Overview of applications of statistical methods in the analysis of data from a series of experiments

Adriana Derejko

adriana_derejko@sggw.edu.pl
Katedra Doświadczalnictwa i Bioinformatyki, Szkoła Główna Gospodarstwa Wiejskiego, Warszawa (Poland)

Wiesław Mądry


Katedra Doświadczalnictwa i Bioinformatyki, Szkoła Główna Gospodarstwa Wiejskiego, Warszawa (Poland)

Abstract

Introduction of new varieties to the cultivation is associated with the risk of failure in the production which increases with decreasing knowledge of their response to different environmental conditions and crop management factors. Thus, the implementation of each variety does not stop at the stage of preliminary tests and its registration, but next to the reproduction of the seed, it also includes an assessment of the economic value of variety in multiple series of post-registration trials. A steady supply to agriculture of newly registered varieties requires from the post-registration experimental variety testing, the efficient and reliable verification of the economic value of tested varieties. These field experiments allow to significantly reduce the risk of introducing the cultivation of varieties unsuitable for agriculture, i.e. those which do not provide high production and economic effects in different or only selected (specific) environmental conditions and systems of crops and agricultural techniques. Data from these series of experiments require the use of specialized and complementary statistical methodology. In this work, an overview of a series of varietal and agrotechnical experiments is presented and the statistical methodology described.


Keywords:

statistical methods, multi-environment experimental series, combined analysis of variance

Anderson W. K. 2010. Closing the gap between actual and potential yield of rainfed wheat. The impacts of environment, management and cultivar. Field Crops Res. 116: 14 — 22.
Google Scholar

Anderson W. K., Van Burgel A. J., Sharma D. L., Shackley B. J., Zaicou-Kunesch C. M., Miyan M. S., Amjad M. 2011. Assessing specific agronomic responses of wheat cultivars in a winter rainfall environment. Crop and Pasture Sci. 62: 115 — 124.
Google Scholar

Annicchiarico P. 2002 a. Defining adaptation strategies and yield stability targets in breeding programmers W: Kang M.S. (Ed.) Quantitative genetics, genomics and plant breeding. CAB, Wallingford, UK.: 165 — 183.
Google Scholar

Annicchiarico P. 2002 b. Genotype-environment interactions: challenges and opportunities for plant breeding and cultivar recommendations. FAO Plant Production and Protection Paper No. 174. Food and Agriculture Organization, Rome.
Google Scholar

Annicchiarico P. 2009. Coping with and exploiting genotype × environment interactions. In: Ceccarelli S., Guimarães E. P., Weltzien E. (eds), Plant Breeding and Farmer Participation. Food and Agricultural Organization, Rome: 519 — 564.
Google Scholar

Annicchiarico P., Chiapparino E., Perenzin M. 2010 a. Response of common wheat varieties to organic and conventional production systems across Italian locations and implications for selection. Field Crops Res. 116: 230 — 238.
Google Scholar

Annicchiarico P., Scotti C., Carelli M., Pecetti L. 2010 b. Questions and avenues for lucerne improvement. Czech J. Genet. Plant Breed. 46:1 — 13.
Google Scholar

Annicchiarico P., Iannucci A. 2008. Adaptation strategy, germplasm type and adaptive traits for field pea improvement in Italy based on variety responses across climatically contrasting environments. Field Crops Res. 108:133 — 142.
Google Scholar

Annicchiarico P., Pecetti L., Abdelguerfi A., Bouizgaren A., Carroni A. M., Hayek T., M’Hammadi Bouzina M., Mezni M. 2011. Adaptation of landrace and variety germplasm and selection strategies for lucerne in the Mediterranean basin. Field Crops Res. 120: 283 — 291.
Google Scholar

Basford K. E., Cooper M. 1998. Genotype × environment interactions and some considerations of their implications for wheat breeding in Australia. Aust. J. Agric. Res. 49: 153 — 174.
Google Scholar

Becker H. C., Leon J. 1988. Stability analysis in plant breeding. Plant Breeding 101, 1: 1 — 23.
Google Scholar

Brancourt-Hulmel M., Doussinault G., Lecomte C., Berard P., Le Buaec B., Trottet M. 2003. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992. Crop Sci. 43: 37 — 45.
Google Scholar

