Najnowsze doniesienia z zakresu biotechnologii i hodowli zbóż: CBB7 siódma konferencja Cereal Biotechnology and Breeding w Wernigerode, Niemcy

Abstrakt

Abstrakt: W artykule omówiono wszystkie doniesienia ustne prezentowane na konferencji CBB7, poświęconej biotechnologii i hodowli zbóż, która odbyła się w pierwszej dekadzie listopada 2023 w Wernigerode, w Niemczech. Konferencji przewodniczył Profesor Andreas Börner, Instytut im. Leibniza (IPK) w Gaterslaben, Niemcy, Prezes EUCARPIA a współprzewodniczącymi byli Węgrzy, János Pauk, Cereal Research Nonprofit Ltd. oraz Profesor Gábor Galiba, Agricultural Institute Centre for Agricultural Research (ELKH). Konferencja obejmowała sześć bloków tematycznych: (1) Zasoby genetyczne dla ulepszania roślin uprawnych, (2) Adaptacja środowiskowa, (3) Biotyczna reakcja na stres i interakcje roślina-mikrobiom, (4) Poprawa wydajności i jakości plonu, (5) Bioinformatyka, genomika i edycja genomu, (6) Technologie fenotypowania, ogólnie oraz w ramach Wheat Initiative a także grupy roboczej ds. fenotypowania roślin w warunkach kontrolowanych (CEPPG-The Controlled Environment Plant Phenotyping working Group).W artykule zebrano najnowszą bibliografię zespołów badawczych z których wywodzili się kolejni wykładowcy, w ramach poruszanych tematów (https://static.akcongress.com/downloads/cbb/cbb7-ewac18-boa.pdf).

 

Instytucje finansujące

D.C 3.5.

Słowa kluczowe:

hodowla roslin, automatyczne fenotypowanie, kultury in vitro

Ahres, M., Pálmai, T., Gierczik, K., Dobrev, P., Vanková, R., Galiba, G. (2021). The Impact of Far-Red Light Supplementation on Hormonal Responses to Cold Acclimation in Barley. Biomolecules, 11, 450. https://doi.org/10.3390/biom11030450
Google Scholar

Ahres, M., Pálmai, T., Kovács, T., Kovács, L., Lacek, J., Vankova, R., Galiba, G., Borbély, P. (2023). The Effect of White Light Spectrum Modifications by Excess of Blue Light on the Frost Tolerance, Lipid- and Hormone Composition of Barley in the Early Pre-Hardening Phase. Plants, 12, 40. https://doi.org/10.3390/plants12010040
Google Scholar

Anderegg, J., Zenkl, R., Walter, A., Hund, A., McDonald, B.A. (2023). Combining High-Resolution Imaging, Deep Learning, and Dynamic Modeling to Separate Disease and Senescence in Wheat Canopies. Plant Phenomics, 5, 0053. https://doi.org/10.34133/plantphenomics.0053
Google Scholar

Appiah, M., Abdulai, I., Schulman, A., Moshelion, M., Dewi, E., Daszkowska-Golec, A., . . . Rötter, R. P. (2023 b). Drought response of water- conserving and non-conserving spring barley cultivars. Frontiers in Plant Science, 14, 1247853. https://doi.org/10.3389/fpls.2023.1247853
Google Scholar

Appiah, M., Abdulai, I., Schulman, A., Moshelion, M., Dewi, E., Daszkowska-Golec, A., . . . Rötter, R. P. (2023 a). Using high-throughput functional phenotyping to increase understanding of plasticity of drought response behavior in barley. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 67.
Google Scholar

Appiah, M., Bracho Mujica, G., Costa Resende Ferreira, N., Schulman, A., Rötter, R. P. (2023 c). Projected impacts of sowing date and cultivar choice on the timing of heat and drought stress in spring barley grown along a European transect. Field Crops Research, 291, 108768. https://doi.org/10.1016/j.fcr.2022.108768
Google Scholar

Bdolach, E., Prusty, M. R., Faigenboim-Doron, A., Filichkin, T., Helgerson, L., Schmid, K. J., Greiner, S., Fridman, E. (2019). Thermal plasticity of the circadian clock is under nuclear and cytoplasmic control in wild barley. Plant Cell Environ., 42, 3105–3120. https://doi.org/10.1111/pce.13606
Google Scholar

Bdolach, E., Prusty, M. R., Tiwari, L. D., Bodenheime, S., Doron-Feigenbaum, A., Yamamoto, E., Kashkush, K., Fridman, E. (2023). Phenomics of clock and growth plasticity in barley: a tango of two genomes. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 75.
Google Scholar

Beukert, U.; Pfeiffer, N.; Ebmeyer, E.; Hinterberger, V.; Lueck, S.; Serfling, A.; Ordon, F.; Schulthess, A.W.; Reif, J.C. (2021). Efficiency of a Seedling Phenotyping Strategy to Support European Wheat Breeding Focusing on Leaf Rust Resistance. Biology, 10, 628. https://doi.org/10.3390/biology10070628
Google Scholar

