar

Price H. J., Hodnett G. L., Burson B. L., Dillon S. L., Rooney W. I. 2005. A Sorghum bicolor × S. acrospermum hybrid recovered by embryo rescue and culture. Aust. J. Botany 53: 579 — 583.
Google Scholar

Rajaram S. 2001. Prospects and promise of wheat breeding in the 21st century. Euphytica 119: 3 — 15.
Google Scholar

Rajaram S., Borlaug N. E. 1997. Approaches to bread wheat for wide adaptation, field potential, rust resistance and drought tolerance. In Proceedings of Primer Simposio Internacional de Trigo. Cd. Obregon, 7–9 April, 1997: 43 — 67.
Google Scholar

Rao N., Reddy L., Bramel P. 2003. Potential of wild species for genetic enhancement of some semi-arid food crops. Genet. Resour Crop Evol. 50: 707 — 721.
Google Scholar

Rick C., Chetelat R.1995. Utilization of related wild species for tomato improvement. First Intern. Symp. on Solanacea for Fresh Market. Acta Hortic. 412: 21 — 38.
Google Scholar

Riggs R. D., Wang S., Singh R. J., Hymovitz T.1998. Possible transfer of resistance to Heterodora glycine from Glycine tomentella to Glycine max. J. Nematol 30: 547 — 552.
Google Scholar

Riley R., Chapman V. 1958. Genetic control of the cytological diploid behavior of hexaploid wheat. Nature 182: 713 — 715.
Google Scholar

Riley R., Kimber G., Chapman V. 1961. Origin of genetic control of diploid like behavior of polyploidy wheat. J. Hered. 52: 22 — 25.
Google Scholar

Riley R., Chapman V. 1967. The inheritance in wheat of crossability with rye. Genet. Res. 9: 259 — 267.
Google Scholar

Riley R., Chapman V., Miller T.E. 1973. The determination of meiotic chromosome pairing. Proc. 4th Int. Wheat Genet. Symp. Univ. Columbia. MO.: 731 — 738.
Google Scholar

Romero C., Lacadena J. R. 1980. Interaction between rye B-chromosomes and wheat genetic systems controlling homoeologous pairing. Chromosoma (Berl.) 80: 33 — 48.
Google Scholar

Ross H. 1986. Potato breeding problems and perspectives. Adv. in Plant Breeding: 133.
Google Scholar

Taira T., Larter E., N. 1978. Factors influencing development of wheat-rye-hybrid embryos in vitro. Crop Sci. 18: 348 — 350.
Google Scholar

Ter-Kuile N., Nabors M., Mujeeb-Kazi A. 1988. Callus culture induced amphiploids of Triticum aestivum and T.turgidum x Aegilops variabilis F1 hybrids: production, cytogenetics and practical significance. In 80th Ann. Meet. Am. Soc. Agron. Abstr,: 98.
Google Scholar

Sasanuma T., Chabane K., Endo T.R., Valkoun J. 2002. Genetic diversity of wheat wild relatives in the Near East detected by AFLP. Euphytica 127: 81 — 93.
Google Scholar

Saxena K. B., Kumar R. V. 2003. Development of a cytoplasmic male sterility system in pigeonpea using C. scarabaeoides (L.) Thouars. Indian J. Genet. Pl Br 63: 225 — 229.
Google Scholar

Sears E. R. 1954. The systematic, cytology and genetics of wheat. Res. Bull. Mis. Agric. Exptl. Stat. 572: 1 — 58.
Google Scholar

Sears E. R. 1977. An induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol. 19: 585 — 593.
Google Scholar

Sears E. R. 1981. Transfer of alien genetic material to wheat. In: Evans I. T., Peacock W. I. (eds). Wheat science today and tomorrow. Cambridge Univ. Press. UK: 75 — 89.
Google Scholar

Sears E. R. 1982. A wheat mutation conditioning an intermediate level of homoeologous chromosome pairing. Can. J. Genet. Cytol. 24: 715 — 719.
Google Scholar

Seiler G., Gulya T. 2004. Exploration for wild Helianthus species in North America; challenges and opportunities in the search for global treasures. 16th Intern. Sunflower Conf., Fargo, (ND) 1: 43 — 68.
Google Scholar

