Przegląd zastosowań metod statystycznych w analizie danych z serii doświadczeń odmianowych i odmianowo-agrotechnicznych

Adriana Derejko

adriana_derejko@sggw.edu.pl
Katedra Doświadczalnictwa i Bioinformatyki, Szkoła Główna Gospodarstwa Wiejskiego, Warszawa (Poland)

Wiesław Mądry


Katedra Doświadczalnictwa i Bioinformatyki, Szkoła Główna Gospodarstwa Wiejskiego, Warszawa (Poland)

Abstrakt

Wprowadzenie do uprawy nowych odmian związane jest z ryzykiem ich niepowodzenia w produkcji, które zwiększa się wraz z malejącą wiedzą o ich reakcji na zróżnicowane warunki środowiskowe (siedliskowe) i czynniki agrotechniczne. Zatem, proces wdrażania każdej odmiany nie kończy się na etapie badań wstępnych i jej zarejestrowania, lecz obok reprodukcji materiału nasiennego, obejmuje on także ocenę wartości gospodarczej odmiany w wielokrotnych seriach doświadczeń porejestrowych. Stały dopływ do rolnictwa nowo zarejestrowanych odmian nakłada na porejestrowe doświadczalnictwo odmianowe i odmianowo-agrotechniczne, konieczność sprawnej i wiarygodnej weryfikacji ich wartości gospodarczej. Wymienione doświadczenia pozwalają znacząco zmniejszyć ryzyko wprowadzenia do uprawy odmian nieprzydatnych dla rolnictwa, czyli takich, które nie zapewniają wysokich efektów produkcyjnych i ekonomicznych w różnych lub tylko wybranych (specyficznych) warunkach środowiskowych oraz systemach uprawy roślin i agrotechnice. Dane z wymienionych serii doświadczeń wymagają zastosowania specjalistycznej i komplementarnej metodyki statystycznej. W niniejszej pracy przedstawiony został przegląd serii doświadczeń odmianowych i odmianowo-agrotechnicznych wraz z zastosowaną metodyką statystyczną.


Słowa kluczowe:

metodyka statystyczna, wielokrotne serie doświadczeń, łączna analiza wariancji

Anderson W. K. 2010. Closing the gap between actual and potential yield of rainfed wheat. The impacts of environment, management and cultivar. Field Crops Res. 116: 14 — 22.
Google Scholar

Anderson W. K., Van Burgel A. J., Sharma D. L., Shackley B. J., Zaicou-Kunesch C. M., Miyan M. S., Amjad M. 2011. Assessing specific agronomic responses of wheat cultivars in a winter rainfall environment. Crop and Pasture Sci. 62: 115 — 124.
Google Scholar

Annicchiarico P. 2002 a. Defining adaptation strategies and yield stability targets in breeding programmers W: Kang M.S. (Ed.) Quantitative genetics, genomics and plant breeding. CAB, Wallingford, UK.: 165 — 183.
Google Scholar

Annicchiarico P. 2002 b. Genotype-environment interactions: challenges and opportunities for plant breeding and cultivar recommendations. FAO Plant Production and Protection Paper No. 174. Food and Agriculture Organization, Rome.
Google Scholar

Annicchiarico P. 2009. Coping with and exploiting genotype × environment interactions. In: Ceccarelli S., Guimarães E. P., Weltzien E. (eds), Plant Breeding and Farmer Participation. Food and Agricultural Organization, Rome: 519 — 564.
Google Scholar

Annicchiarico P., Chiapparino E., Perenzin M. 2010 a. Response of common wheat varieties to organic and conventional production systems across Italian locations and implications for selection. Field Crops Res. 116: 230 — 238.
Google Scholar

Annicchiarico P., Scotti C., Carelli M., Pecetti L. 2010 b. Questions and avenues for lucerne improvement. Czech J. Genet. Plant Breed. 46:1 — 13.
Google Scholar

Annicchiarico P., Iannucci A. 2008. Adaptation strategy, germplasm type and adaptive traits for field pea improvement in Italy based on variety responses across climatically contrasting environments. Field Crops Res. 108:133 — 142.
Google Scholar