Bloomfield, M.T., Celestina, C., Hunt, J.R., Huth, N., Zheng, B., Brown, H., …, Trevaskis, B. (2023). Vernalisation and photoperiod responses of diverse wheat genotypes. Crop and Pasture Science, 74, 405-422. https://doi.org/10.1071/CP22213
Google Scholar

Blum, A. (1998). Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica, 100, 77–83. https://doi.org/10.1023/A:1018303922482
Google Scholar

Borbély, P., Gasperl, A., Pálmai, T., Ahres, M., Asghar, M.A., Galiba, G., Müller, M., Kocsy, G. (2022). Light Intensity- and Spectrum-Dependent Redox Regulation of Plant Metabolism. Antioxidants, 11, 1311. https://doi.org/10.3390/antiox11071311
Google Scholar

Borbély, P., Tahmasebi, Z., Pálmai, T., Ahres, M., Galiba, G. (2023). Evaluating the wavelength specific role of blue light in light-induced cold acclimation of barley. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts pp. 42-43.
Google Scholar

Bozzoli, M., Bruschi, M., Carvalho, H. F., Sánchez, J. I., Ruggeri, M., Meriggi, D., …, Maccaferri, M. (2023). Remote sensing for plant breeding and variety characterization. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 68.
Google Scholar

Braun, H-J. (2023). Wheat for 9 billion people. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 24.
Google Scholar

Ceplitis A. (2023). A new 7K SNP array for oats (Avena sativa) provides an efficient and informative genotyping tool for research and breeding. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 57.
Google Scholar

Cha, J.-K., O’Connor, K., Alahmad, S., Lee, J.-H., Dinglasan, E., Park, H., …, Dixon, L. E. (2022). Speed vernalization to accelerate generation advance in winter cereal crops. Molecular Plant, 15, 1300-1309. https://doi.org/10.1016/j.molp.2022.06.012
Google Scholar

Chen, T.-W. (2023). Combining models, standardized experimental setup and specialized protocols to achieve physiological phenotyping in wheat. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 69.
Google Scholar

Dandrifosse, S., Carlier, A., Dumont, B., Mercatoris, B. (2022). In-Field Wheat Reflectance: How to Reach the Organ Scale? Sensors, 22, 3342. https://doi.org/10.3390/s22093342
Google Scholar

Dracatos, P. M., Lu, J., Sánchez-Martín, J., Wulff, B. B. H. (2023). Resistance that stacks up: engineering rust and mildew disease control in the cereal crops wheat and barley. Plant Biotechnology Journal, 21, 1938-1951. https://doi.org/10.1111/pbi.14106
Google Scholar

Dravitzki, C., Fournier-Level, A., Celestina, C., Hyles, J., Zheng, B., Trevaskis, B., Hunt, J. (2023). Changes in Vernalisation and Photoperiod Response in Australian Wheat Over 130 years. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 44.
Google Scholar

Flood, P.J., Kruijer, W., Schnabel, S.K., van der Schoor, R., Jalink, H., Snel, J. F. H., Harbinson, J., Aarts, M. G. M. (2016). Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods 12, 14 (2016). https://doi.org/10.1186/s13007-016-0113-y
Google Scholar

Frittelli, A., Botticella, E., Masci, S., Palombieri, S., Celletti, S., Fontanella, M. C., …, Sestili F. (2023 a). Development and characterization of durum wheat lpa mutants by modulating the accumulation of phytic acid. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 54.
Google Scholar

Frittelli, A., Botticella, E., Palombieri, S., Masci, S., Celletti, S., Fontanella, M., …, Sestili, F. (2023 b). The suppression of TdMRP3 genes reduces the phytic acid and increases the nutrient accumulation in durum wheat grain. Frontiers in Plant Science, 14, 1079559, https://doi.org/10.3389/fpls.2023.1079559
Google Scholar

Ganal, M. W., Plieske, J., Gross, T., Polley, A., Grafahrend-Belau, E., Kulosa, D., Gnad, H. (2023). Optimized SNP arrays for genotyping cereals. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 32.
Google Scholar

Ganal, M. W., Polley, A., Graner, E. M., Plieske, J., Wieseke, R., Luerssen, H., Durstewitz, G.. (2012). Large SNP arrays for genotyping in crop plants. Journal of Biosciences, 37(5), 821-8. https://doi.org/10.1007/s12038-012-9225-3
Google Scholar

Gao, Y., Stein, M., Oshana, L., Zhao, W., Matsubara, S., Stich, B. (2023). Exploring natural genetic variation in photosynthesis-related traits of barley in the field. bioRxiv, 2023.2012.2004.569890. https://doi.org/10.1101/2023.12.04.569890.
Google Scholar

