Contribution of cytokinin biosynthesis genes in determining wheat grain yield

Joanna Bocian

j.bocian@ihar.edu.pl
(Poland)
https://orcid.org/0000-0003-4553-7269

Anna Nadolska-Orczyk


Plant Breeding and Acclimatization Institute—National Research Institute (Poland)
https://orcid.org/0000-0001-6127-3860

Abstract

Cytokinins are a class of phytohormones associated with key plant growth and developmental processes, including those with a significant influence on plant yield and yield components. Cytokinin biosynthesis is catalysed by isopentenyltransferase, an enzyme encoded by the IPT gene family members. There are two types of IPT genes: ATP/ADP-IPT and tRNA-IPT. Depending on the IPT gene, the encoded enzyme initiates a separate cytokinin biosynthesis pathway, ultimately determining the type of cytokinins produced and, consequently, their function. Both, trans- and cis-zeatin are of particular importance in the first stages of cereal grain development, which are crucial in determining grain yield. These two cytokinins are produced as a result of separate biosynthesis pathways, and their participation in grain development depends on the species / genotypes. This review presents the importance of cytokinins and the IPT gene family members in determining the yield potential of plants. We summarize the current status of knowledge on the wheat IPT genes and their spatio-temporal expression pattern. Taking into account these information and the known biological activity of cytokinins in individual organs at various stages of the development of wheat plants and other cereal species, we point to IPT genes with a potentially significant role in determining wheat yield.


Keywords:

cytokinin; cytokinin biosynthesis; grain yield; IPT gene family; wheat

Atkins, C.A., Emery, R.N., Smith, P.M. (2011). Consequences of transforming narrow leafed lupin (Lupinus angustifolius [L.]) with an IPT gene under control of a flower-specific promoter. Transgenic Res. 20: 1321–1332. https://doi.org/10.1007/s11248-011-9497-7
Google Scholar

Beznec, A., Faccio, P., Miralles, D.J., i in. (2021) Stress-induced expression of IPT gene in transgenic wheat reduces grain yield penalty under drought. J Genet Eng Biotechnol. 19(1): 67. https://doi.org/10.1186/s43141-021-00171-w
Google Scholar

Brugière, N., Humbert, S., Rizzo, N., Bohn, J., Habben, J. E. (2008). A member of the maize isopentenyl transferase gene family, Zea mays isopentenyl transferase 2 (ZmIPT2), encodes a cytokinin biosynthetic enzyme expressed during kernel development. Cytokinin biosynthesis in maize. Plant Mol. Biol. 67(3): 215–229. https://doi.org/10.1007/s11103-008-9312-x
Google Scholar

Chen, L., Zhao, J., Song, J., Jameson, P.E. (2020). Cytokinin dehydrogenase: a genetic target for yield improvement in wheat. Plant Biotechnol. J. 18(3): 614–630. https://doi.org/10.1111/pbi.13305
Google Scholar

Chen, L., Zhao, J., Song, J., Jameson, P.E. (2021). Cytokinin glucosyl transferases, key regulators of cytokinin homeostasis, have potential value for wheat improvement. Plant Biotechnol. J. 19. 10.1111/pbi.13595. 10.1111/pbi.13595
Google Scholar

Choi, J., Lee, J., Kim, K., Cho, M., Ryu, H., An, G., Hwang, I. (2012). Functional identification of OsHk6 as a homotypic cytokinin receptor in rice with preferential affinity for iP. Plant Cell Physiol. 53: 1334–1343. https://doi.org/10.1093/pcp/pcs079
Google Scholar

Corbesier, L., Prinsen, E., Jacqmard, A., Lejeune, P., Onckelen, H., Périlleux, C., Bernier, G. (2003). Cytokinin levels in leaves, leaf exudate and shoot apical meristem of Arabidopsis thaliana during floral transition. J. Exp. Bot. 54: 2511-7. https://doi.org/10.1093/jxb/erg276
Google Scholar

Cortleven, A., Leuendorf, J.E., Frank, M., Pezzetta, D., Bolt, S., Schmülling, T. (2019). Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 42(3): 998-1018. https://doi.org/10.1111/pce.13494
Google Scholar