Annicchiarico P., Pecetti L., Abdelguerfi A., Bouizgaren A., Carroni A. M., Hayek T., M’Hammadi Bouzina M., Mezni M. 2011. Adaptation of landrace and variety germplasm and selection strategies for lucerne in the Mediterranean basin. Field Crops Res. 120: 283 — 291.
Google Scholar

Basford K. E., Cooper M. 1998. Genotype × environment interactions and some considerations of their implications for wheat breeding in Australia. Aust. J. Agric. Res. 49: 153 — 174.
Google Scholar

Becker H. C., Leon J. 1988. Stability analysis in plant breeding. Plant Breeding 101, 1: 1 — 23.
Google Scholar

Brancourt-Hulmel M., Doussinault G., Lecomte C., Berard P., Le Buaec B., Trottet M. 2003. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992. Crop Sci. 43: 37 — 45.
Google Scholar

Bujak H., Tratwa G. 2011. Ocena stabilności plonowania odmian pszenicy ozimej na podstawie doświadczeń porejestrowych w Polsce. Biul. IHAR 260/261: 69 — 79.
Google Scholar

Caliński T., Czajka S., Kaczmarek Z, Krajewski P. 1998. SERGEN 4 — Analysis of series of variety trials and plant genetic or breeding experiments. Institute of Plant Genetics, Polish Academy of Sciences, and Department of Mathematical and Statistical Methods, Agricultural University, Poznań, Poland.
Google Scholar

Caliński T., Czajka S., Kaczmarek Z. 1983. Analiza jednorocznej serii ortogonalnej doświadczeń odmianowych ze szczególnym uwzględnieniem interakcji odmianowo-środowiskowej. 1. Analiza szczegółowa. Biul. Oceny Odmian 15: 39 — 60.
Google Scholar

Caliński T., Czajka S., Kaczmarek Z. 1987. A model for the analysis of a series of experiments repeated at several places over a period of years. I. Theory. Biul. Oceny Odmian 17/18: 7 — 33.
Google Scholar

Caliński T., Czajka S., Kaczmarek Z., Krajewski P., Pilarczyk W. 2005. Analyzing Multi-environment Variety Trials Using Randomization-Derived Mixed Models. Biometrics 61 (2): 448 — 55.
Google Scholar

Caliński T., Czajka S., Kaczmarek Z., Krajewski P., Pilarczyk W. 2009. Analyzing the genotype-by-environment interactions under a randomization-derived mixed model. JABES 14 (2).
Google Scholar

Caliński T., Czajka S., Kaczmarek Z., Krajewski P., Siatkowski I. 1995. SERGEN-A computer program for the analysis of series of variety trials. Biul. Oceny Odmian 26–27: 39 — 41.
Google Scholar

Chapman S.C., Crossa J., Edmeades G. O. 1997. Genotype by environment effects and selection for drought tolerance in tropical maize. I. Two mode pattern analysis of yield. Euphytica 95: 1 — 9.
Google Scholar

Cooper M., Woodruff D. R., Phillips I. G., Basford K.E., Gilmour A. R. 2001. Genotype-by-management interactions for grain yield and grain protein concentration of wheat. Field Crops Res. 69: 47 — 67.
Google Scholar

Crossa J., Cornelius P. L., Yan W. 2002. Biplots of linear-bilinear models for studying crossover genotype × environment interaction Crop Sci. 42: 619 — 633.
Google Scholar

Crossa J., Franco J. 2004. Statistical methods for classifying genotypes. Euphytica 137: 19 — 37.
Google Scholar

Crossa J., Vargas M., Joshi A. K. 2010. Linear, bilinear, and linear-bilinear fixed and mixed models for analyzing genotype × environment interaction in plant breeding and agronomy. Can. J. Plant Sci. 90: 561 — 574.
Google Scholar

de la Vega A. J., Chapman S. C. 2006. Defining sunflower selection strategies for a highly heterogeneous target population of environments. Crop Sci. 46: 136 — 144.
Google Scholar

de la Vega A. J., Chapman S. 2010. Mega-environment differences affecting genetic progress for yield and relative value of component traits. Crop Sci. 50: 574 — 583.
Google Scholar

de la Vega A. J., DeLacy I. H., Chapman S.C. 2007. Changes in agronomic traits of sunflower hybrids over 20 years of breeding in central Argentina. Field Crops Res. 100: 73 — 81.
Google Scholar