Bujak H., Tratwa G. 2011. Ocena stabilności plonowania odmian pszenicy ozimej na podstawie doświadczeń porejestrowych w Polsce. Biul. IHAR 260/261: 69 — 79.
Google Scholar

Caliński T., Czajka S., Kaczmarek Z, Krajewski P. 1998. SERGEN 4 — Analysis of series of variety trials and plant genetic or breeding experiments. Institute of Plant Genetics, Polish Academy of Sciences, and Department of Mathematical and Statistical Methods, Agricultural University, Poznań, Poland.
Google Scholar

Caliński T., Czajka S., Kaczmarek Z. 1983. Analiza jednorocznej serii ortogonalnej doświadczeń odmianowych ze szczególnym uwzględnieniem interakcji odmianowo-środowiskowej. 1. Analiza szczegółowa. Biul. Oceny Odmian 15: 39 — 60.
Google Scholar

Caliński T., Czajka S., Kaczmarek Z. 1987. A model for the analysis of a series of experiments repeated at several places over a period of years. I. Theory. Biul. Oceny Odmian 17/18: 7 — 33.
Google Scholar

Caliński T., Czajka S., Kaczmarek Z., Krajewski P., Pilarczyk W. 2005. Analyzing Multi-environment Variety Trials Using Randomization-Derived Mixed Models. Biometrics 61 (2): 448 — 55.
Google Scholar

Caliński T., Czajka S., Kaczmarek Z., Krajewski P., Pilarczyk W. 2009. Analyzing the genotype-by-environment interactions under a randomization-derived mixed model. JABES 14 (2).
Google Scholar

Caliński T., Czajka S., Kaczmarek Z., Krajewski P., Siatkowski I. 1995. SERGEN-A computer program for the analysis of series of variety trials. Biul. Oceny Odmian 26–27: 39 — 41.
Google Scholar

Chapman S.C., Crossa J., Edmeades G. O. 1997. Genotype by environment effects and selection for drought tolerance in tropical maize. I. Two mode pattern analysis of yield. Euphytica 95: 1 — 9.
Google Scholar

Cooper M., Woodruff D. R., Phillips I. G., Basford K.E., Gilmour A. R. 2001. Genotype-by-management interactions for grain yield and grain protein concentration of wheat. Field Crops Res. 69: 47 — 67.
Google Scholar

Crossa J., Cornelius P. L., Yan W. 2002. Biplots of linear-bilinear models for studying crossover genotype × environment interaction Crop Sci. 42: 619 — 633.
Google Scholar

Crossa J., Franco J. 2004. Statistical methods for classifying genotypes. Euphytica 137: 19 — 37.
Google Scholar

Crossa J., Vargas M., Joshi A. K. 2010. Linear, bilinear, and linear-bilinear fixed and mixed models for analyzing genotype × environment interaction in plant breeding and agronomy. Can. J. Plant Sci. 90: 561 — 574.
Google Scholar

de la Vega A. J., Chapman S. C. 2006. Defining sunflower selection strategies for a highly heterogeneous target population of environments. Crop Sci. 46: 136 — 144.
Google Scholar

de la Vega A. J., Chapman S. 2010. Mega-environment differences affecting genetic progress for yield and relative value of component traits. Crop Sci. 50: 574 — 583.
Google Scholar

de la Vega A. J., DeLacy I. H., Chapman S.C. 2007. Changes in agronomic traits of sunflower hybrids over 20 years of breeding in central Argentina. Field Crops Res. 100: 73 — 81.
Google Scholar

DeLacy I. H., Kaul S., Rana B. S., Cooper M. 2010 a. Genotypic variation for grain and stover yield of dry land (rabi) sorghum in India, 1. Magnitude of genotype × environment interactions. Field Crops Res. 118: 228 — 235.
Google Scholar

DeLacy I. H., Kaul S., Rana R. A., Cooper M. 2010 b. Genotypic variation for grain and stover yield of dryland (rabi) sorghum in India, 2. A characterization of genotype × environment interactions. Field Crops Res. 118: 236 — 242.
Google Scholar

De Vita P., Mastrangelo A. M., Matteu L., Mazzucotelli E., Virzi N., Palumbo M., Lo Storto M., Rizza F., Cattivelli L. 2010. Genetic improvement effects on yield stability in durum wheat genotypes grown in Italy. Field Crops Res. 119: 68 — 77.
Google Scholar

