From field to tank - Camelina sativa as the future of Polish biofuels?
Marcin Walter
marcin.walter@orlen.plBiuro Badań i Rozwoju Petrochemii i Rafinerii Przyszłości, Centrum Badawczo-Rozwojowe ORLEN S.A., ul. Łukasiewicza 35, 09-400 Płock (Poland)
https://orcid.org/0000-0002-0244-0689
Tymoteusz Dec
Wydział Energetyki i Paliw, Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Al. Mickiewicza 30, 30 – 059 Kraków (Poland)
https://orcid.org/0009-0005-3965-1112
Kamil Banach
Biuro Badań i Rozwoju Petrochemii i Rafinerii Przyszłości, Centrum Badawczo-Rozwojowe ORLEN S.A., ul. Łukasiewicza 35, 09-400 Płock (Poland)
https://orcid.org/0009-0001-8383-6967
Abstract
Poland is one of the key rapeseed producers in Europe, with over one million hectares of rapeseed cultivated, accounting for 97% of all oilseed crops in the country. Two-thirds of rapeseed oil is intended for biofuel production. Rapeseed monoculture is a problem, as the use of agricultural land for rapeseed cultivation for energy purposes competes with food production, and rapeseed production capacity is limited by the area under cultivation and climatic conditions. Camelina sativa is a promising alternative to rapeseed oil, and its attractiveness stems from its greater resistance to unfavorable soil and climatic conditions compared to rapeseed. Cultivation of camelina creates the opportunity to utilize poor-quality soils, unsuitable for most agricultural crops, thus providing opportunities for developing areas previously unused for agriculture. Although camelina oil cannot be poured directly into the tank, after appropriate processing it can be used to obtain methyl esters (FAME) or ethyl esters (FAEE) of higher fatty acids, which are used as additives to biodiesel. An alternative method of converting camelina oil is hydrogenation, which produces hydrotreated vegetable oil (HVO). After pressing the camelina oil, the resulting biomass is rich in lignocellulose, which can be used to produce second-generation bioethanol, biodegradable polyurethanes, biocomposites, and many other biomaterials. Camelina, one of the oldest oilseed crops in Europe, appears to be a plant of the future.
Keywords:
biofuels, Camelina sativa, HVO, FAMEReferences
Aatola H., Larmi M., Sarjovaara T. (2008). Hydrotreated vegetable oil (HVO) as a renewable diesel fuel: Trade-off between NOx, particulate emission, and fuel consumption of a heavy duty engine. SAE International Journal od Engines, 1(1). DOI: https://doi.org/10.4271/2008-01-2500
DOI: https://doi.org/10.4271/2008-01-2500
Google Scholar
Arshad M., Mohanty A.K., Van Acker R., Riddle R., Todd J., Khalil H., Misra M. (2022). Valorization of camelina oil to biobased materials and biofuels for new industrial uses: a review. RSC Advances 42(12), 27230-27245. DOI: https://doi.org/10.1039/D2RA03253H
DOI: https://doi.org/10.1039/D2RA03253H
Google Scholar
ASTM D6751-19 - Standard Spcification for Biodiesel Fuel Blend Stock Middle Distillate Fuels
Google Scholar
Bartczak P., Ejm W., Bacik O., Przybylska-Balcerek A., Borysiak S. (2024). Camelina sativa (L.) Crantz straw and pomace as a green filler for integral skin polyurethane foam. Industrial Crops and Products, 222(4), 119931. DOI: https://doi.org/10.1016/j.indcrop.2024.119931
DOI: https://doi.org/10.1016/j.indcrop.2024.119931
Google Scholar
Belayneh, H.D., Wehling, R.L., Cahoon, E., Ciftci, O.N. (2015). Extraction of omega-3-rich oil from Camelina sativa seed using supercritical carbon dioxide. The Journal of Supercritical Fluids, 104, 153-159. https://doi.org/10.1016/j.supflu.2015.06.002
DOI: https://doi.org/10.1016/j.supflu.2015.06.002
Google Scholar
Bełdycka-Bórawska A. (2023). Changes in the production of rapeseed in Poland after accession to the European Union. Annals PAAAE, XXV(4), 11-25. DOI: https://doi.org/10.5604/01.3001.0053.9443.