Sharma D., Knott D. R. 1966. Transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can. J. Genet. Cytol. 8: 137 — 143.
Google Scholar

Sharma H. C. 1995. How wide can a wide cross be? Euphytica 82: 43 — 64.
Google Scholar

Sharma H. C., Gill B. S. 1986. The use of ph1 gene in direct transfer and search for Ph-like genes in polyploidy Aegilops species. Z. Pflanzenzüchtg. 96: 1 — 7.
Google Scholar

Singh S. 2001. Broadening the genetic base of common bean cultivars. Crop Sci. 41: 918.
Google Scholar

Simpson C., Starr J. 2001. Registration of ”COAN” peanu. Crop Sci. 41: 918.
Google Scholar

Tanaka M. 1954. Spring and winter growing habit of Aegilops and Triticum. Wheat Inf. Serv. 1: 18.
Google Scholar

Tunksley S., McCouch S. 1997. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277: 1063 — 1066.
Google Scholar

Valkoun J. J. 2001. Wheat pre-breeding using wild progenitors. Euphytica 119: 17 —23.
Google Scholar

Villareal R. L., Sayre K., Banuelos O., Mujeeb-Kazi A. 2001. Registration of four synthetic hexaploid wheat (Triticum turgidum/Aegilops tauschii) germplasm lines tolerant to water logging. Crop Sci., 41: 274.
Google Scholar

Villareal R. L., del Toro E., Mujeeb-Kazi A., Rajaram S. 1995. The 1B/1RS chromosome translocation effect on yield characterization in a Triticum aestivum L. cross . Plant Breeding 114: 497 — 500.
Google Scholar

Virmani S., Shinjyo C. 1988. Current status of analysis and symbols for male sterile cytoplasm’s and fertility restoring genes. Rice Genet. Newsl.5: 9 — 15.
Google Scholar

Vuylsteke D. R., Swennen R. I., Ortiz R. 1993. Development and performance of black sigatoka resistant tetraploid hybrids of plantain (Musa spp. AAB group). Euphytica 65: 33 — 42.
Google Scholar

Warburton M. L., Crossa J., Franco J., Kazi M., Trethowan R., Rajaram S., Pfeiffer W., Zhang P., Dreisigacker S., van Ginkel M. 2006. Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149: 289 — 301.
Google Scholar

Wayne S. C., Fredericksen R. 2000. Sorghum: Origin, history, technology and production. (Eds. John Willey and Sons ): 824.
Google Scholar

Wilson J. P., Gates R. N., Hanna W. W. 1991. Effect of rust on yield and digestibility of pearl millet forage. Phytopathology 81: 233 — 236.
Google Scholar

Wilson J. P., Gates R. N. 1993. Forage yield losses in hybrid pearl millet due to leaf blight caused primarily by Pyricularia grisea. Phytopathology 83: 739 — 743.
Google Scholar

Xiao J., Grandillo S., Sang N., McCoach S., Tanksley S. 1996. Genes from wild rice improve yield. Nature 384: 223 — 224.
Google Scholar

Zaharieva M., Monneveux P. 2006. Spontaneous hybridization between bread wheat (Triticum aestivum L.) and its wild relatives in Europe. Crop Sci. 46: 512 — 527.
Google Scholar

Zemetra R. S., Hansen J., Mallory-Smith C. A. 1998. Potential for gene transfer between wheat (Triticum aestivum L.) and jointed goatgrass (Aegilops cylindrica). Weed Sci. 46: 313 — 317.
Google Scholar


Published
2011-09-30

Cited by

Pilch, J. (2011) “Introgressions of genes from taxonomically related species in improvement of wheat Triticum aestivum L. and other cultivated plants”, Bulletin of Plant Breeding and Acclimatization Institute, (260/261), pp. 21–42. doi: 10.37317/biul-2011-0021.

Authors

Józef Pilch 
j.pilch@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin — PIB, Zakład Roślin Zbożowych, Kraków Poland

Statistics

Abstract views: 77
PDF downloads: 76


License

Copyright (c) 2021 Józef Pilch

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.