Derejko A., Mądry W., Gozdowski D., Rozbicki J., Golba J., Piechociński M., Studnicki M. 2011. Wpływ odmian, miejscowości i intensywności uprawy oraz ich interakcji na plon pszenicy ozimej w doświadczeniach PDO. Biul. IHAR 259: 131 — 146.
Google Scholar

Ebdon J. S., Gauch H. G. 2002. Additive main effect and multiplicative interactions analysis of national turfgrass performance trials. Interpretation of genotype x environment interactions. Crop Sci. 42: 489 — 496.
Google Scholar

Finlay K. W., Wilkilson G. N. 1963. The analysis of adaptation in a plant breeding programme. Aust. J. Agric. Sci. 14.
Google Scholar

Gan Y., Johnston A., Knight D., McDonald C., Stevenson C. 2010. Nitrogen dynamics of chickpea: Effects of cultivar choice, N fertilization, Rhizobium inoculation, and cropping systems. Can. J. Plant Sci. 90: 655 — 666.
Google Scholar

Gauch H. G. 1992. Statistical analysis of regional yield trials. AMMI analysis of factorial designs. Elsevier Science, New York.
Google Scholar

Gauch H. G. 2006. Statistical analysis of yield trials by AMMI and GGE. Crop Sci. 46: 1488 — 1500.
Google Scholar

Gauch H. G., Piepho H. P., Annicchiarico P. 2008. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Sci. 48: 866 — 889.
Google Scholar

Gauch H. G., Zobel R. W. 1996. AMMI analysis of yield trials. In: M. S. Kang, H. G. Gauch (Ed.) Genotype by environment interaction. CRC Press, Boca Raton: 85 — 122.
Google Scholar

Gauch H. G., Zobel R. W. 1997. Identifying mega-environments and targeting genotypes. Crop Sci. 37: 311 — 326.
Google Scholar

GenStat 2002. The guide to Genstat. Release 6.1. VSN International. Oxford, UK.
Google Scholar

Gilmour A., Cullis B., Welham S., Gogel B., Thompson R. 2004. An efficient computing strategy for prediction in mixed linear models. Comput. Stat. Data An. 44: 571 — 586.
Google Scholar

Gilmour A. Thompson R., Cullis B. R. 1995. Average information REML: An efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51: 1440 — 1450.
Google Scholar

Gogel B. J., Cullis, B. R., Thompson R. 2009. ASReml UserGuide Release 3.0 VSN International Ltd, Hemel Hempstead, HP1 1ES, UK.
Google Scholar

Gollob H. 1968. A statistical model which combines features of factor analytic and analysis of variance techniques. Psychometrika 33: 73 — 115.
Google Scholar

Iwańska M., Mądry W., Drzazga T., Rajfura A. 2008. Zastosowanie miar statystycznych do oceny stopnia szerokiej adaptacji odmian pszenicy ozimej na podstawie serii doświadczeń przedrejestrowych. Biul. IHAR 250: 67 — 86.
Google Scholar

Kang M. S. 1993. Simultaneous selection for yield and stability in crop performance trials: Consequences for growers. Agron. J. 85: 754 — 757.
Google Scholar

Kang M. S. 1998. Using genotype-by environment interaction for crop cultivar development. Adv. Agron. 62: 199 — 253.
Google Scholar

Kang M.S. 2002. Genotype-environment interaction: Progress and prospects. In: Kang M.S. (Ed.), Quantitative genetics, genomics and plant breeding, CAB International Wallingford, UK: 221 — 243.
Google Scholar

Loyce C., Meynard J. M., Bouchard C., Rolland B., Lonnet P., Bataillon P., Bernicot M. H., Bonnefoy M., Charrier X., Debote B., Demarquet T., Duperrier B., Felix I., Hedddadj D., Leblanc O., Leleu M., Mangin P., Meausoone M., Doussinault G. 2008. Interaction between cultivar and crop management effects on winter wheat diseases, lodging, and yield. Crop Protect. 27: 1131 — 1142.
Google Scholar

Loyce C., Meynard J. M., Bouchard C., Rolland B., Lonnet P., Bataillon P., Bernicot M. H., Bonnefoy M., Charrier X., Debote B., Demarquet T., Duperrier B., Felix I., Hedddadj D., Leblanc O., Leleu M., Mangin P., Meausoone M., Doussinault G. 2011. Growing winter wheat cultivars under different management intesities in France: A multicriteria assessment based on economic, energetic and environmental indicators. Field Crops Res. 125: 167 — 178.
Google Scholar