DOI: https://doi.org/10.5604/01.3001.0053.9443
Google Scholar
Berti M., Gesch R., Eynck C., Anderson J.V., Cermak S.C. (2016). Camelina uses, genetics, genomics, production, and management. Industrial Crops and Products, 94(8), 690-710. DOI: https://doi.org/10.1016/j.indcrop.2016.09.034
DOI: https://doi.org/10.1016/j.indcrop.2016.09.034
Google Scholar
Blume R.Y., Lantukh G.V., Levchuk I.V., Lukashevych K.M., Rakhmetov D.B., Blume Y.B. (2020). Evaluation of potential biodiesel feedstocks: Camelina, turnip rape, oil radish and tyfon. The Open Agriculture Journal, 14:299. DOI: http://dx.doi.org/10.2174/1874331502014010299
DOI: https://doi.org/10.2174/1874331502014010299
Google Scholar
Brock J.R., Ritchey M.M., Olsen K.M. (2022). Molecular and archaeological evidence on the geographical origin of domestication for Camelina sativa. American Journal of Botany, 109(7), 1177–1190. DOI: https://doi.org/10.1002/ajb2.16027
DOI: https://doi.org/10.1002/ajb2.16027
Google Scholar
Che Mat S., Idroas M.Y., Hamid M.F., Zainal Z.A. (2018). Performance and emissions of straight vegetable oils and its blends as a fuel in diesel engine: A review. Renewable and Sustainable Energy Reviews, 82(1), 808-823. DOI: https://doi.org/10.1016/j.rser.2017.09.080
DOI: https://doi.org/10.1016/j.rser.2017.09.080
Google Scholar
Chowdhury P., Mahi N.A., Yeassin R., Chowdhury N.U.R., Farrok O. (2025). Biomass to biofuel: Impacts and mitigation of environmental, health, and socioeconomic challenges. Energy Conversion and Management: X, 25, 100889. DOI: https://doi.org/10.1016/j.ecmx.2025.100889
DOI: https://doi.org/10.1016/j.ecmx.2025.100889
Google Scholar
Ciubota-Rosie C., Ruiz J.R., Ramos M.J., Perez A. (2013). Biodiesel from Camelina sativa: A comprehensive characterization. Fuel, 105, 572-577. DOI: https://doi.org/10.1016/j.fuel.2012.09.062
DOI: https://doi.org/10.1016/j.fuel.2012.09.062
Google Scholar
Clavijo-Bernal E.J., Martínez-Force E., Garcés R., Salas J.J., Venegas-Calerón M. (2024). Biotechnological camelina platform for green sustainable oleochemicals production. OCL - Oilseeds and fats, Crops and Lipids, 31, 11. DOI: https://doi.org/10.1051/ocl/2024007
DOI: https://doi.org/10.1051/ocl/2024007
Google Scholar
CONCAWE report no. 9/09 (2009) — Guidelines for handling and blending FAME, https://www.concawe.eu/wp-content/uploads/rpt_09-9-2009-05088-01-e.pdf (dostęp: 12.08.2025).
Google Scholar
EN 15195 - Liquid petroleum products - Determination of ignition delay and derived cetane number (DCN) of middle distillate fuels by combustion in a constant volume chamber
Google Scholar
EN 590:2004 - Automotive fuels - Diesel - Requirements and test methods
Google Scholar
FPRO [Fundusz Promocji Roślin Oleistych] (2024) Uchwała Nr 3/2024 Komisji Zarządzającej Funduszu Promocji Roślin Oleistych z dnia 12 lipca 2024 r. w sprawie przyjęcia strategii promocji dla branży roślin oleistych na 2025 rok. https://www.gov.pl/attachment/4aed41f1-6518-4e5b-aa38-aaf707ac19e1 (dostęp: 17.07.2025).
Google Scholar
Ghidoli M., Pesenti M., Colombo F., Nocito F.F., Pilu R., Araniti F. (2023). Camelina sativa (L.) Crantz as a promising cover crop species with allelopathic potential. Agronomy, 13(8), 2187. DOI: https://doi.org/10.3390/agronomy13082187
DOI: https://doi.org/10.3390/agronomy13082187
Google Scholar
Hunicz J., Krzaczek P., Gęca M., Rybak A., Mikulski M. (2021). Comparative study of combustion and emissions of diesel engine fuelled with FAME and HVO. Combustion Engines, 60(1), 72-78. DOI: http://dx.doi.org/10.19206/CE-135066
DOI: https://doi.org/10.19206/CE-135066
Google Scholar
Jankowski K., Sokólski M., Kordan B. (2019). Camelina: Yield and quality response to nitrogen and sulfur fertilization in Poland. Industrial Crops and Products, 141, 111776. DOI: https://doi.org/10.1016/j.indcrop.2019.111776
DOI: https://doi.org/10.1016/j.indcrop.2019.111776
Google Scholar
Jęczmionek Ł. (2010). Olej z lnianki siewnej (Camelina sativa) – szansa rozwoju biopaliw II generacji? Nafta-Gaz, 9, 841-848.