Gaurav, K., Arora, S., Silva, P., Sánchez-Martín, J., Horsnell, R., Gao, L., Brar, G.S., Widrig, V., John Raupp, W., Singh, N., et al. (2022). Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nature Biotechnology, 40, 422-431, https://doi.org/10.1038/s41587-021-01058-4
Google Scholar

Ghosh, S., Watson, A., Gonzalez-Navarro, O., Ramirez-Gonzalez, R., Yanes, L., Mendoza-Suárez, M., …, Hickey, L. T. (2018). Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols, 13, https://doi.org/10.1038/s41596-018-0072-z
Google Scholar

Giehl, R. F. H., Forster, M., Narisetti, N., Schnurbusch, T., Mascher, M., Gladilin, E., …., von Wirén, N. 2023. Tracking dynamic root responses to nitrogen in barley with an automated rhizotron platform. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 76.
Google Scholar

Giraud, M., Le Gall, S., Harings, M., Javaux, M., Leitner, D., Meunier, F., …, Schnepf, A. (2023). CPlantBox: a fully coupled modelling platform for the water and carbon fluxes in the soil–plant–atmosphere continuum, in silico Plants, 5(2), diad009. https://doi.org/10.1093/insilicoplants/diad009
Google Scholar

Golan, G., Abbai, R., Schnurbusch, T. (2023). Exploring the trade-off between individual fitness and community performance of wheat crops using simulated canopy shade. Plant, Cell & Environment, 46, 3144–3157. https://doi.org/10.1111/pce.14499
Google Scholar

Golan, G., Weiner, J., Zhao, Y., Schnurbusch, T. (2023). Agroecological genetics of allometry and allocation plasticity of wheat to light limitations. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 47.
Google Scholar

Gruet, C., Abrouk, D., Börner, A., Muller, D., Moënne-Loccoz, Y. (2023). Wheat genome architecture influences interactions with phytobeneficial microbial functional groups in the rhizosphere. Plant, Cell & Environment, 46, 1018-1032. https://doi.org/10.1111/pce.14508
Google Scholar

Gruet, C., Catry, A., Prigent-Combaret, C., Börner, A., Muller, D., Moënne-Loccoz, Y. (2023 a). Impact of wheat evolutionary history on interactions with microorganisms in the rhizosphere. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 28.
Google Scholar

Haas, M., Sprenger, H., Zuther, E., Peters, R., Seddig, S., Walther, D., . . . Köhl, K. (2020). Can Metabolite- and Transcript-Based Selection for Drought Tolerance in Solanum tuberosum Replace Selection on Yield in Arid Environments? Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.01071
Google Scholar

Hafeez, A.N., Arora, S., Ghosh, S., Gilbert, D., Bowden, R.L. and Wulff, B.B.H. (2021). Creation and judicious application of a wheat resistance gene atlas. Molecular Plant, 14, 1053–1070.
Google Scholar

Hertig, C. W., Kumlehn, J. (2023). Accelerated induction of reproductive development in winter wheat to shorten the generation time in breeding programs. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 48.
Google Scholar

Heuermann, M. C., Knoch, D., Junker, A., Altmann, T. (2023 a). Natural plant growth and development achieved in the IPK PhenoSphere by dynamic environment simulation. Nature Communications, 14. https://doi.org/10.1038/s41467-023-41332-4
Google Scholar

Heuermann, M. C., Meyer, R. C., Junker, A., Knoch, D., Weigelt-Fischer, K., Tschiersch, H., ..., Altmann, T. (2023 b). Needs and opportunities of field-like environment simulation for indoor plant phenotyping and performance assessment. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 23.
Google Scholar

Hisano, H., Abe, F., Hoffie, R. E., Kumlehn, J. (2021). Targeted genome modifications in cereal crops. Breeding Science, 71, 405–416. https://doi.org/10.1270/jsbbs.21019
Google Scholar

Hoffie, I., Kumlehn, J. (2023). Generation of new allelic diversity for durable rust resistance of wheat and barley by editing SUGAR TRANSPORT PROTEIN 13. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts pp. 58-59.
Google Scholar

Hoffie, R. E, Habekuß, A., Perovic, D., Hoffie, I., Otto, I., Kumlehn, J. (2023). Targeted mutagenesis for virus resistance in barley. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 60.
Google Scholar

Hoffie, R. E., Perovic, D., Habekuß, A., Ordon, F., Kumlehn, J. (2023). Novel Resistance to the Bymovirus BaMMV established by Targeted Mutagenesis of the PDIL5-1 Susceptibility Gene in Barley. Plant Biotechnology Journal, 21(2), 331–341. https://doi.org/10.1111/pbi.13948.
Google Scholar

Hoffie, R.E., Otto, I., Perovic, D., Budhagatapalli, N., Habekuß, A., Ordon, F., Kumlehn, J., Targeted Knockout of Eukaryotic Translation Initiation Factor 4E Confers Bymovirus Resistance in Winter Barley. Frontiers in Genome Editing, 3, 784233. https://doi.org/10.3389/fgeed.2021.784233
Google Scholar

