Predicting progeny means from quantitative genetic parameters of parents: models and their use for winter rye

Wiesław Mądry

wieslaw_madry@sggw.edu.pl
`Katedra Biometrii SGGW w Warszawie (Poland)

Tadeusz Śmiałowski


Zakład Oceny Jakości i Metod Hodowli Zbóż, IHAR Oddział w Krakowie (Poland)

Krzysztof Ukalski


Katedra Biometrii SGGW w Warszawie (Poland)

Abstract

Experimental evaluation of the means for agricultural traits in a great number of F1 progenies (as hybrids or segregating populations) and in inbred generations of F1 hybrids is expensive and time-consuming. Then, the progeny means should be predicted using statistical models based on genetic parameters of parents, derived from genetic (molecular markers) and phenotypic parents per se or their offspring data. In the paper, statistical (regression) prediction models involving the estimators of quantitative genetic parameters of parents are presented. The application and usefulness of these models are shown using as an example 7 agronomic characters of 27 F1 winter rye progeny populations obtained in factorial mating design between 9 population varieties (females) and 3 testers (male populations). Two types of models were considered. Models representing the first type include either a mid-parent value of the predicted character only as a predictor variable or both a mid-parent value and parental genetic distance (Mahalanobis distance, D2, of characters studied or absolute difference between parents for the traits studied, |D|) as two predictor variables. Two of the models representing the second type are similar to those of the first type. One of them is based on GCA effects of parents only, whereas the other includes both GCA effects and parental genetic distance. In the studies on winter rye the largest accuracy in predicting progeny means using the model based on the mid-parent value was found for two traits characterized by a relatively larger variation of both parents and F1 progeny families, and their whose performance was affected predominantly by genetic additive effects. The model based on GCA effects of parents was much more efficient for all characters than the other one. Both genetic distances of parents, incorporated into each of the reference models as the additional predictor variables, weakly increased the efficiency of predicting means for F1 winter rye progeny populations.


Keywords:

factorial mating design, Mahalanobis’ distance, GCA effects, mid-parent value, predicting means of F1 progeny populations, regression models for predicting, winter rye

Ajmone Marsan P., Castiglioni P., Fusari F., Kuiper M., Motto M. 1998. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor. Appl. Genet. 96: 219 — 227. DOI: https://doi.org/10.1007/s001220050730
Google Scholar

Argillier O., Méchin V., Barrière Y. 2000. Inbred line evaluation and breeding for igestibility-related traits in forage maize. Crop Sci. 40: 1596 — 1600. DOI: https://doi.org/10.2135/cropsci2000.4061596x
Google Scholar

Bains, K. S., Sood K. C. 1984. Resolution of genetic divergence for choice of parents in soybean breeding. Crop Improv. 11: 20 — 24.
Google Scholar

Balzarini M. 2002. Applications of mixed models in plant breeding. In: M. S. Kang (Ed), Quantitative Genetics, Genomics and Plant Breeding, CAB International Wallingford, UK: 353 — 363. DOI: https://doi.org/10.1079/9780851996011.0353
Google Scholar

Beattie A. D., Michaels T. E., Pauls K. P. 2003. Predicting progeny performance in common bean (Phaseolus vulgaris L.) using molecular marker-based cluster analysis. Genome 46: 259 — 267. DOI: https://doi.org/10.1139/g03-002
Google Scholar

Bednarek P. T., Chwedorzewska K., Króliczak., Puchalski J., Zawada M. 1999. Wykorzystanie markerów genetycznych typu ALFP do badań zmienności genetycznej linii wsobnych żyta. Biul. IHAR 211: 219 — 228.
Google Scholar

Bernardo R. 1995. Genetic models for predicting maize single-cross performance in unbalanced yield trial data. Crop Sci. 35: 141–147. DOI: https://doi.org/10.2135/cropsci1995.0011183X003500010026x
Google Scholar

Bhatt G. M. 1973. Comparison of various methods of selecting parents for hybridization in common bread wheat (Triticum aestivum L.). Aust. J. Agric. Res. 24: 457 — 464. DOI: https://doi.org/10.1071/AR9730457
Google Scholar

Bohn M., Utz H. F., Melchinger A. E. 1999. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci. 39: 228 — 237. DOI: https://doi.org/10.2135/cropsci1999.0011183X003900010035x
Google Scholar

Camussi A., Ottaviano E., Caliński T., Kaczmarek Z. 1985. Genetic distances based on quantitative traits. Genetics 111: 945 — 962. DOI: https://doi.org/10.1093/genetics/111.4.945
Google Scholar

Charcosset A., Bonnisseau B., Touchebeuf O., Burstin J., Dubreuil P., Barrière Y., Gallais A., Denis J. B. 1998. Prediction of maize hybrid silage performance using marker data: comparison of several models for specific combining ability. Crop Sci. 38: 38 — 44. DOI: https://doi.org/10.2135/cropsci1998.0011183X003800010007x
Google Scholar