DeLacy I. H., Kaul S., Rana B. S., Cooper M. 2010 a. Genotypic variation for grain and stover yield of dry land (rabi) sorghum in India, 1. Magnitude of genotype × environment interactions. Field Crops Res. 118: 228 — 235.
Google Scholar

DeLacy I. H., Kaul S., Rana R. A., Cooper M. 2010 b. Genotypic variation for grain and stover yield of dryland (rabi) sorghum in India, 2. A characterization of genotype × environment interactions. Field Crops Res. 118: 236 — 242.
Google Scholar

De Vita P., Mastrangelo A. M., Matteu L., Mazzucotelli E., Virzi N., Palumbo M., Lo Storto M., Rizza F., Cattivelli L. 2010. Genetic improvement effects on yield stability in durum wheat genotypes grown in Italy. Field Crops Res. 119: 68 — 77.
Google Scholar

Derejko A., Mądry W., Gozdowski D., Rozbicki J., Golba J., Piechociński M., Studnicki M. 2011. Wpływ odmian, miejscowości i intensywności uprawy oraz ich interakcji na plon pszenicy ozimej w doświadczeniach PDO. Biul. IHAR 259: 131 — 146.
Google Scholar

Ebdon J. S., Gauch H. G. 2002. Additive main effect and multiplicative interactions analysis of national turfgrass performance trials. Interpretation of genotype x environment interactions. Crop Sci. 42: 489 — 496.
Google Scholar

Finlay K. W., Wilkilson G. N. 1963. The analysis of adaptation in a plant breeding programme. Aust. J. Agric. Sci. 14.
Google Scholar

Gan Y., Johnston A., Knight D., McDonald C., Stevenson C. 2010. Nitrogen dynamics of chickpea: Effects of cultivar choice, N fertilization, Rhizobium inoculation, and cropping systems. Can. J. Plant Sci. 90: 655 — 666.
Google Scholar

Gauch H. G. 1992. Statistical analysis of regional yield trials. AMMI analysis of factorial designs. Elsevier Science, New York.
Google Scholar

Gauch H. G. 2006. Statistical analysis of yield trials by AMMI and GGE. Crop Sci. 46: 1488 — 1500.
Google Scholar

Gauch H. G., Piepho H. P., Annicchiarico P. 2008. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Sci. 48: 866 — 889.
Google Scholar

Gauch H. G., Zobel R. W. 1996. AMMI analysis of yield trials. In: M. S. Kang, H. G. Gauch (Ed.) Genotype by environment interaction. CRC Press, Boca Raton: 85 — 122.
Google Scholar

Gauch H. G., Zobel R. W. 1997. Identifying mega-environments and targeting genotypes. Crop Sci. 37: 311 — 326.
Google Scholar

GenStat 2002. The guide to Genstat. Release 6.1. VSN International. Oxford, UK.
Google Scholar

Gilmour A., Cullis B., Welham S., Gogel B., Thompson R. 2004. An efficient computing strategy for prediction in mixed linear models. Comput. Stat. Data An. 44: 571 — 586.
Google Scholar

Gilmour A. Thompson R., Cullis B. R. 1995. Average information REML: An efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51: 1440 — 1450.
Google Scholar

Gogel B. J., Cullis, B. R., Thompson R. 2009. ASReml UserGuide Release 3.0 VSN International Ltd, Hemel Hempstead, HP1 1ES, UK.
Google Scholar

Gollob H. 1968. A statistical model which combines features of factor analytic and analysis of variance techniques. Psychometrika 33: 73 — 115.
Google Scholar

Iwańska M., Mądry W., Drzazga T., Rajfura A. 2008. Zastosowanie miar statystycznych do oceny stopnia szerokiej adaptacji odmian pszenicy ozimej na podstawie serii doświadczeń przedrejestrowych. Biul. IHAR 250: 67 — 86.
Google Scholar