Horváth, Á., Kiss, T., Berki, Z., Horváth, Á. D., Balla, K., Cseh, A., Veisz, O., Karsai, I. (2023). Effects of genetic components of plant development on yield-related traits in wheat (Triticum aestivum L.) under stress-free conditions. Frontiers in Plant Science, 13, 1070410. https://doi.org/10.3389/fpls.2022.1070410.
Google Scholar

Huang, Y., Maurer, A., Giehl, R. F. H., Zhao, S., Golan, G., Thirulogachandar, V., . . . Schnurbusch, T. (2023). Dynamic phytomeric growth contributes to local adaptation in barley. bioRxiv, 2023.2006.2002.543309. https://doi.org/10.1101/2023.06.02.543309
Google Scholar

Hübner, S., Höffken, M., Oren, E., Haseneyer, G., Stein, N., Graner, A., Schmid, K., Fridman, E. (2009). Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Mol Ecol., 7, 1523-1536. https://doi.org/10.1111/j.1365-294X.2009.04106.x
Google Scholar

Hund, A., Anderegg, J., Samatan, L. B., Chapman, S., Carlier, A., Chen, Z., …, Zazueta, C. R. (2023). Global wheat full semantic segmentation dataset. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts pp. 70-71.
Google Scholar

Hurgobin, B., Edwards, D. (2017). SNP Discovery Using a Pangenome: Has the Single Reference Approach Become Obsolete? Biology, 6, 21. https://doi.org/10.3390/biology6010021
Google Scholar

Jayakodi, M., Padmarasu, S., Haberer, G., Bonthala, V. S., Gundlach, H., Monat, C., …Stein, N. (2020). The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 588, 284–289. https://doi.org/10.1038/s41586-020-2947-8
Google Scholar

Jayakodi, M., Schreiber, M., Stein, N., Mascher, M. (2021). Building pan-genome infrastructures for crop plants and their use in association genetics. DNA Research, 28(1), 1-9. https://doi.org/10.1093/dnares/dsaa030
Google Scholar

Jia, Z., Giehl, R. F. H., Hartmann, A., Estevez, J. M., Bennett, M. J., & von Wirén, N. (2023). A spatially concerted epidermal auxin signaling framework steers the root hair foraging response under low nitrogen. Current Biology, 33(18), 3926-3941.e3925. https://doi.org/10.1016/j.cub.2023.08.040
Google Scholar

Jia, Z., Giehl, R. F. H., von Wirén, N. (2022). Nutrient–hormone relations: Driving root plasticity in plants. Molecular Plant, 15(1), 86-103. https://doi.org/10.1016/j.molp.2021.12.004
Google Scholar

Kamal, N., Tsardakas Renhuldt, N., Bentzer, J., Gundlach, H., Haberer, G., Juhász, A., ..., Lang, D., et al. (2022). The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature, 606, 113-119. https://doi.org/10.1038/s41586-022-04732-y
Google Scholar

Kambona, C.M., Koua, P.A., Léon, J., Ballvora, A. (2023). Intergenerational and transgenerational effects of drought stress on winter wheat (Triticum aestivum L.). Physiologia Plantarum, 175(4), e13951. https://doi.org/10.1111/ppl.13951
Google Scholar

Kambona, C.M., Koua, P.A., Léon, J., Ballvora, A. (2023). Stress memory and its regulation in plants experiencing recurrent drought conditions. Theor Appl Genet, 136, 26. https://doi.org/10.1007/s00122-023-04313-1
Google Scholar

Kameniarová, M., Černý, M., Novák, J., Ondrisková, V., Hrušková, L., Berka, M., Vankova, R., Brzobohatý, B. (2022). Light Quality Modulates Plant Cold Response and Freezing Tolerance. Frontiers in Plant Science, 13, 887103. https://doi.org/10.3389/fpls.2022.887103
Google Scholar

Karsai, I., Horváth, A., Berki, Z., Horváth, H. D., Balla, K., Cseh, A., Kiss, T. (2023). Effect of PPD-D1, photoperiod sensitivity gene on yield related traits under stress-free conditions in wheat. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts pp. 49-50.
Google Scholar

Keller, B., Müller, M., Kunz, L., Caro1, P., Yue, L., Herger, A., Sanchez-Martin, J. (2023). Molecular diversity in the resistance interactions of wheat and its fungal pathogens. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 25.
Google Scholar

Keser, M. (2023). Contribution of wheat landraces to wheat breeding and their current status in Turkiye. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 26.
Google Scholar

Knoch, D., Meyer, R. C., Heuermann, M. C., Riewe, D., Peleke, F. F., Szymański, J., ..., Altmann, T. (2023). Integrated multi-omics analyses and genome-wide association studies reveal prime candidate genes of metabolic and vegetative growth variation in canola. Plant Joutnal, https://doi.org/10.1111/tpj.16524
Google Scholar

Köhl, K. I., Aneley, G. M., Haas M. (2023 a). Can selection on phenotypic traits replace selection for yield in arid environments? 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 74.
Google Scholar