Google Scholar
Jiang Y., Caldwell C.D., Falk K.C., Lada R.R., MacDonald D. (2013). Camelina yield and quality response to combined nitrogen and sulfur. Agronomy Journal, 105, 1847-1852. DOI: https://doi.org/10.2134/agronj2013.0240
DOI: https://doi.org/10.2134/agronj2013.0240
Google Scholar
Karlsson Potter H., Yacout D. M. M., Henryson K. (2023). Climate assessment of vegetable oil and biodiesel from camelina grown as an intermediate crop in cereal-based crop rotations in cold climate regions. Sustainability, 15(16), 12574. DOI: https://doi.org/10.3390/su151612574
DOI: https://doi.org/10.3390/su151612574
Google Scholar
Kołodziejczyk K., Kruczyński S., Mosio-Mosiewski J., Nosal H., Orliński P., Owczuk M. (2012). Ocena zastosowania estrów metylowych różnego pochodzenia w silnikach o zapłonie samoczynnym. Zeszyty Naukowe Instytutu Pojazdów, (s. 49-61). Warszawa: Politechnika Warszawska.
Google Scholar
Krawczyk R., Strażyński P., Mrówczyński M. (red.) (2020) Metodyka integrowanej ochrony lnianki siewnej dla doradców. Poznań: Instytut Ochrony Roślin – Państwowy Instytut Badawczy. https://www.ior.poznan.pl/plik,3996,metodyka-integrowanej-ochrony-lnianki-siewnej-dla-doradcow-2020-pdf.pdf (dostęp: 19.08.2025).
Google Scholar
Kurasiak-Popowska D. (2019). Lnianka siewna – roślina historyczna czy perspektywiczna? Fragmenta Agronomica, 36(2), 42–54. DOI: https://doi.org/10.26374/fa.2019.36.15
Google Scholar
Kurasiak-Popowska D., Graczyk M., Stuper-Szablewska K. (2020) Winter camelina seeds as a raw material for the production of erucic acid-free oil. Food Chemistry 330, 127265. https://doi.org/10.1016/j.foodchem.2020.127265
DOI: https://doi.org/10.1016/j.foodchem.2020.127265
Google Scholar
Leclère M., Lorent A.-R, Jeuffroy M.-H., Butier A., Chatain C., Loyce C. (2021). Diagnosis of camelina seed yield and quality across an on-farm experimental network. European Journal of Agronomy, 122, 126190. https://doi.org/10.1016/j.eja.2020.126190
DOI: https://doi.org/10.1016/j.eja.2020.126190
Google Scholar
Leung, D.Y.C., Wu X., Leung M.K.KH. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4), 1083-1095. DOI: https://doi.org/10.1016/J.APENERGY.2009.10.006
DOI: https://doi.org/10.1016/j.apenergy.2009.10.006
Google Scholar
Li Y., Wang D., Sun X.S. (2018). Epoxidized and acrylated epoxidized camelina oils for ultraviolet – curable wood coatings. Journal of the American Oil Chemists’ Society, 95, 1307-1318. DOI: https://doi.org/10.1002/aocs.12123
DOI: https://doi.org/10.1002/aocs.12123
Google Scholar
Lopez C., Rabesona H., Beaumal V., Sotin H., Novales B., Anton M. (2024). Exploring the biodiversity of plant proteins for sustainable foods: Composition and emulsifying properties of the proteins recovered by aqueous extraction from camelina (Camelina sativa L.) seeds. Current Research in Food Science, 9, 100922. https://doi.org/10.1016/j.crfs.2024.100922
DOI: https://doi.org/10.1016/j.crfs.2024.100922
Google Scholar
Mahious R., Halvacı E., Aygun A., Sen F. (2024). The golden discovery of Camelina sativa: a pivotal study of ıts unique components and its multiple uses in various applications in science and industry. Journal of Scientific Reports - A, 59, 105-118. DOI: http://dx.doi.org/10.59313/jsr-a.1512490
DOI: https://doi.org/10.59313/jsr-a.1512490
Google Scholar
Malewska E., Kurasiak-Popowska D., Rzyska-Szczupak K., Szwajkowska-Michałek L., Polaczek K., Recupido F., Kurańska M., Stuper-Szablewska K. (2025). Brassica carinata and Camelina sativa oils as renewable raw materials for producing viscoelastic polyurethane foams. RSC Advances, 15(37), 30804-30816. DOI: https://doi.org/10.1039/d5ra04620c