Kang M. S. 1993. Simultaneous selection for yield and stability in crop performance trials: Consequences for growers. Agron. J. 85: 754 — 757.
Google Scholar

Kang M. S. 1998. Using genotype-by environment interaction for crop cultivar development. Adv. Agron. 62: 199 — 253.
Google Scholar

Kang M.S. 2002. Genotype-environment interaction: Progress and prospects. In: Kang M.S. (Ed.), Quantitative genetics, genomics and plant breeding, CAB International Wallingford, UK: 221 — 243.
Google Scholar

Loyce C., Meynard J. M., Bouchard C., Rolland B., Lonnet P., Bataillon P., Bernicot M. H., Bonnefoy M., Charrier X., Debote B., Demarquet T., Duperrier B., Felix I., Hedddadj D., Leblanc O., Leleu M., Mangin P., Meausoone M., Doussinault G. 2008. Interaction between cultivar and crop management effects on winter wheat diseases, lodging, and yield. Crop Protect. 27: 1131 — 1142.
Google Scholar

Loyce C., Meynard J. M., Bouchard C., Rolland B., Lonnet P., Bataillon P., Bernicot M. H., Bonnefoy M., Charrier X., Debote B., Demarquet T., Duperrier B., Felix I., Hedddadj D., Leblanc O., Leleu M., Mangin P., Meausoone M., Doussinault G. 2011. Growing winter wheat cultivars under different management intesities in France: A multicriteria assessment based on economic, energetic and environmental indicators. Field Crops Res. 125: 167 — 178.
Google Scholar

Ma B. L., Yan W., Dwyer L. M., Fregeau-Reid J., Voldeng H. D., Dion Y., Nass H. 2004. Graphic analysis of genotype, environment, nitrogen fertilizer, and their interactions on spring wheat yield. Agron. J. 96: 169 — 180.
Google Scholar

Mądry W. 2003. Analiza statystyczna miar stabilności na podstawie danych w klasyfikacji genotypy × środowiska. Część II. Model mieszany Shukli i model regresji łącznej. Coll. Biom. 33: 207 — 220.
Google Scholar

Mądry W., Kang M. S. 2005. Scheffé-Caliński and Shukla models: their interpretation and usefulness in stability and adaptation analyses. J. Crop Improv. 14: 325 — 369.
Google Scholar

Mądry W., Paderewski J., Drzazga T. 2006. Ocena reakcji plonu ziarna rodów hodowlanych pszenicy ozimej na zmienne warunki środowiskowe za pomocą analizy AMMI. Fragm. Agron. 92: 130 — 143.
Google Scholar

Mądry W., Paderewski J., Gazdowski D., Drzazga T. 2011. Adaptive yield response of winter wheat cultivars across environments in Poland using joint AMMI and cluster analyses. Intern. J. Plant Prod. 5: 299 — 310.
Google Scholar

Mądry W., Paderewski J., Rozbicki J., Gozdowski D., Golba J., Piechociński M., Studnicki M., Derejko A. 2012. Plonowanie odmian pszenicy ozimej w różnych środowiskach — jednoroczna seria PDOiR. Biul. IHAR 263: 189 — 204.
Google Scholar

McIntosh M. S. 1983. Analysis of combined experiments. Agron. J. 75: 153 — 155.
Google Scholar

Mohammadi R., Amri A. 2009. Analysis of genotype × environment interactions for grain yield in durum wheat. Crop Sci. 49: 1177 — 1186.
Google Scholar

Mohammadi R., Sadeghzadeh D., Armion M., Amri A. 2011. Evaluation of durum wheat experimental lines under different climate and water regime conditions of Iran. Crop Pasture Sci. 62: 137 — 151.
Google Scholar

Murphy K. M., Campbell K. G., Lyon S. R., Jones S. S. 2007. Evidence of varietal adaptation to organic farming systems. Field Crops Res. 102: 172 — 177.
Google Scholar