Köhl, K.I.; Aneley, G.M.; Haas, M. (2023 b). Finding Phenotypic Biomarkers for Drought Tolerance in Solanum tuberosum. Agronomy, 13, 1457. https://doi.org/10.3390/agronomy13061457
Google Scholar

Kotilainen, T., Aphalo, P.J., Brelsford, C.C., Böök, H., Devraj, S., Heikkilä, A., …, Robson, T.M. (2020). Patterns in the spectral composition of sunlight and biologically meaningful spectral photon ratios as affected by atmospheric factors. Agricultural and Forest Meteorology, 291, 108041. https://doi.org/10.1016/j.agrformet.2020.10804
Google Scholar

Koua, A. P., Léon, J., Ballvora, A. (2023). Genome-wide scan and haplotype analysis identified candidate loci for nitrogen use efficiency under drought conditions in winter wheat. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 73.
Google Scholar

Koua, A. P., Siddiqui, M. N., Heß, K., Klag, N., Kambona, C. M., Duarte-Delgado, D., ..., Ballvora, A. (2023). Genome-wide dissection and haplotype analysis identified candidate loci for nitrogen use efficiency under drought conditions in winter wheat. The Plant Genome, e20394, 1-20. https://doi.org/10.1002/tpg2.20394
Google Scholar

Kovács, T., Ahres, M., Pálmai, T., Kovács, L., Uemura, M., Crosatti, C., Galiba, G. (2020). Decreased R:FR Ratio in Incident White Light Affects the Composition of Barley Leaf Lipidome and Freezing Tolerance in a Temperature-Dependent Manner. Int. J. Mol. Sci., 21, 7557. https://doi.org/10.3390/ijms21207557
Google Scholar

Krößmann, J., Serfling, A., Stahl, A. 2023. Digital assessment of leaf rust resistance and water use in wheat (Triticum aestivum L.) at the seedling stage. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 79.
Google Scholar

Lapasiya, T., Gao, Y., Shrestha, A., Stich, B. (2023). Genetic analysis of flag leaf size diversity in a multi-parent population of barley. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 33.
Google Scholar

Lück, S., Strickert, M., Lorbeer, M., Melchert, F., Backhaus, A., Kilias, D., . . . Douchkov, D. (2020). “Macrobot”: An Automated Segmentation-Based System for Powdery Mildew Disease Quantification. Plant Phenomics, https://doi.org/10.34133/2020/5839856
Google Scholar

Mascher, M. (2023). Pangenomics in crop plants: the example of barley. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 24.
Google Scholar

Matros, A., Schikora, A., Ordon, F., Wehner, G. (2023). QTL for induced resistance against leaf rust in barley. Frontiers in Plant Science, 13, 1069087. https://doi.org/10.3389/fpls.2022.1069087
Google Scholar

McIntosh, R.A., Wellings, C.R. and Park, R.F. (1992) Wheat Rusts: An Atlas of
Google Scholar

Resistance Genes. Victoria, Australia: CSIRO Publishing.
Google Scholar

Meyer, R. C., Weigelt-Fischer, K., Tschiersch, H., Topali, G., Altschmied, L., Heuermann, M. C., ..., Altmann, T. (2023). Dynamic growth QTL action in diverse light environments: characterization of light regime-specific and stable QTL in Arabidopsis. Journal of Experimental Botany, 74(17), 5341–5362. https://doi.org/10.1093/jxb/erad222
Google Scholar

Molnar-Lang, M., Ceoloni, C., Dolezel, J. (Ed.) (2015). Alien Introgression in Wheat. Cytogenetics, Molecular Biology, and Genomics. Springer International Publishing Switzerland, https://doi.org/10.1007/978-3-319-23494-6
Google Scholar

Monat C, Schreiber M, Stein N, Mascher M. (2019). Prospects of pan-genomics in barley. Theoretical and Applied genetics, 132(3), 785-796. https://doi.org/10.1007/s00122-018-3234-z
Google Scholar

Moore, J. W., Herrera-Foessel, S., Lan, C., Schnippenkoetter, W., Ayliffe, M., Huerta-Espino, J., …, Lagudah, E. (2015). A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nature Genetics, 47, 1494–1498. https://doi.org/10.1038/ng.3439
Google Scholar

Morgounov, A., Keser, M., Kan, M., Küçükçongar, M., Özdemir, F., Gummadov, N., ..., Qualset, C. O. (2016). Wheat Landraces Currently Grown in Turkey: Distribution, Diversity, and Use. Crop Science, 56, 3112-3124. https://doi.org/10.2135/cropsci2016.03.0192
Google Scholar

Müllers, Y., Postma, J.A., Poorter, H., Dusschoten, D. (2023). Deep-water uptake under drought improved due to locally increased root conductivity in maize, but not in faba bean. Plant, Cell & Environment, 46, 2046–2060. https://doi.org/10.1111/pce.14587
Google Scholar