Daudu, D., Allion, E., Liesecke, F., Papon, N., Courdavault, V., Dugé de Bernonville, T., Mélin, C., Oudin, A., Clastre, M., Lanoue, A., Courtois, M. (2017). CHASE-containing histidine kinase receptors in apple tree: from a common receptor structure to divergent cytokinin binding properties and specific functions. Front. Plant Sci. 8: 1614–1629. https://doi.org/10.3389/fpls.2017.01614
Google Scholar

Décima Oneto, C.D., Otegui, M.E., Baroli, I., Beznec, A., Faccio, P., Bossio, E., Blumwald, E., Lewi, D. (2016). Water deficit stress tolerance in maize conferred by expression of an isopentenyltransferase (IPT) gene driven by a stress- and maturation-induced promoter. J. Biotechnol. 220: 66–77. https://doi.org/10.1016/j.jbiotec.2016.01.014
Google Scholar

Dello Ioio, R., Linhares, F. S., Scacchi, E., Casamitjana-Martinez, E., Heidstra, R., Costantino, P., Sabatini, S. (2007). Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr. Biol. 17(8): 678–682. https://doi.org/10.1016/j.cub.2007.02.047
Google Scholar

Durán-Medina, Y., Díaz-Ramírez, D., Marsch-Martínez, N. (2017). Cytokinins on the move. Front. Plant Sci. 8: 146. https://doi.org/10.3389/fpls.2017.00146
Google Scholar

Gasparis, S., Przyborowski, M., Kala, M., Nadolska-Orczyk, A. (2019). Knockout of the HvCKX1 or HvCKX3 Gene in Barley (Hordeum vulgare L.) by RNA-Guided Cas9 Nuclease Affects the Regulation of Cytokinin Metabolism and Root Morphology. Cells. 8(8): 782. https://doi.org/10.3390/cells8080782
Google Scholar

Ghosh, A., Shah, M.N., Jui, Z.S., Saha, S.K., Fariha, K.A., Islam, T. (2018). Evolutionary variation and expression profiling of Isopentenyl transferase gene family in Arabidopsis thaliana L. and Oryza sativa L. Plant Gene. 15(7): 15-27. https://doi.org/10.1016/j.plgene.2018.06.002
Google Scholar

Hirose, N., Makita, N., Yamaya, T., Sakakibara, H. (2005). Functional characterization and expression analysis of a gene, OsENT2, encoding an equilibrative nucleoside transporter in rice suggest a function in cytokinin transport, Plant Physiol. 138: 196-206. https://doi.org/10.1104/pp.105.060137
Google Scholar

Hirose, N., Takei, K., Kuroha, T., Kamada-Nobusada, T., Hayashi, H., Sakakibara, H. (2008). Regulation of cytokinin biosynthesis, compartmentalization and translocation. J. Exp. Bot. 59: 75-83. https://doi.org/10.1093/jxb/erm157
Google Scholar

Hluska, T., Hlusková, L., Emery, R.J.N. (2021). The Hulks and the Deadpools of the Cytokinin Universe: A Dual Strategy for Cytokinin Production, Translocation, and Signal Transduction. Biomolecules. 11(2): 209. https://doi.org/10.3390/biom11020209
Google Scholar

Holst, K., Schmülling, T., Werner, T. (2011). Enhanced cytokinin degradation in leaf primordia of transgenic Arabidopsis plants reduces leaf size and shoot organ primordia formation. J. plant physiol. 168(12): 1328–1334. https://doi.org/10.1016/j.jplph.2011.03.003
Google Scholar

Iqbal, A., Bocian, J., Hameed, A., Orczyk, W., Nadolska-Orczyk, A. (2022). Cis-Regulation by NACs: A Promising Frontier in Wheat Crop Improvement. Int. J. Mol. Sci. 23(23): 15431. https://doi.org/10.3390/ijms232315431
Google Scholar

Jablonski, B., Bajguz, A., Bocian, J., Orczyk, W., Nadolska-Orczyk, A. (2021b). Genotype-Dependent Effect of Silencing of TaCKX1 and TaCKX2 on Phytohormone Crosstalk and Yield-Related Traits in Wheat. Int. J. Mol. Sci. 22(21): 11494. https://doi.org/10.3390/ijms222111494
Google Scholar