Paderewski J. 2008. Przydatność modelu AMMI do badania reakcji roślin rolniczych na warunki środowiskowe. Praca doktorska, Wydział Rolnictwa i Biologii, SGGW.
Google Scholar

Paderewski J., Gauch H. G., Mądry W., Drzazga T., Rodrigues P. C. 2011 Yield response of winter wheat to agro-ecological conditions using additive main effects and multiplicative interaction and cluster analysis. Crop Sci. 51: 969 — 980.
Google Scholar

Paderewski J., Mądry W. 2012. Zastosowania modelu AMMI do analizy reakcji odmian na warunki środowisk rolniczych. Biul. IHAR 263: 161 — 188.
Google Scholar

Pecetti L., Annicchiarico P., Abdelguerfi A., Kallida R., Mefti M., Porqueddu C., Simoes N., Volaire F., Lelievre F. 2011. Response of mediterranean tall fescue cultivars to contrasting agricultural environments and implications for selection. J. Agron. Crop Sci. 197: 12 — 20.
Google Scholar

Peltonen-Sainio P., Jauhiainen L., Laurila I. P. 2009. Cereal yield in northern European conditions. Changes in yield potential and its realisation. Field Crops Res. 110:85 — 90.
Google Scholar

Piepho H. P., Möhring J., Melchinger A. E., Büchse A. 2008. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161: 209 — 228.
Google Scholar

Piepho, H. P., van Eeuwijk F.A. 2002. Stability analyses in crop performance evaluation. In: Kang M.S. [ed.]: Crop improvement: Challenges in the twenty-first century”. Food Products Press, Binghamton. New York: 307 — 342.
Google Scholar

Pilarczyk W. 1983. Wykorzystanie analizy skupień do podziału stacji doświadczalnych na grupy o małej interakcji odmianowo-środowiskowej. Colloqium Biometryczne 13: 133 — 147.
Google Scholar

Pilarczyk W., Kamiński J. 1995. Application of some traditional models and AMMI model for analysis of a series of cereal trials. Biuletyn Oceny Odmian. 26–27: 179 — 188.
Google Scholar

Pinnschmidt H. O., Hovmøller M. S. 2002. Genotype × environment interactions in the expression of net blotch resistance in spring and winter barley varieties. Euphytica 125: 227 — 243.
Google Scholar

Raman A., Ladha J. K., Kumar V., Sharma S., Piepho H. P. 2011. Stability analysis of farmer participatory trials for conservation agriculture using mixed models. Field Crops Res. 121: 450 — 459.
Google Scholar

SAS Institute Inc. 2004 SAS OnlineDoc® 9.1.3. Cary, NC.
Google Scholar

Smith A. B., Cullis B. R., Thompson R. 2005. The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches. J. Agric. Sci. 143:449 — 462.
Google Scholar

So Y.S, Edwards J. 2009. A Comparison of mixed-model analyses of the Iowa Crop Performance Test for corn. Crop Sci. 49: 1593 — 1601.
Google Scholar

Stiller W. N., Reid P. E., Constable G. A. 2004. Maturity and leaf shape as traits influencing cotton cultivar adaptation to dryland conditions. Agron. J. 96: 656 — 664.
Google Scholar

Surprenant J., Drapeau R., Fernet C. 1993. Cultivar by management interactions effects on timothy yield and quality evaluation. Can. J. Plant Sci. 73: 445 — 460.
Google Scholar

Thangavel P., Anandan A., Eswaran R. 2011. AMMI analysis to comprehend genotype by environment (G × E) interactions in rainfed grown mungbean (Vigna radiata L.). Aust. J. Crop Sci. 5: 1767 — 1775.
Google Scholar

van Eeuwijk F. A., Keizer L. C. E., Bakker J. J. 1995. Linear and bilinear models for the analysis of multi-environment trials: II. An application to data from the Dutch Maize Variety Trials. Euphytica 84: 9 — 22.
Google Scholar

Viele K., Srinivasan C. 2000. Parsimonious estimation of multiplicative interaction in analysis of variance using Kullback-Leibler Information. J. Stat. Plan. Inf. 84: 201 — 219.
Google Scholar

Ward J. H. 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58: 236 — 244.
Google Scholar