DOI: https://doi.org/10.1039/D5RA04620C
Google Scholar
Markov V., Kamaltdinov V., Devyanin S., Sa B., Zherdev A., Furman V. (2021). Investigation of the influence of different vegetable oils as a component of blended biofuel on performance and emission characteristics of a diesel engine for agricultural machinery and commercial vehicles. Resources, 10(8), 74. DOI: https://doi.org/10.3390/resources10080074
DOI: https://doi.org/10.3390/resources10080074
Google Scholar
Matteo R., D’Avino L., Ramirez-Cando L.J. et al. (2020). Camelina (Camelina sativa L. Crantz) under low-input management systems in northern Italy: Yields, chemical characterization and environmental sustainability. Italian Journal of Agronomy, 15(2), 1519. DOI: https://doi.org/10.4081/ija.2020.1519
DOI: https://doi.org/10.4081/ija.2020.1519
Google Scholar
Mieriņa I., Adere L., Krasauska K., Zoltnere E., Skrastiņa D.Z., Jure M. (2017). Antioxidant properties of Camelina sativa oil and press-cakes. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences, 71(6), 515-521. DOI: https://doi.org/10.1515/prolas-2017-0089
DOI: https://doi.org/10.1515/prolas-2017-0089
Google Scholar
Mosio-Mosiewski J., Łuczkiewicz T., Warzała M., Nawracała J., Nosal H., Kurasiak-Popowska D. (2015). Badania nad zagospodarowaniem lnianki siewnej do wytwarzania biodiesla. Przemysł Chemiczny 94(3), 369-373. DOI: https://doix.org/10.15199/62.2015.3.22
Google Scholar
Mussa N.-S., Toshtay K., Capron M. (2024). Catalytic applications in the production of hydrotreated vegetable oil (HVO) as a renewable fuel: A review. Catalysts, 14(7), 452. DOI: https://doi.org/10.3390/catal14070452
DOI: https://doi.org/10.3390/catal14070452
Google Scholar
Neupane D., Lohaus R.H., Solomon J.K.Q., Cushman J.C. (2022). Realizing the potential of Camelina sativa as a bioenergy crop for a changing global climate. Plants, 11(6), 772. DOI: https://doi.org/10.3390/plants11060772
DOI: https://doi.org/10.3390/plants11060772
Google Scholar
Nosal H., Nowicki J., Warzała M., Semeniuk I., Sabura E. (2016). Synthesis and characterization of alkyd resins based on Camelina sativa oil, glycerol and selected epoxidized vegetable oils as functional modifiers. Progress in Organic Coatings, 101, 553-568. DOI: https://doi.org/10.1016/j.porgcoat.2016.10.003
DOI: https://doi.org/10.1016/j.porgcoat.2016.10.003
Google Scholar
Omonov T.S., Kharraz E., Curtis J.M. (2017). Camelina (Camelina Sativa) oil polyols as an alternative to Castor oil. Industrial Crops and Products, 107, 378-385. DOI: https://doi.org/10.1016/j.indcrop.2017.05.041
DOI: https://doi.org/10.1016/j.indcrop.2017.05.041
Google Scholar
PN-EN 14214 (+A2:2019-05) - Ciekłe przetwory naftowe -- Estry metylowe kwasów tłuszczowych (FAME) do użytku w silnikach samochodowych o zapłonie samoczynnym (Diesla) i zastosowań grzewczych - Wymagania i metody badań
Google Scholar
Podleśna A. (2014). Potrzeby pokarmowe i nawożenie rzepaku ozimego. Studia i Raporty IUNG-PIB, 37(11), 111-125. DOI: https://doi.org/10.26114/sir.iung.2014.37.09
Google Scholar
Przybylski R. (2011). Canola/rapeseed oil. [W:] F.D. Gunstone (red.) Vegetable Oils in Food Technology. Blackwell Publishing. DOI: https://doi.org/10.1002/9781444339925.ch4
DOI: https://doi.org/10.1002/9781444339925.ch4
Google Scholar
Sikora M., Orliński P., Matej J. (2022). Hydrorafinowany olej roślinny jako potencjalne biopaliwo do zasilania silników o zapłonie samoczynnym. Transport samochodowy, 65(1), 14-20. DOI: https://doi.org/10.5604/01.3001.0015.8709
DOI: https://doi.org/10.5604/01.3001.0015.8709
Google Scholar