Ma B. L., Yan W., Dwyer L. M., Fregeau-Reid J., Voldeng H. D., Dion Y., Nass H. 2004. Graphic analysis of genotype, environment, nitrogen fertilizer, and their interactions on spring wheat yield. Agron. J. 96: 169 — 180.
Google Scholar

Mądry W. 2003. Analiza statystyczna miar stabilności na podstawie danych w klasyfikacji genotypy × środowiska. Część II. Model mieszany Shukli i model regresji łącznej. Coll. Biom. 33: 207 — 220.
Google Scholar

Mądry W., Kang M. S. 2005. Scheffé-Caliński and Shukla models: their interpretation and usefulness in stability and adaptation analyses. J. Crop Improv. 14: 325 — 369.
Google Scholar

Mądry W., Paderewski J., Drzazga T. 2006. Ocena reakcji plonu ziarna rodów hodowlanych pszenicy ozimej na zmienne warunki środowiskowe za pomocą analizy AMMI. Fragm. Agron. 92: 130 — 143.
Google Scholar

Mądry W., Paderewski J., Gazdowski D., Drzazga T. 2011. Adaptive yield response of winter wheat cultivars across environments in Poland using joint AMMI and cluster analyses. Intern. J. Plant Prod. 5: 299 — 310.
Google Scholar

Mądry W., Paderewski J., Rozbicki J., Gozdowski D., Golba J., Piechociński M., Studnicki M., Derejko A. 2012. Plonowanie odmian pszenicy ozimej w różnych środowiskach — jednoroczna seria PDOiR. Biul. IHAR 263: 189 — 204.
Google Scholar

McIntosh M. S. 1983. Analysis of combined experiments. Agron. J. 75: 153 — 155.
Google Scholar

Mohammadi R., Amri A. 2009. Analysis of genotype × environment interactions for grain yield in durum wheat. Crop Sci. 49: 1177 — 1186.
Google Scholar

Mohammadi R., Sadeghzadeh D., Armion M., Amri A. 2011. Evaluation of durum wheat experimental lines under different climate and water regime conditions of Iran. Crop Pasture Sci. 62: 137 — 151.
Google Scholar

Murphy K. M., Campbell K. G., Lyon S. R., Jones S. S. 2007. Evidence of varietal adaptation to organic farming systems. Field Crops Res. 102: 172 — 177.
Google Scholar

Paderewski J. 2008. Przydatność modelu AMMI do badania reakcji roślin rolniczych na warunki środowiskowe. Praca doktorska, Wydział Rolnictwa i Biologii, SGGW.
Google Scholar

Paderewski J., Gauch H. G., Mądry W., Drzazga T., Rodrigues P. C. 2011 Yield response of winter wheat to agro-ecological conditions using additive main effects and multiplicative interaction and cluster analysis. Crop Sci. 51: 969 — 980.
Google Scholar

Paderewski J., Mądry W. 2012. Zastosowania modelu AMMI do analizy reakcji odmian na warunki środowisk rolniczych. Biul. IHAR 263: 161 — 188.
Google Scholar

Pecetti L., Annicchiarico P., Abdelguerfi A., Kallida R., Mefti M., Porqueddu C., Simoes N., Volaire F., Lelievre F. 2011. Response of mediterranean tall fescue cultivars to contrasting agricultural environments and implications for selection. J. Agron. Crop Sci. 197: 12 — 20.
Google Scholar

Peltonen-Sainio P., Jauhiainen L., Laurila I. P. 2009. Cereal yield in northern European conditions. Changes in yield potential and its realisation. Field Crops Res. 110:85 — 90.
Google Scholar

Piepho H. P., Möhring J., Melchinger A. E., Büchse A. 2008. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161: 209 — 228.
Google Scholar

Piepho, H. P., van Eeuwijk F.A. 2002. Stability analyses in crop performance evaluation. In: Kang M.S. [ed.]: Crop improvement: Challenges in the twenty-first century”. Food Products Press, Binghamton. New York: 307 — 342.
Google Scholar