Jablonski, B., Ogonowska, H., Szala, K., Bajguz, A., Orczyk, W., Nadolska-Orczyk, A. (2020). Silencing of TaCKX1 Mediates Expression of Other TaCKX Genes to Increase Yield Parameters in Wheat. Int. J. Mol. Sci. 21(13): 4809. https://doi.org/10.3390/ijms21134809
Google Scholar

Jablonski, B., Szala, K., Przyborowski, M., Bajguz, A., Chmur, M., Gasparis, S., Orczyk, W., Nadolska-Orczyk, A. (2021a). TaCKX2.2 Genes Coordinate Expression of Other TaCKX Family Members, Regulate Phytohormone Content and Yield-Related Traits of Wheat. Int. J. Mol. Sci. 22(8): 4142. https://doi.org/10.3390/ijms22084142
Google Scholar

Jameson, P.E., Song, J. (2016). Cytokinin: a key driver of seed yield. J. Exp. Bot. 67: 593–606. https://doi.org/10.1093/jxb/erv461
Google Scholar

Jaworek, P., Tarkowski, P., Hluska, T., Kouřil, Š., Vrobel, O., Nisler, J., Kopečný, D. (2019). Characterization of five CHASE-containing histidine kinase receptors from Populus × canadensis cv. Robusta sensing isoprenoid and aromatic cytokinins. Planta. 251(1): 1. https://doi.org/10.1007/s00425-019-03297-x
Google Scholar

Joshi, S., Choukimath, A., Isenegger, D., Panozzo, J., Spangenberg, G., Kant, S. (2019). Improved wheat growth and yield by delayed leaf senescence using developmentally regulated expression of a cytokinin biosynthesis gene. Front. Plant Sci. 10: 1285. https://doi.org/10.3389/fpls.2019.01285
Google Scholar

Kamada-Nobusada, T., Sakakibara, H. (2009), Molecular basis for cytokinin biosynthesis. Phytochemistry. 70(4): 444-449. https://doi.org/10.1016/j.phytochem.2009.02.007
Google Scholar

Kang, J., Lee, Y., Sakakibara, H., Martinoia, E. (2017). Cytokinin Transporters: GO and STOP in Signaling. Trends Plant Sci. 22(6): 455–461. https://doi.org/10.1016/j.tplants.2017.03.003
Google Scholar

Khlestkina, E.K., Röder, M.S., Salina, E.A. (2008). Relationship between homoeologous regulatory and structural genes in allopolyploid genome - a case study in bread wheat. BMC Plant Biol. 8: 88. https://doi.org/10.1186/1471-2229-8-88
Google Scholar

Kiba, T., Takei, K., Kojima, M., Sakakibara, H. (2013). Side-Chain Modification of Cytokinins Controls Shoot Growth in Arabidopsis. Dev. cell. 27: 452-61. http://dx.doi.org/10.1016/j.devcel.2013.10.004
Google Scholar

Kieber, J.J., Schaller, G.E. (2014). Cytokinins. Arabidopsis Book. 12: e0168. https://doi.org/10.1199/tab.0168
Google Scholar

Kieber, J.J., Schaller, G.E. (2018). Cytokinin signaling in plant development. Development 145(4): dev149344. https://doi.org/10.1242/dev.149344
Google Scholar

Kisiala, A., Kambhampati, S., Stock, N.L., Aoki, M., Emery, R.N. (2019). Quantification of cytokinins using high-resolution accurate-mass orbitrap mass spectrometry and parallel reaction monitoring (PRM). Anal. Chem. 91: 15049– 15056. https://doi.org/10.1021/acs.analchem.9b03728
Google Scholar

Ko, D., Kang, J., Kiba, T., Park, J., Kojima, M., Do, J., Kim, K. Y., Kwon, M., Endler, A., Song, W. Y., Martinoia, E., Sakakibara, H., Lee, Y. (2014). Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc. Natl. Acad. Sci. U.S.A. 111(19): 7150–7155. https://doi.org/10.1073/pnas.1321519111
Google Scholar

Kudo, T., Kiba, T., Sakakibara, H. (2010). Metabolism and long-distance translocation of cytokinins. J. Integr. Plant Biol. 52(1): 53–60. https://doi.org/10.1111/j.1744-7909.2010.00898.x
Google Scholar