Charcosset A., Denis J. B., Lefort-Buson M., Gallais A. 1993. Modelling interaction from top-cross data and prediction of F1 hybrid value. Agronomie 13: 597 — 608. DOI: https://doi.org/10.1051/agro:19930704
Google Scholar

Charcosset A., Essioux L. 1994. The effect of population structure on the relationship between heterosis and heterozygosity at marker loci. Theor. Appl. Genet. 89: 336 — 343. DOI: https://doi.org/10.1007/BF00225164
Google Scholar

Charcosset A., Lefort-Buson M., Gallais A. 1991. Relationship between heterosis and heterozygosity at marker loci: a theoretical computation. Theor. Appl. Genet. 81: 571 — 575. DOI: https://doi.org/10.1007/BF00226720
Google Scholar

Charcosset A., Lefort-Buson M., Gallais A. 1990. Use of top-cross design for predicting performance of maize single cross hybrid. Maydica 35: 23 — 27.
Google Scholar

Corbellini M., Perenzin M., Accerbi M., Vaccino P., Borghi B. 2002. Genetic diversity in bread wheat, as revealed by coefficient of parentage and molecular markers, and its relationship to hybrid performance. Euphytica 123: 273 — 285. DOI: https://doi.org/10.1023/A:1014946018765
Google Scholar

Dias L. A. S., Picoli E. A. T., Rocha R. B., Alfenas A. C. 2004. A priori choice of hybrid parents in plants. Genet. Mol. Res. 3: 356 — 368.
Google Scholar

Falconer D. S., Mackey T. F. 1996. Introduction to quantitative genetics. Longman Group Ltd, Londyn.
Google Scholar

Geleta L. F., Labuschagne M. T., Viljoen C. D. 2004. Relationship between heterosis and genetic distance based on morphological traits and AFLP markers in pepper. Plant Breeding 123: 467 — 473. DOI: https://doi.org/10.1111/j.1439-0523.2004.01017.x
Google Scholar

Gopal J., Minocha J. L. 1997. Genetic divergence for cross prediction in potato. Euphytica 97: 269 — 275. DOI: https://doi.org/10.1023/A:1003076207221
Google Scholar

Gopal J. 1998. Identification of superior parents and crosses in potato breeding programmes. Theor. Appl. Genet. 96: 287 — 293. DOI: https://doi.org/10.1007/s001220050738
Google Scholar

Gumber R. K., Schill B., Link W., Kittlitz E., Melchinger A. E. 1999. Mean, genetic variance, and usefulness of selfing progenies from intra- and inter-pool crosses in faba beans (Vicia faba L.) and their prediction from parental parameters. Theor. Appl. Genet. 98: 569 — 580. DOI: https://doi.org/10.1007/s001220051106
Google Scholar

Kaczmarek J., Bujak H., Kadłubiec W. 2001. Ocena podobieństwa linii wsobnych żyta ozimego na podstawie analizy wybranych cech. Biul. IHAR 218/219: 379 — 387.
Google Scholar

Łuczkiewicz T., Kaczmarek Z. 2004. The influence of morphological differences between sunflower inbred lines on their SCA effects for yield components. J. Appl. Genet. 45: 175 — 182.
Google Scholar

Maris B. 1989. Analysis of an incomplete diallel cross among three ssp. tuberosum varieties and seven long day adapted ssp. andigena clones of the potato (Solanum tuberosum L.). Euphytica 41: 163 — 182. DOI: https://doi.org/10.1007/BF00022425
Google Scholar

Mather K., Jinks J. L.1982. Biometrical genetics. Chapman and Hall, Londyn. DOI: https://doi.org/10.1007/978-1-4899-3406-2
Google Scholar

Mądry W., Krajewski P., Pluta S., Żurawicz E. 2004. Wielocechowa analiza wartości hodowlanej i zróżnicowania genetycznego odmian porzeczki czarnej (Ribes nigrum L.) na podstawie efektów ogólnej zdolności kombinacyjnej. Acta Scient. Polon. Hortorum. Cultus 3: 93 — 109.
Google Scholar

Melchinger A. E., Gumber R. K., Leipert R. B., Vuylsteke M., Kuiper M. 1998. Prediction of testcross means and variances among F3 progenies of F1 crosses from testcross means and genetic distances of their parents in maize. Theor. Appl. Genet. 96: 503 — 512. DOI: https://doi.org/10.1007/s001220050767
Google Scholar

Menkir A., Ayodele M. 2005. Genetic analysis of resistance to gray leaf spot of midaltitude maize inbred lines. Crop Sci. 45: 163 — 170. DOI: https://doi.org/10.2135/cropsci2005.0163a
Google Scholar