Pilarczyk W. 1983. Wykorzystanie analizy skupień do podziału stacji doświadczalnych na grupy o małej interakcji odmianowo-środowiskowej. Colloqium Biometryczne 13: 133 — 147.
Google Scholar

Pilarczyk W., Kamiński J. 1995. Application of some traditional models and AMMI model for analysis of a series of cereal trials. Biuletyn Oceny Odmian. 26–27: 179 — 188.
Google Scholar

Pinnschmidt H. O., Hovmøller M. S. 2002. Genotype × environment interactions in the expression of net blotch resistance in spring and winter barley varieties. Euphytica 125: 227 — 243.
Google Scholar

Raman A., Ladha J. K., Kumar V., Sharma S., Piepho H. P. 2011. Stability analysis of farmer participatory trials for conservation agriculture using mixed models. Field Crops Res. 121: 450 — 459.
Google Scholar

SAS Institute Inc. 2004 SAS OnlineDoc® 9.1.3. Cary, NC.
Google Scholar

Smith A. B., Cullis B. R., Thompson R. 2005. The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches. J. Agric. Sci. 143:449 — 462.
Google Scholar

So Y.S, Edwards J. 2009. A Comparison of mixed-model analyses of the Iowa Crop Performance Test for corn. Crop Sci. 49: 1593 — 1601.
Google Scholar

Stiller W. N., Reid P. E., Constable G. A. 2004. Maturity and leaf shape as traits influencing cotton cultivar adaptation to dryland conditions. Agron. J. 96: 656 — 664.
Google Scholar

Surprenant J., Drapeau R., Fernet C. 1993. Cultivar by management interactions effects on timothy yield and quality evaluation. Can. J. Plant Sci. 73: 445 — 460.
Google Scholar

Thangavel P., Anandan A., Eswaran R. 2011. AMMI analysis to comprehend genotype by environment (G × E) interactions in rainfed grown mungbean (Vigna radiata L.). Aust. J. Crop Sci. 5: 1767 — 1775.
Google Scholar

van Eeuwijk F. A., Keizer L. C. E., Bakker J. J. 1995. Linear and bilinear models for the analysis of multi-environment trials: II. An application to data from the Dutch Maize Variety Trials. Euphytica 84: 9 — 22.
Google Scholar

Viele K., Srinivasan C. 2000. Parsimonious estimation of multiplicative interaction in analysis of variance using Kullback-Leibler Information. J. Stat. Plan. Inf. 84: 201 — 219.
Google Scholar

Ward J. H. 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58: 236 — 244.
Google Scholar

Welham S. J., Gogel B. J., Smith A. B., Thompson R., Cullis B. R. 2010. A comparison of analysis methods for late stage variety evaluation trials. Aust. N. Z. J. Stat. 52: 125 — 149.
Google Scholar

Yan W., Kang M. S. 2003. GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton, FL.
Google Scholar

Yan W., Kang M. S., Ma B., Woods S., Cornelius P. L. 2007. GGE biplot vs. AMMI analysis of genotype- by-environment data. Crop Sci. 47: 643 — 653.
Google Scholar

Zhang Y., He Z., Zhang A., van Ginkel M., Pena R.J., Ye G. 2006. Pattern analysis on protein properties of Chinese and CIMMYT spring wheat cultivars sown in China and CIMMYT. Austr. J. Agric. Res. 57: 811 — 822.
Google Scholar

http://www.coboru.pl
Google Scholar

http://www.vsni.co.uk
Google Scholar


Published
2014-09-30

Cited by

Derejko, A. and Mądry, W. (2014) “Overview of applications of statistical methods in the analysis of data from a series of experiments”, Bulletin of Plant Breeding and Acclimatization Institute, (273), pp. 101–118. doi: 10.37317/biul-2014-0021.

Authors

Adriana Derejko 
adriana_derejko@sggw.edu.pl
Katedra Doświadczalnictwa i Bioinformatyki, Szkoła Główna Gospodarstwa Wiejskiego, Warszawa Poland

Authors

Wiesław Mądry 

Katedra Doświadczalnictwa i Bioinformatyki, Szkoła Główna Gospodarstwa Wiejskiego, Warszawa Poland

Statistics

Abstract views: 55
PDF downloads: 64


License

Copyright (c) 2014 Adriana Derejko, Wiesław Mądry

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)

<< < 1 2 3 > >>