Ma, B., Zhang, L., He, Z. (2023). Understanding the regulation of cereal grain filling: The way forward. J. Integr. Plant Biol. 65: 526–547. https://doi.org/10.1111/jipb.13456
Google Scholar

Matušková, V., Zatloukal, M., Pospíšil, T., Voller, J., Vylíčilová, H., Doležal, K., Strnad, M. (2023). From synthesis to the biological effect of isoprenoid 2'-deoxyriboside and 2',3'-dideoxyriboside cytokinin analogues. Phytochemistry. 205: 113481. https://doi.org/10.1016/j.phytochem.2022.113481
Google Scholar

Miller, C.O., Skoog, F.K., Saltza, M.H., Strong, F.M. (1955). KINETIN, A CELL DIVISION FACTOR FROM DEOXYRIBONUCLEIC ACID1. J. Am. Chem. Soc. 77: 1392-1392. https://doi.org/10.1021/ja01610a105
Google Scholar

Miyawaki, K., Matsumoto-Kitano, M., Kakimoto, T. (2004). Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J. 37: 128–138. https://doi.org/10.1046/j.1365-313X.2003.01945.x
Google Scholar

Miyawaki, K., Tarkowski, P., Matsumoto-Kitano, M., Kato, T., Sato, S., Tarkowska, D., Tabata, S., Sandberg, G., Kakimoto, T. (2006). Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc. Natl. Acad. Sci. 103(44): 16598-603. https://doi.org/10.1073/pnas.0603522103
Google Scholar

Nguyen, H.N., Lai, N., Kisiala, A.B., Emery, R.N. (2021). Isopentenyltransferases as master regulators of crop performance: their function, manipulation, and genetic potential for stress adaptation and yield improvement. Plant Biotechnol. J. 19(7): 1297-1313. https://dx.doi.org/10.1111%2Fpbi.13603
Google Scholar

Nguyen, H.N., Perry, L., Kisiala, A., Olechowski, H., Emery, R.N. (2020). Cytokinin activity during early kernel development corresponds positively with yield potential and later stage ABA accumulation in field-grown wheat (Triticum aestivum L.). Planta. 252(5): 76. https://doi.org/10.1007/s00425-020-03483-2
Google Scholar

Osugi, A., Kojima, M., Takebayashi, Y., Ueda, N., Kiba, T., Sakakibara, H. (2017). Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nat. Plants. 3: 17112. https://doi.org/10.1038/nplants.2017.112
Google Scholar

Pavlů, J., Novák, J., Koukalová, V., Luklová, M., Brzobohatý, B., Černý, M. (2018). Cytokinin at the Crossroads of Abiotic Stress Signalling Pathways. Int. J. Mol. Sci. 19(8): 2450. https://doi.org/10.3390/ijms19082450
Google Scholar

Peleg, Z., Reguera, M., Tumimbang, E., Walia, H., Blumwald, E. (2011). Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol. J. 9(7): 747-58. https://doi.org/10.1111/j.1467-7652.2010.00584.x
Google Scholar

Powell, A.F., Paleczny, A.R., Olechowski, H., Emery, R.N. (2013). Changes in cytokinin form and concentration in developing kernels correspond with variation in yield among field-grown barley cultivars. Plant Physiol. Biochem. 201364: 33-40. https://doi.org/10.1016/j.plaphy.2012.12.010
Google Scholar

Ptošková, K., Szecówka, M., Jaworek, P., Tarkowská, D., Petřík, I., Pavlović, I., Novák, O., Thomas, S. G., Phillips, A. L., Hedden, P. (2022). Changes in the concentrations and transcripts for gibberellins and other hormones in a growing leaf and roots of wheat seedlings in response to water restriction. BMC plant biology, 22(1): 284. https://doi.org/10.1186/s12870-022-03667-w
Google Scholar

Ramireddy, E., Hosseini, S.A., Eggert, K., Gillandt, S., Gnad, H., von Wirén, N., Schmülling, T. (2018). Root Engineering in Barley: Increasing Cytokinin Degradation Produces a Larger Root System, Mineral Enrichment in the Shoot and Improved Drought Tolerance. Plant Physiol. 177(3): 1078-1095. https://doi.org/10.1104/pp.18.00199
Google Scholar