Narisetti, N., Henke, M., Seiler, C., Shi, R., Junker, A., Altmann, T., Gladilin, E. (2019). Semi-automated Root Image Analysis (saRIA). Scientific Reports, 9, 19674. https://doi.org/10.1038/s41598-019-55876-3
Google Scholar

Ntawuguranayo, S., Zilberberg, M., Sadeh, R., Bonfil, D., Javier Piñera-Chavez, F., Reynolds, M. P., ..., Ben-David, R. (2023). Stem structural biomass and water-soluble carbohydrate's role in wheat grain filling under water deficit and high temperature. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts pp. 40-41.
Google Scholar

Oget-Ebrad, C., Heumez, E., Duchalais, L., Goudemand-Dugué, E., Oury, F.-X., Elsen, J.-M., Bouchet, S. (2023). Validation of cross progeny variance genomic prediction using simulations and experimental data in winter elite bread wheat. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts pp. 30-31.
Google Scholar

Pankovic, D., Seiler, C., Marthe, A., Schikora, A., Matros, A., Wehner, G. (2023). Bacterial priming may facilitate enhanced resistance of barley to leaf rust and net blotch. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts pp. 52-53.
Google Scholar

Pauk, J., Markó, F., Ács, K., Bekes, F., Cseuz, L., Lantos, C. (2023). Integration of in vitro androgenesis in wheat breeding. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts pp. 63-64.
Google Scholar

Pauls, A., Spaninks, K., Offringa, R., Aarts, M. G. M. (2023). Predicting the unpredictable: A novel approach to screening for inner leaf tipburn. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 65.
Google Scholar

Peng, Y., Yan, H., Guo, L., Deng, C., Wang, C., Wang, Y.,…Ren, C. (2022). Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nature Genetics, 54, 1248-1258, https://doi.org/10.1038/s41588-022-01127-7
Google Scholar

Pfrieme, A.-K., Ruckwied, B., Habekuß, A., Will, T., Stahl, A., Pillen, K., Ordon, F. (2022). Identification and Validation of Quantitative Trait Loci for Wheat Dwarf Virus Resistance in Wheat (Triticum spp.). Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.828639
Google Scholar

Prusty, M. R., Bdolach, E., Yamamoto, E., Tiwari, L. D., Silberman, R., Doron-Faigenbaum, A., …, Fridman, E. (2021). Genetic loci mediating circadian clock output plasticity and crop productivity under barley domestication. New Phytologist, 230(5), 1787-1801. https://doi.org/10.1111/nph.17284
Google Scholar

Rezaeva, B., Otto, I., Bollmann, C., Kelly, A. A., Feussner, I., Kumlehn, J. (2023). Improvement of the fatty acid profile in a camelina cultivar facilitated by novel methods of plant regeneration, Agrobacterium-mediated transformation and genome editing. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 35.
Google Scholar

Rio, S., Akdemir, D., Carvalho, T., Sánchez, J. I. (2022). Assessment of genomic prediction reliability and optimization of experimental designs in multi-environment trials. Theor Appl Genet, 135, 405–419. https://doi.org/10.1007/s00122-021-03972-2
Google Scholar

Rybka, K. (2009). TILLING i FOX-hunting: nowe metody analizy funkcjonalnej genów Postępy Biologii Komórki, 36, 539-554. http://ptbk.mol.uj.edu.pl/download/nagrody/update2014/2009-artykul.pdf
Google Scholar

Rybka, K. (2018). Fenotypowanie roślin. Konferencja EPPN 2020 w Tartu/ Estonia [Eng. Plant phenotyping. The EPPN 2020 Conference in Tartu/ Estonia]. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 282, 161-174. https://doi.org/10.37317/biul-2017-0022.
Google Scholar

Sabir, K., Rose, T., Wittkop, B., Stahl, A., Snowdon, R. J., Ballvora, A.,…, Chen, T.-W. (2023). Stage-specific genotype-by-environment interactions determine yield components in wheat. Nat. Plants, 9, 1688–1696. https://doi.org/10.1038/s41477-023-01516-8
Google Scholar

Saint Pierre, C., Trethowan, R.M., Reynolds, M. (2010). Stem solidness and its relationship to water-soluble carbohydrates: Association with wheat yield under water deficit. Functional Plant Biology, 37, 166. https://doi.org/10.1071/FP09174.
Google Scholar

Sánchez, J. I., Akdemir, D. (2021). Training Set Optimization for Sparse Phenotyping in Genomic Selection: A Conceptual Overview. Frontiers in Plant Science, 12, 715910. https://doi.org/10.3389/fpls.2021.715910
Google Scholar

Satpathy, P., Audije de la Fuente, S., Ott, V., Müller, A., Büchner, H., Daghma, D. E. S., Kumlehn, J. (2021). Generation of Doubled Haploid Barley by Interspecific Pollination with Hordeum bulbosum. W: Segui-Simarro, J.M. (eds) Doubled Haploid Technology. Methods in Molecular Biology, vol 2287. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1315-3_10
Google Scholar