Welham S. J., Gogel B. J., Smith A. B., Thompson R., Cullis B. R. 2010. A comparison of analysis methods for late stage variety evaluation trials. Aust. N. Z. J. Stat. 52: 125 — 149.
Google Scholar

Yan W., Kang M. S. 2003. GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton, FL.
Google Scholar

Yan W., Kang M. S., Ma B., Woods S., Cornelius P. L. 2007. GGE biplot vs. AMMI analysis of genotype- by-environment data. Crop Sci. 47: 643 — 653.
Google Scholar

Zhang Y., He Z., Zhang A., van Ginkel M., Pena R.J., Ye G. 2006. Pattern analysis on protein properties of Chinese and CIMMYT spring wheat cultivars sown in China and CIMMYT. Austr. J. Agric. Res. 57: 811 — 822.
Google Scholar

http://www.coboru.pl
Google Scholar

http://www.vsni.co.uk
Google Scholar

Pobierz


Opublikowane
09/30/2014

Cited By / Share

Derejko, A. i Mądry, W. (2014) „Przegląd zastosowań metod statystycznych w analizie danych z serii doświadczeń odmianowych i odmianowo-agrotechnicznych”, Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, (273), s. 101–118. doi: 10.37317/biul-2014-0021.

Autorzy

Adriana Derejko 
adriana_derejko@sggw.edu.pl
Katedra Doświadczalnictwa i Bioinformatyki, Szkoła Główna Gospodarstwa Wiejskiego, Warszawa Poland

Autorzy

Wiesław Mądry 

Katedra Doświadczalnictwa i Bioinformatyki, Szkoła Główna Gospodarstwa Wiejskiego, Warszawa Poland

Statystyki

Abstract views: 55
PDF downloads: 64


Licencja

Prawa autorskie (c) 2014 Adriana Derejko, Wiesław Mądry

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.

Z chwilą przekazania artykułu, Autorzy udzielają Wydawcy niewyłącznej i nieodpłatnej licencji na korzystanie z artykułu przez czas nieokreślony na terytorium całego świata na następujących polach eksploatacji:

  1. Wytwarzanie i zwielokrotnianie określoną techniką egzemplarzy artykułu, w tym techniką drukarską oraz techniką cyfrową.
  2. Wprowadzanie do obrotu, użyczenie lub najem oryginału albo egzemplarzy artykułu.
  3. Publiczne wykonanie, wystawienie, wyświetlenie, odtworzenie oraz nadawanie i reemitowanie, a także publiczne udostępnianie artykułu w taki sposób, aby każdy mógł mieć do niego dostęp w miejscu i w czasie przez siebie wybranym.
  4. Włączenie artykułu w skład utworu zbiorowego.
  5. Wprowadzanie artykułu w postaci elektronicznej na platformy elektroniczne lub inne wprowadzanie artykułu w postaci elektronicznej do Internetu, lub innej sieci.
  6. Rozpowszechnianie artykułu w postaci elektronicznej w internecie lub innej sieci, w pracy zbiorowej jak również samodzielnie.
  7. Udostępnianie artykułu w wersji elektronicznej w taki sposób, by każdy mógł mieć do niego dostęp w miejscu i czasie przez siebie wybranym, w szczególności za pośrednictwem Internetu.

Autorzy poprzez przesłanie wniosku o publikację:

  1. Wyrażają zgodę na publikację artykułu w czasopiśmie,
  2. Wyrażają zgodę na nadanie publikacji DOI (Digital Object Identifier),
  3. Zobowiązują się do przestrzegania kodeksu etycznego wydawnictwa zgodnego z wytycznymi Komitetu do spraw Etyki Publikacyjnej COPE (ang. Committee on Publication Ethics), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. Wyrażają zgodę na udostępniane artykułu w formie elektronicznej na mocy licencji CC BY-SA 4.0, w otwartym dostępie (open access),
  5. Wyrażają zgodę na wysyłanie metadanych artykułu do komercyjnych i niekomercyjnych baz danych indeksujących czasopisma.

Inne teksty tego samego autora

<< < 1 2 3 > >>