Reguera, M., Peleg, Z., Abdel-Tawab, Y.M., Tumimbang, E.B., Delatorre, C.A., Blumwald, E. (2013). Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiol 163(4): 1609–1622. https://doi.org/10.1104/pp.113.227702
Google Scholar

Rijavec, T., Kovac, M., Kladnik, A., Chourey, P.S., Dermastia, M.A. (2009). Comparative study on the role of cytokinins in caryopsis development in the maize miniature seed mutant and its wild type. J. Integr. Plant Biol. 51: 840-849. https://doi.org/10.1111/j.1744-7909.2009.00863.x
Google Scholar

Rivero, R.M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S., Blumwald, E. (2007). Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl. Acad. Sci. 104(49): 19631–19636. https://doi.org/10.1073/pnas.0709453104
Google Scholar

Romanov, G. A., Schmülling, T. (2021). On the biological activity of cytokinin free bases and their ribosides. Planta. 255(1): 27. https://doi.org/10.1007/s00425-021-03810-1
Google Scholar

Sakakibara, H. (2021). Cytokinin biosynthesis and transport for systemic nitrogen signaling. Plant J. 105: 421-430. https://doi.org/10.1111/tpj.15011
Google Scholar

Sakamoto, T. (2006). Phytohormones and rice crop yield: strategies and opportunities for genetic improvement. Transgenic Res. 15(4): 399-404. https://doi.org/10.1007/s11248-006-0024-1
Google Scholar

Schäfer, M., Brütting, C., Meza-Canales, I.D., Großkinsky, D.K., Vankova, R., Baldwin, I.T., Meldau, S. (2015). The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J. Exp. Bot. 66(16): 4873–4884. https://doi.org/10.1093/jxb/erv214
Google Scholar

Shoaib, M., Yang, W., Shan, Q., Sajjad, M., Zhang, A. (2019). Genome-wide identification and expression analysis of new cytokinin metabolic genes in bread wheat (Triticum aestivum L.). PeerJ.
Google Scholar

: e6300. https://doi.org/10.7717/peerj.6300
Google Scholar

Song, J., Jiang, L., Jameson, P.E. (2012). Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat. BMC Plant Biol. 12: 78. https://doi.org/10.1186/1471-2229-12-78
Google Scholar

Song, Y., Li, C., Zhu, Y., Guo, P., Wang, Q., Zhang, L., Wang, Z., Di, H. (2022). Overexpression of ZmIPT2 gene delays leaf senescence and improves grain yield in maize. Front. Plant Sci. 13: 963873. https://doi.org/10.3389/fpls.2022.963873
Google Scholar

Spíchal, L., Rakova, N.Y., Riefler, M., Mizuno, T., Romanov, G.A., Strnad. M., Schmülling, T. (2004). Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45: 1299–1305. https://doi.org/10.1093/pcp/pch132
Google Scholar

Stolz, A., Riefler, M., Lomin, S.N., Achazi, K., Romanov, G.A., Schmülling, T. (2011). The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. Plant J. 67: 157–168. https://doi.org/10.1111/j.1365-313X.2011.04584.x
Google Scholar

Takagi, M., Yokota, T., Murofushi, N., Saka, H., Takahashi, N. (1989). Quantitative changes of free-base, riboside, ribotide and glucoside cytokinins in developing rice grains. Plant Growth Regul. 8: 349–364. https://doi.org/10.1007/BF00024665
Google Scholar

Takei, K., Yamaya, T., Sakakibara, H. (2004). Arabidopsis CYP735A1 and CYP735A2 Encode Cytokinin Hydroxylases That Catalyze the Biosynthesis of trans-Zeatin. J. Biol. Chem. 279(40): 41866-72. http://dx.doi.org/10.1074/jbc.M406337200
Google Scholar

Terceros, G.C., Resentini, F., Cucinotta, M., Manrique, S., Colombo, L., Mendes, M. A. (2020). The Importance of Cytokinins during Reproductive Development in Arabidopsis and Beyond. Int. J. Mol. Sci. 21(21): 8161. https://doi.org/10.3390/ijms21218161
Google Scholar