Satpathy, P., Mirzakhmedov, M., Büchner, H., Chamas, S., Hoffie, I., Daghma, D. S., Kumlehn, J. (2023). Generation of haploidy inducers in barley by site-directed mutagenesis. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 15.
Google Scholar

Schierenbeck M., Alqudah, A. M., Lantos, E., Avogadro, E. G., Simón, M. R., Börner, A. (2023). Green Revolution Rht genes affected anther extrusion and floral traits related to cross pollination efficiency in wheat. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts pp. 36-37.
Google Scholar

Serouart, M., Madec, S., David, E., Velumani, K., Lopez Lozano, R., Weiss, M., Baret, F., (2022). SegVeg: Segmenting RGB Images into Green and Senescent Vegetation by Combining Deep and Shallow Methods. Plant Phenomics 2022, 2022/9803570. https://doi.org/10.34133/2022/9803570
Google Scholar

Shaaf, S., Bretani, G., Biswas, A., Fontana, I. M., Rossini, L. (2019). Genetics of barley tiller and leaf development. J Integr Plant Biol, 61, 226–256. https://doi.org/10.1111/jipb.12757
Google Scholar

Shaaf, S., Wichmann, P., Maurer, A., Pillen, K., Gladilin, E., Neumann K. (2023). Barley response to drought: current achievements based on high-throughput image analyses. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 74.
Google Scholar

Shi, R., Seiler, C., Knoch, D., Junker, A., Altmann, T. (2023). Integrated phenotyping of root and shoot growth dynamics in maize reveals specific interaction patterns in inbreds and hybrids and in response to drought. Frontiers in Plant Science, 14, 1233553. https://doi.org/10.3389/fpls.2023.1233553
Google Scholar

Shi, R., Seiler, C., Knoch, D., Junker, A., Altmann, T. (2023 b). Integrated phenotyping of root and shoot growth dynamics in maize reveals specific interaction patterns in inbreds and hybrids and in response to drought. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1233553
Google Scholar

Shi, R., Seiler, C., Knoch, D., Junker, A., Narisetti, N., Gladilin, E., …, Altmann, T. (2023 a). Integrated phenotyping of root and shoot growth dynamics in maize. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 80.
Google Scholar

Shrestha, A., Cosenza, F., van Inghelandt, D., Wu, P. Y, Li, J., Casale, F. A., Weisweiler, M., Stich, B. (2022). The double round-robin population unravels the genetic architecture of grain size in barley. Journal of Experimental Botany,73(22), 7344-7361. https://doi.org/10.1093/jxb/erac369.
Google Scholar

Siddiqui, M. N., Léon, J., Naz, A. A., Ballvora, A. (2020). Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. Journal of Experimental Botany, 72(4), 1007-1019. https://doi.org/10.1093/jxb/eraa487
Google Scholar

Snipen, L, Ussery, D. W. (2010). Standard operating procedure for computing pangenome trees. Standards in Genomic Sciences, 2(1), 135-141. https://doi.org/10.4056/sigs.38923
Google Scholar

Sprenger, H., Erban, A., Seddig, S., Rudack, K., Thalhammer, A., Le, M.Q., …, Hincha, D. K. (2018). Metabolite and transcript markers for the prediction of potato drought tolerance. Plant Biotechnol J, 16, 939-950. https://doi.org/10.1111/pbi.12840
Google Scholar

Szakács, E., Türkösi, E., Farkas, A., Ivanizs, L., Gaál, E., Kruppa, K., …, Molnár, I. (2023). Genomics-assisted gene introgression from tertiary gene pool species into wheat. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 34.
Google Scholar

Tettelin, H., Riley, D., Cattuto, C., Medini, D. (2008). Comparative genomics: the bacterial pan-genome. Current Opinion in Microbiology, 11(5), 472-477. https://doi.org/10.1016/j.mib.2008.09.006
Google Scholar

Tinker, N. A., Chao, S., Lazo, G. R., Oliver, R. E., Huang, Y.-F., Poland, J. A., …, Jackson, E. W. (2014). SNP Genotyping Array for Hexaploid Oat. The Plant Genome, 7, plantgenome2014.2003.0010. https://doi.org/10.3835/plantgenome2014.03.0010
Google Scholar

van Dusschoten, D., Pflugfelder, D., Le Gall, S., Koller, R. (2023. Magnetic Resonance Imaging of early wheat seedlings and possible relevance for root water uptake. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts p. 70.
Google Scholar

Varekhina, A., Guerra, V., Stahl, A., Serfling, A. 2022. Identification of seedling resistance against leaf rust using innovative phenotyping methods. Journal für Kulturpflanzen, 74(11-12), 271–281. https://doi.org/10.5073/JfK.2022.11-12.07
Google Scholar