Sobczak-Malitka W., Sobczak E. (2023). Changes in the vegetable oil market, with particular emphasis on market instability in relation to the war in Ukraine. Problems of World Agriculture, 23(1), 46-57. DOI: https://doi.org/10.22630/PRS.2023.23.1.4
DOI: https://doi.org/10.22630/PRS.2023.23.1.4
Google Scholar
Urbaniak S.D., Caldwell C.D., Zheljazkov V.D., Lada R., Luan L. (2008). The effect of cultivar and applied nitrogen on the performance of Camelina sativa L. in the Maritime Provinces of Canada. Canadian Journal of Plant Science, 88(1), 111-119. DOI: https://doi.org/10.4141/CJPS07115
DOI: https://doi.org/10.4141/CJPS07115
Google Scholar
Wang Z., Feser J.S., Lei T., Gupta A.K. (2020). Performance and emissions of camelina oil derived jet fuel blends under distributed combustion condition. Fuel, 271, 117685. DOI: https://doi.org/10.1016/j.fuel.2020.117685
DOI: https://doi.org/10.1016/j.fuel.2020.117685
Google Scholar
Wojtkowiak R., Frąckowiak P., Glazar K., Zembrowski K. (2009a). Koszty produkcji nową metodą estrów metylowych z oleju lnianki siewnej (Camelina sativa L.) do zasilania tlokowych silników spalinowych z zaplonem samoczynnym (ZS). Journal of Research and Application in Agriculture Engineering, 54(4), 164-170.
Google Scholar
Wojtkowiak R., Frąckowiak P., Kaczyński P. (2009b). Nowa metoda otrzymywania z oleju lnianki siewnej (Camelina sativa L.) estrów metylowych do zasilania tłokowych silników spalinowych z zapłonem samoczynnym (ZS). Journal of Research and Application in Agriculture Engineering, 54(4), 171-178.
Google Scholar
Załuski D., Tworkowski J., Krzyżaniak M., Stolarski M.J., Kwiatkowski J. (2020). The characterization of 10 spring Camelina genotypes grown in environmental conditions in North-Eastern Poland. Agronomy, 10(1), 64. https://doi.org/10.3390/agronomy10010064
DOI: https://doi.org/10.3390/agronomy10010064
Google Scholar
Zanetti F., Alberghini B., Marjanović Jeromela A. et al. (2021). Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe: A review. Agronomy for Sustainable Development, 41, 2. https://doi.org/10.1007/s13593-020-00663-y
DOI: https://doi.org/10.1007/s13593-020-00663-y
Google Scholar
Authors
Marcin Waltermarcin.walter@orlen.pl
Biuro Badań i Rozwoju Petrochemii i Rafinerii Przyszłości, Centrum Badawczo-Rozwojowe ORLEN S.A., ul. Łukasiewicza 35, 09-400 Płock Poland
https://orcid.org/0000-0002-0244-0689
Authors
Tymoteusz DecWydział Energetyki i Paliw, Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Al. Mickiewicza 30, 30 – 059 Kraków Poland
https://orcid.org/0009-0005-3965-1112
Authors
Kamil BanachBiuro Badań i Rozwoju Petrochemii i Rafinerii Przyszłości, Centrum Badawczo-Rozwojowe ORLEN S.A., ul. Łukasiewicza 35, 09-400 Płock Poland
https://orcid.org/0009-0001-8383-6967
Statistics
Abstract views: 127PDF downloads: 38
License
Copyright (c) 2025 Marcin Walter, Tymoteusz Dec, Kamil Banach

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:
- Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
- Placing on the market, lending or renting the original or copies of the article.
- Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
- Including the article in a collective work.
- Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
- Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
- Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.
Authors by sending a request for publication:
- They consent to the publication of the article in the journal,
- They agree to give the publication a DOI (Digital Object Identifier),
- They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
- They agree to send article metadata to commercial and non-commercial journal indexing databases.