Veselov, S. Y., Timergalina, L. N., Akhiyarova, G. R., Kudoyarova, G. R., Korobova, A. V., Ivanov, I., Arkhipova, T. N., Prinsen, E. (2018). Study of cytokinin transport from shoots to roots of wheat plants is informed by a novel method of differential localization of free cytokinin bases or their ribosylated forms by means of their specific fixation. Protoplasma. 255(5): 1581–1594. https://doi.org/10.1007/s00709-018-1248-7
Google Scholar

Wang, N., Chen, J., Gao, Y., Zhou. Y., Chen, M., Xu, Z., Fang, Z., Ma, Y. (2023). Genomic analysis of isopentenyltransferase genes and functional characterization of TaIPT8 indicates positive effects of cytokinins on drought tolerance in wheat. Crop J. 11(1): 46-56. https://doi.org/10.1016/j.cj.2022.04.010
Google Scholar

Wang, X., Lin, S., Liu, D., Gan, L., McAvoy, R., Ding, J., Li, Y. (2020). Evolution and roles of cytokinin genes in angiosperms: Do ancient IPTs play housekeeping while non-ancient IPTs play regulatory roles? Horticult. Res. 7: 1–15. https://doi.org/10.1038/s41438-019-0211-x
Google Scholar

Werner, T., Nehnevajova, E., Köllmer, I., Novák, O., Strnad, M., Krämer, U., Schmülling, T. (2010). Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell. 22: 3905– 3920. https://doi.org/10.1105/tpc.109.072694
Google Scholar

Yang, J., Zhang, J., Huang, Z., Wang, Z., Zhu, Q., Liu, L. (2002). Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice. Ann. Bot. 90(3): 369–377. https://doi.org/10.1093/aob/mcf198
Google Scholar

Yonekura-Sakakibara, K., Kojima, M., Yamaya, T., Sakakibara, H. (2004). Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol. 134: 1654–1661. https://doi.org/10.1104/pp.103.037176
Google Scholar

Yu,Y., Zhu, D., Ma, C., Cao, H., Wang, Y., Xu, Y., Zhang, W., Wen, Z. (2016). Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development. Crop J. 4(2): 92-106. https://doi.org/10.1016/j.cj.2016.01.006
Google Scholar

Zalewski, W., Galuszka, P., Gasparis, S., Orczyk, W., Nadolska-Orczyk, A. (2010). Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. J. Exp. Bot. 61(6): 1839–1851. https://doi.org/10.1093/jxb/erq052
Google Scholar

Zalewski, W., Gasparis, S., Boczkowska, M., Rajchel, I. K., Kała, M., Orczyk, W., Nadolska-Orczyk, A. (2014). Expression patterns of HvCKX genes indicate their role in growth and reproductive development of barley. PloS One. 9(12): e115729. https://doi.org/10.1371/journal.pone.011572
Google Scholar

Zalewski, W., Orczyk, W., Gasparis, S., Nadolska-Orczyk, A. (2012). HvCKX2 gene silencing by biolistic or Agrobacterium-mediated transformation in barley leads to different phenotypes. BMC Plant Biol. 12: 206. https://doi.org/10.1186/1471-2229-12-206
Google Scholar

Zhang, L., Zhao, Y.L., Gao, L.F., Zhao, G.Y., Zhou, R.H., Zhang, B.S., Jia, J.Z. (2012). TaCKX6-D1 the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. New Phytol. 195(3): 574–584. https://doi.org/10.1111/j.1469-8137.2012.04194.x
Google Scholar


Published
2023-12-29

Cited by

Bocian, J. and Nadolska-Orczyk, A. (2023) “Contribution of cytokinin biosynthesis genes in determining wheat grain yield”, Bulletin of Plant Breeding and Acclimatization Institute, (300), pp. 57–65. doi: 10.37317/biul-2023-0012.

Authors

Anna Nadolska-Orczyk 

Plant Breeding and Acclimatization Institute—National Research Institute Poland
https://orcid.org/0000-0001-6127-3860

Statistics

Abstract views: 115
PDF downloads: 68


License

Copyright (c) 2023 Joanna Bocian, Anna Nadolska-Orczyk

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.