Vranic, M., Perochon, A., Benbow, H., Doohan, F. M. (2022). Comprehensive analysis of pathogen-responsive wheat NAC transcription factors: new candidates for crop improvement, G3 Genes|Genomes|Genetics, 12(11), jkac247. https://doi.org/10.1093/g3journal/jkac247
Google Scholar

Wang, T. C., Casadebaig, P., Chen, T.-W. (2023). More than 1000 genotypes are required to derive robust relationships between yield, yield stability and physiological parameters: a computational study on wheat crop. Theoretical and Applied Genetics, 136, 34. https://doi.org/10.1007/s00122-023-04264-7.
Google Scholar

Weigt, D., Szewczyk, K., Mikołajczyk, S., Tomkowiak, A., Żur, I., Nowicka, A. (2023). Impact of epigenetic factors on the induction of bread wheat microspore embryogenesis and plant regeneration. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts pp. 55-56.
Google Scholar

Zetzsche, H., Serfling, A., Ordon, F. (2019). Breeding Progress in Seedling Resistance against Various Races of Stripe and Leaf Rust in European Bread Wheat. Crop Breeding, Genetics and Genomics, 1(2), e190021. https://doi.org/10.20900/cbgg20190021
Google Scholar

Zhang, B., Huang, H., Tibbs-Cortes, L. E., Vanous, A., Zhang, Z., Sanguinet, K., …, Li, X. (2023 a). BRIDGEcereal: a webapp streamlining unsupervised learning to survey and graph indels from pangenomes. 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts pp. 61-62.
Google Scholar

Zhang, B., Huang, H., Tibbs-Cortes, L. E., Vanous, A., Zhang, Z., Sanguinet, K., …, Li, X. (2023 b). Streamline unsupervised machine learning to survey and graph indel-based haplotypes from pan-genomes. Molecular Plant, 16, 975-8. https://doi.org/10.1016/j.molp.2023.05.005
Google Scholar

Zimny, J., Michalski. K., Oleszczuk, S. (2023). Can we perpetuate and transfer to valuable lines of rye the trait of androgenesis ability? 7th Conference on Cereal Biotechnology and Breeding, 7–9 November 2023, Wernigerode, Germany. Book of Abstracts pp. 38-39.
Google Scholar

Pobierz


Opublikowane
12/29/2023

Cited By / Share

Rybka, K. (2023) „Najnowsze doniesienia z zakresu biotechnologii i hodowli zbóż: CBB7 siódma konferencja Cereal Biotechnology and Breeding w Wernigerode, Niemcy”, Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, (300), s. 77–89. doi: 10.37317/biul-2023-0014.

Statystyki

Abstract views: 124
PDF downloads: 63


Licencja

Prawa autorskie (c) 2023 Krystyna Rybka

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.

Z chwilą przekazania artykułu, Autorzy udzielają Wydawcy niewyłącznej i nieodpłatnej licencji na korzystanie z artykułu przez czas nieokreślony na terytorium całego świata na następujących polach eksploatacji:

  1. Wytwarzanie i zwielokrotnianie określoną techniką egzemplarzy artykułu, w tym techniką drukarską oraz techniką cyfrową.
  2. Wprowadzanie do obrotu, użyczenie lub najem oryginału albo egzemplarzy artykułu.
  3. Publiczne wykonanie, wystawienie, wyświetlenie, odtworzenie oraz nadawanie i reemitowanie, a także publiczne udostępnianie artykułu w taki sposób, aby każdy mógł mieć do niego dostęp w miejscu i w czasie przez siebie wybranym.
  4. Włączenie artykułu w skład utworu zbiorowego.
  5. Wprowadzanie artykułu w postaci elektronicznej na platformy elektroniczne lub inne wprowadzanie artykułu w postaci elektronicznej do Internetu, lub innej sieci.
  6. Rozpowszechnianie artykułu w postaci elektronicznej w internecie lub innej sieci, w pracy zbiorowej jak również samodzielnie.
  7. Udostępnianie artykułu w wersji elektronicznej w taki sposób, by każdy mógł mieć do niego dostęp w miejscu i czasie przez siebie wybranym, w szczególności za pośrednictwem Internetu.

Autorzy poprzez przesłanie wniosku o publikację:

  1. Wyrażają zgodę na publikację artykułu w czasopiśmie,
  2. Wyrażają zgodę na nadanie publikacji DOI (Digital Object Identifier),
  3. Zobowiązują się do przestrzegania kodeksu etycznego wydawnictwa zgodnego z wytycznymi Komitetu do spraw Etyki Publikacyjnej COPE (ang. Committee on Publication Ethics), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. Wyrażają zgodę na udostępniane artykułu w formie elektronicznej na mocy licencji CC BY-SA 4.0, w otwartym dostępie (open access),
  5. Wyrażają zgodę na wysyłanie metadanych artykułu do komercyjnych i niekomercyjnych baz danych indeksujących czasopisma.

Inne teksty tego samego autora

Podobne artykuły

<< < 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.