Oettler G., Burger H., Melchinger A.E. 2003. Heterosis and combining ability for grain yield and other agronomic traits in winter triticale. Plant Breeding 122: 318 — 321. DOI: https://doi.org/10.1046/j.1439-0523.2003.00877.x
Google Scholar

Oury F. X., Brabant P., Bérard P., Pluchard P. 2000. Predicting hybrid value in bread wheat: biometric modelling based on a ”top-cross" design. Theor. Appl. Genet. 100: 96 — 104. DOI: https://doi.org/10.1007/PL00002905
Google Scholar

Reif J. C., Melchinger A. E., Xia X. C., Warburton M. L., Hoisington D. A., Vasal S. K., Beck D., Bohn M., Frisch M. 2003. Use of SSRs for establishing heterotic groups in subtropical maize. Theor. Appl. Genet. 107: 947 — 957. DOI: https://doi.org/10.1007/s00122-003-1333-x
Google Scholar

Riday H., Brummer E. C., Campbell T. A, Luth D., Cazcarro P.M. 2003. Comparisons of genetic and morphological distance with heterosis between Medicago sativa subsp. sativa and subsp. falcata. Euphytica 131: 37 — 45. DOI: https://doi.org/10.1023/A:1023050126901
Google Scholar

Riday H., Brummer E. C. 2005. Heterosis in a broad range of alfalfa germplasm Crop Sci. 45: 8 — 17. DOI: https://doi.org/10.2135/cropsci2005.0008a
Google Scholar

Rodriguez-Burruezo A., Prohens J., Nuez F. 2003. Performance of hybrid segregating populations of pepino (Solanum mulic × atum) and its relation to genetic distance among parents. J. Hort. Sci. Biot. 78: 911 — 918. DOI: https://doi.org/10.1080/14620316.2003.11511718
Google Scholar

SAS/STAT User's Guide, Version 8.2. 2002. SAS Institute, Cary NC.
Google Scholar

Schut J. W., Dourleijn C. J. 2000. Prediction of barley progeny performance in the presence of genotype-environment interaction. Plant Breeding 119: 47 — 50. DOI: https://doi.org/10.1046/j.1439-0523.2000.00445.x
Google Scholar

Smith J. S. C. and Smith O. S.. 1989. The description and assessment of distances between inbred lines of maize: I. The use of morphological traits as descriptors. Maydica 34: 141 — 150.
Google Scholar

Śmiałowski T., Węgrzyn S. 2001. Addytywno-dominujący sposób działania genów odpowiedzialnych za dziedziczenie różnych cech rolniczych u żyta ozimego. Pam. Puł. 128: 247 — 256.
Google Scholar

Śmiałowski T., Węgrzyn S. 2003. Genetyczno-statystyczne parametry dziedziczenia cech użytkowych żyta ozimego (Secale cereale L.). Biul. IHAR 230: 205 — 214.
Google Scholar

Utz H. F., Bohn M., Melchinger A. E. 2001. Predicting progeny means and variances of winter wheat crosses from phenotypic values of their parents. Crop Sci. 41: 1470 — 1478. DOI: https://doi.org/10.2135/cropsci2001.4151470x
Google Scholar

Van Esbroeck G. A., Bowman D. T., May O. L., Calhoun D. S. 1999. Genetic similarity indices for ancestral cotton cultivars and their impact on genetic diversity estimates of modern cultivars. Crop Sci. 39:323–328. DOI: https://doi.org/10.2135/cropsci1999.0011183X003900020003x
Google Scholar

Vuylsteke M., Kuiper M., Stam P. 2000. Chromosomal regions involved in hybrid performance and heterosis: their AFLP®-based identification and practical use in prediction models. Heredity 85: 208 — 218. DOI: https://doi.org/10.1046/j.1365-2540.2000.00747.x
Google Scholar

Yan W., Rajcan I. 2003. Prediction of cultivar performance based on single vs. multiple year trials. Crop Sci. 43: 549 — 555. DOI: https://doi.org/10.2135/cropsci2003.5490
Google Scholar


Published
2005-03-31

Cited by

Mądry, W., Śmiałowski, T. and Ukalski, K. (2005) “Predicting progeny means from quantitative genetic parameters of parents: models and their use for winter rye”, Bulletin of Plant Breeding and Acclimatization Institute, (235), pp. 251–268. doi: 10.37317/biul-2005-0082.

Authors

Wiesław Mądry 
wieslaw_madry@sggw.edu.pl
`Katedra Biometrii SGGW w Warszawie Poland

Authors

Tadeusz Śmiałowski 

Zakład Oceny Jakości i Metod Hodowli Zbóż, IHAR Oddział w Krakowie Poland

Authors

Krzysztof Ukalski 

Katedra Biometrii SGGW w Warszawie Poland

Statistics

Abstract views: 219
PDF downloads: 36


License

Copyright (c) 2005 Wiesław Mądry, Tadeusz Śmiałowski, Krzysztof Ukalski

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >>