Theoretical basis of importance of genotypic and interaction effects in plant breeding on an example of winter wheat
Wiesław Mądry
wieslaw_madry@sggw.edu.plKatedra Biometrii SGGW, Warszawa (Poland)
Mike Talbot
Biomathematics and Statistics Scotland, Edinburgh (United Kingdom)
Krzysztof Ukalski
Katedra Biometrii SGGW, Warszawa (Poland)
Tadeusz Drzazga
Hodowla Roślin Rolniczych „Nasiona Kobierzyc” w Kobierzycach (Poland)
Marzena Iwańska
Katedra Biometrii SGGW, Warszawa (Poland)
Abstract
Some basic theoretical problems and results of experimental studies on importance and exploiting genotypic, genotype × environment (GE) interaction and location × years (LY) interaction effects are presented for a trait in crop breeding and evaluation programmers that are based on series of field trials (known as multi-environment trials, MET). Among GE interaction ones the following effects are defined: genotype × location (GL), genotype × year (GY) and genotype × location × year (GLY) effects. Importance of the mentioned effects can be determined by estimates of variance components of these effects using data obtained in a representative MET, repeated at several locations over a period of years. Theoretical considerations are enriched and illustrated by variance component estimates for grain yield of winter wheat obtained from both own and foreign experimental studies. It was shown that using yearly series of multi-location trials, GL interaction (it is the averaged over years GL interaction called repeatable or exploitable GL interaction) and then, response of genotypes to environments in locations, averaged over years, can not be evaluated accurately in a target region when effects of LY and/or GLY interactions are relatively substantial (variable). Additionally, in yearly series of variety trials differentiation and ranking of genotypic means, averaged over years and locations in a target region, can not be estimated accurately when occurring substantial effects of GY and/or GLY interactions. In various world’s regions and gene pools variance components of LY interaction effects for winter wheat grain yield had the largest contribution to the variability of this trait. Effects of GLY interaction were the most substantial among all GE interaction effects. Effects of LY and GLY interactions limited repeatability of yearly GL interaction effects over different years. Then, substantial effects of LY and GLY limit repeatability of yearly stability and adaptation of genotypes in a target region over years. Effects of genotype × location interaction were often less variable than genotypic and genotype × year interaction effects. The estimates of variance components for winter wheat grain yield in own studies were used to simulate values of some characteristics, like repeatability of genotype-phenotypic mean, standard error of genotype-phenotypic means and their differences at different numbers of locations, years and replicates in MET.
Keywords:
genotype-environment interaction, incomplete data, REML method, variance components, wide and local adaptation, winter wheat, grain yieldReferences
Annicchiarico P. 1997. Joint regression vs AMMI analysis of genotype-environment interactions for cereals in Italy. Euphytica 94: 53 — 62.
DOI: https://doi.org/10.1023/A:1002954824178
Google Scholar
Annicchiarico P. 2002. Genotype × Environment Interactions — Challenges and Opportunities for Plant Breeding and Cultivar Recommendations. FAO, Rome. Plant Production and Protection Paper — 174.
Google Scholar
Annicchiarico P., Bellah F., Chiari T. 2006a. Repeatable genotype-location interaction and its exploitation by conventional and GIS-based cultivar recommendation on for durum wheat in Algeria. Eur. J. Agron. 24: 70 — 81.
DOI: https://doi.org/10.1016/j.eja.2005.05.003
Google Scholar
Annicchiarico P., Perenzin M. 1994. Adaptation patterns and definition of macro-environments for selection and recommendation of common wheat genotypes in Italy. Plant Breeding 113: 197 — 205.
DOI: https://doi.org/10.1111/j.1439-0523.1994.tb00723.x
Google Scholar
Annicchiarico P., Russi L. Piano E., Veronesi F. 2006 b. Cultivar adaptation across Italian locations in four turfgrass species. Crop Sci. 46: 264 — 272.
DOI: https://doi.org/10.2135/cropsci2005.0047
Google Scholar
Atlin G. N., McRae K. B., Lu X. 2000 a. Genotype × region interaction for two-row barley yield in Canada. Crop Sci. 40: 1 — 6.
DOI: https://doi.org/10.2135/cropsci2000.4011
Google Scholar
Atlin G. N., Baker R. J., McRae K. B., Lu X. 2000 b. Selection response in subdivided target regions. Crop Sci. 40: 7 — 13.
DOI: https://doi.org/10.2135/cropsci2000.4017
Google Scholar
Atlin G. N., McRae K. B. 1994. Resource allocation in Maritime cereal cultivar trials. Can. J. Plant Sci. 74: 501 — 505.
DOI: https://doi.org/10.4141/cjps94-091
Google Scholar
Baenziger P. S., Clements R. L., McIntosh M. S., Yamazaki W. T., Starling T. M., Sammons D. J., Johnson J. W. 1985. Effects of cultivar, environment and their interaction and stability analyses on milling and baking quality of soft red winter wheat. Crop Sci. 22: 5 — 8.
DOI: https://doi.org/10.2135/cropsci1985.0011183X002500010002x
Google Scholar
Baker R. J. 2002. Genotype-environment interaction. http://homepage.usask.ca/~rjb609/gxe.html.
Google Scholar
Basford H. E., Cooper M. 1998. Genotype × environment interactions and some considerations of their implications for wheat breeding in Australia. Aust. J. Agric. Res. 49: 153 — 174.
DOI: https://doi.org/10.1071/A97035
Google Scholar
Bernardo R. 2002. Breeding for quantitative traits in plants. Stemma Press, Woodbury, USA.
Google Scholar
Bramel-Cox P. J. 1996. Breeding for reliability of performance across unpredictable environments. In: M. S. Kang and H. G. Gauch (ed.) Genotype-by-environment interactionCRC Press, Boca Raton, FL: 309 — 339.
DOI: https://doi.org/10.1201/9781420049374.ch11
Google Scholar
Brennan P. S., Byth D. E., Drake D. W., DeLacy I. H., Butler D. G. 1981. Determination of the location and number of test environments for a wheat cultivar evaluation program. Aust. J. Agric. Res. 32: 189 — 201.
DOI: https://doi.org/10.1071/AR9810189
Google Scholar
Butler D. G., Redden R. J., DeLacy I. H., Usher T. 2000. Analysis of line × environment interactions for yield in navy beans. 1. Components of variance. Austr. J. Agric. Res. 51: 597 — 605.
DOI: https://doi.org/10.1071/AR97135
Google Scholar
Caliński T., Czajka S., Kaczmarek Z. 1987 a. A model for the analysis of a series of experiments repeated at several places over a period of years. I. Theory. Biul. Oceny Odmian 17/18: 7 — 33.
Google Scholar
Caliński T., Czajka S., Kaczmarek Z. 1987 b. A model for the analysis of a series of experiments repeated at several places over a period of years. II. Example. Biul. Oceny Odmian 17/18: 35 — 71.
Google Scholar
Chapman S. C., Cooper M., Butler D. G., Henzell R. G. 2000. Genotype by environment interactions affecting grain sorghum. I. Characteristics that confound interpretation of hybrid yield . Austr. J. Agric. Res. 51: 197 — 208.
DOI: https://doi.org/10.1071/AR99020
Google Scholar
Chapman S. C., de la Vega A. J. 2002. Spatial and seasonal effects confounding interpretation of sunflower yields in Argentina. Field Crops Research 73: 107 — 120.
DOI: https://doi.org/10.1016/S0378-4290(01)00185-X
Google Scholar
Collaku A., Harrison S. A., Finney P. L., Van Sanford D. A. 2002. Clustering of environments of southern soft red winter wheat region for milling and baking quality attributes. Crop Sci. 42: 58 — 63.
DOI: https://doi.org/10.2135/cropsci2002.5800
Google Scholar
Cooper M. 1999. Concepts and strategies for plant adaptation research in rainfed lowland rice. Field Crops Research 64: 13 — 34.
DOI: https://doi.org/10.1016/S0378-4290(99)00048-9
Google Scholar
Cooper M., Woodruff D. R., Phillips I.G., Basford K. E., Gilmour A. R. 2001. Genotype-by-management interactions for grain yield and grain protein concentration of wheat. Field Crops Research 69: 47 — 67.
DOI: https://doi.org/10.1016/S0378-4290(00)00131-3
Google Scholar
Cullis B. R., Thomson F. M., Fisher J, A, Gilmour A. R. Thompson R. 1996. The analysis of the NSW wheat variety database. II. Variance component estimation. Theor. Appl. Genet. 92: 28 — 39.
DOI: https://doi.org/10.1007/BF00222948
Google Scholar
de la Vega A. J., Chapman S. C. 2006. Defining sunflower selection strategies for a highly heterogeneous target population of environments. Crop Sci. 46: 136 — 144.
DOI: https://doi.org/10.2135/cropsci2005.0170
Google Scholar
De Ron A. M., Casquero P. A., González A. M., Santalla M. 2004. Environmental and genotypic effects on pod characteristics related to common bean quality. J. Agron. Crop Sci. 190: 248 — 255.
DOI: https://doi.org/10.1111/j.1439-037X.2004.00098.x
Google Scholar
DeLacy I. H., Basford K. E., Cooper M., Bull J. K., McLaren C. G. 1996. Analysis of multi-environment trials a historical perspective. In: M. Cooper and G. L. Hammer (Ed.) Plant adaptation and crop improvement”. CAB Int., Wallingford, Oxon, UK: 39 — 124.
Google Scholar
Fehr W. R. 1987. Principles of cultivar development: Theory and technique. Vol. 1. MacMillan, New York.
Google Scholar
Feyerherm A. M., Paulsen G.M., Fritz A. K. 2004. A statistical method for summarizing results of cultivar performance trials. Agron. J. 96: 992 — 996.
DOI: https://doi.org/10.2134/agronj2004.0992
Google Scholar
GENSTAT. 2002. The guide to Genstat. Release 6.1. VSN International. Oxford, UK.
Google Scholar
Grausgruber H., Oberforster M., Werteker M., Ruckenbauer P., Vollmann J. 2000. Stability of quality traits in Austrian-grown winter wheats. Field Crops Research 66: 257 — 267.
DOI: https://doi.org/10.1016/S0378-4290(00)00079-4
Google Scholar
Gravois K. A., Bernhardt J. L. 2000. Heritability and genotype x environment interactions for discolored rice kernels. Crop Sci. 40: 314 — 318.
DOI: https://doi.org/10.2135/cropsci2000.402314x
Google Scholar
Grüneberg W. J., Abidin E., Ndolo P., Pereira C. A., Hermann M. 2004. Variance component estimations and allocation of resources for breeding sweet potato under East African conditions. Plant Breeding 123: 311 — 315.
DOI: https://doi.org/10.1111/j.1439-0523.2004.01000.x
Google Scholar
Haji H. M., Hunt L.A. 1999. Genotype environment interactions and underlying environmental factors for winter wheat in Ontario. Can. J. Plant Sci. 79: 497 — 505.
DOI: https://doi.org/10.4141/P98-075
Google Scholar
Hill J., Becker H. C., Tigerstedt P. M. A. 1998. Quantitative and ecological aspects of plant breeding. Chapmann and Hall, London.
DOI: https://doi.org/10.1007/978-94-011-5830-5
Google Scholar
Kang M.S. 2002. Genotype-environment interaction: Progress and prospects. In: M. S. Kang (Ed), Quantitative Genetics, Genomics and Plant Breeding, CAB International Wallingford, UK 221 — 243.
DOI: https://doi.org/10.1079/9780851996011.0221
Google Scholar
Leon J., Becker H. C. 1988. Repeatability of some statistical measures of phenotypic stability. Correlations between single - year results and multi-years results. Plant Breeding 100: 137 — 142.
DOI: https://doi.org/10.1111/j.1439-0523.1988.tb00228.x
Google Scholar
Lin C. S., Binns M. R. 1994. Concepts and methods for analyzing regional trial data for cultivar and location selection. Plant Breeding Reviews 12: 271 — 297.
DOI: https://doi.org/10.1002/9780470650493.ch10
Google Scholar
Mądry W., Drzazga T., Laudański Z., Rajfura A., Krajewski P., Sieczko L. 2003. Statystyczna analiza adaptacji genotypów pszenicy ozimej na podstawie mieszanych modeli genotypowo-środowiskowych. Fragmenta Agronomica 80: 10 — 31.
Google Scholar
Mądry W. 2004. Modele i metody statystyczne analizy interakcji genotypowo-środowiskowej, stabilności i adaptacji genotypów. Post. Nauk Roln. 2/308: 29 — 43.
Google Scholar
Mądry W., Kang M. S. 2005. Scheffé-Caliński and Shukla models: their interpretation and usefulness in stability and adaptation analyses. Journal of Crop Improvement, 14:325 — 369.
DOI: https://doi.org/10.1300/J411v14n01_13
Google Scholar
Magari R., Kang M. S. 1997. SAS-STABLE: stability analysis of balanced and unbalanced data. Agron. J. 89: 829 — 832.
DOI: https://doi.org/10.2134/agronj1997.00021962008900060013x
Google Scholar
Magari R., Kang M.S., Zhang Y. 1997. Genotype by environment interaction for ear moisture loss rate in corn. Crop Sci. 37: 774 — 779.
DOI: https://doi.org/10.2135/cropsci1997.0011183X003700030014xa
Google Scholar
Navabi A., Yang R. C., Helm J., Spaner D. M. 2006. Can spring wheat-growing megaenvironments in the Northern Great Plains be dissected for representative locations or niche-adapted genotypes? Crop Sci 46:1107 — 1116
DOI: https://doi.org/10.2135/cropsci2005.06-0159
Google Scholar
Patterson H. D., Silvey V., Talbot M., Wheatherup T. C. 1977. Variability of yields of cereal varieties in U.K. trials. J. Agric. Sci. Camb. 89: 239 — 245.
DOI: https://doi.org/10.1017/S002185960002743X
Google Scholar
Peterson C. J., Graybosch R. A., Shelton D. R., Baenziger P. S. 1998. Baking quality of hard winter wheat: Response of cultivars to environment in the Great Plains. Euphytica 100: 157 — 162.
DOI: https://doi.org/10.1023/A:1018361502435
Google Scholar
Primomo V. S., Falk D. E., Ablett G. R., Tanner J. W., Rajcan I. 2002. Genotype environment interactions, stability, and agronomic performance of soybean with altered fatty acid profiles. Crop Sci. 42: 37 — 44.
DOI: https://doi.org/10.2135/cropsci2002.3700
Google Scholar
Russell W. K., Eskridge K. M., Travnicek D. A., Guillen-Portal F. R. 2003. Clustering environments to minimize change in rank of cultivars. Crop Sci. 43: 858 — 864.
DOI: https://doi.org/10.2135/cropsci2003.8580
Google Scholar
Searle S. R. 1987. Linear models for unbalanced data. J. Wiley & Sons, New York.
Google Scholar
Searle S. R., Casella G., McCulloch C. E. 1992. Variance components. John Wiley & Sons, New York.
DOI: https://doi.org/10.1002/9780470316856
Google Scholar
Simmonds N.W., Smartt J. 1999. Principles of Crop Improvement. Blackwell Science, Oxford.
Google Scholar
Sudarić A., Šimic D., Vratarić M. 2006. Characterization of genotype by environment interactions in soybean breeding programmers of southeast Europe. Plant Breeding125: 191 — 194.
DOI: https://doi.org/10.1111/j.1439-0523.2006.01185.x
Google Scholar
Talbot M. 1984. Yield variability of crop varieties in the UK. 1984. J. Agric. Sci. 102: 315 — 321.
DOI: https://doi.org/10.1017/S0021859600042635
Google Scholar
Talbot M. 1997. Resource allocation for selection systems. In: “Kempton R. A., Fox P. N., (Ed). Statistical methods for plant variety evaluation”, Chapman and Hall, London: 162 — 174.
DOI: https://doi.org/10.1007/978-94-009-1503-9_10
Google Scholar
Troyer A. F. 1996. Breeding for widely adapted popular maize hybrids. Euphytica 92: 163 — 174.
DOI: https://doi.org/10.1007/BF00022842
Google Scholar
Weber W. E., Westermann T. 1994. Prediction of yield for specific locations in German winter-wheat trials. Plant Breeding 113: 99 — 105.
DOI: https://doi.org/10.1111/j.1439-0523.1994.tb00711.x
Google Scholar
Westcott B. 1987. Yield assessment. In: Lupton F. G. H. (Ed.) Wheat breeding its scientific basis. Chapman and Hall, London: 339 — 368.
DOI: https://doi.org/10.1007/978-94-009-3131-2_12
Google Scholar
Yan W. Kang M. S. 2003. GGE biplot analysis: a graphical tool for breeders, geneticists and agronomists. CRC Press, Boca Raton, FL.
DOI: https://doi.org/10.1201/9781420040371
Google Scholar
Yan W., Hunt L. A. 2001. Interpretation of genotype-environment interaction for winter wheat yield in Ontario. Crop Sci. 41: 19 — 25.
DOI: https://doi.org/10.2135/cropsci2001.41119x
Google Scholar
Yan W., Hunt L.A., Johnson P., Stewart G., Lu X. 2002. On-farm strip trials vs. replicated performance trials for cultivar evaluation. Crop Sci. 42: 385 — 392.
DOI: https://doi.org/10.2135/cropsci2002.3850
Google Scholar
Yan W., Hunt L.A., Sheng Q., Szlavnics Z. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 40: 597 — 605.
DOI: https://doi.org/10.2135/cropsci2000.403597x
Google Scholar
Yan W., Rajcan I. 2002. Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Sci. 42: 11 — 20.
DOI: https://doi.org/10.2135/cropsci2002.1100
Google Scholar
Yan W., Rajcan I. 2003. Prediction of cultivar performance based on single versus multiple-year tests in soybean. Crop Sci. 43: 549 — 555.
DOI: https://doi.org/10.2135/cropsci2003.5490
Google Scholar
Yang R. C., Blade S. F., Crossa J., Stanton D., Bandara M. S. 2005. Identifying isoyield environments for field pea production. Crop Sci. 45: 106 — 113.
DOI: https://doi.org/10.2135/cropsci2005.0106a
Google Scholar
Authors
Mike TalbotBiomathematics and Statistics Scotland, Edinburgh United Kingdom
Authors
Krzysztof UkalskiKatedra Biometrii SGGW, Warszawa Poland
Authors
Tadeusz DrzazgaHodowla Roślin Rolniczych „Nasiona Kobierzyc” w Kobierzycach Poland
Authors
Marzena IwańskaKatedra Biometrii SGGW, Warszawa Poland
Statistics
Abstract views: 253PDF downloads: 40
License
Copyright (c) 2025 Wiesław Mądry, Mike Talbot, Krzysztof Ukalski, Tadeusz Drzazga, Marzena Iwańska

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:
- Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
- Placing on the market, lending or renting the original or copies of the article.
- Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
- Including the article in a collective work.
- Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
- Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
- Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.
Authors by sending a request for publication:
- They consent to the publication of the article in the journal,
- They agree to give the publication a DOI (Digital Object Identifier),
- They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
- They agree to send article metadata to commercial and non-commercial journal indexing databases.
Most read articles by the same author(s)
- Tomasz Góral, Halina Wiśniewska, Piotr Ochodzki, Dorota Walentyn-Góral, Iga Grzeszczak, Jolanta Belter, Maciej Majka, Jerzy Bogacki, Tadeusz Drzazga, Bogusława Ługowska, Przemysław Matysik, Edward Witkowski, Krzysztof Rubrycki, Urszula Woźna-Pawlak, Fuzarioza kłosów oraz akumulacja toksyn fuzaryjnych w ziarnie rodów hodowlanych pszenicy ozimej , Bulletin of Plant Breeding and Acclimatization Institute: No. 282 (2017): Regular issue
- Maciej Majka, Magdalena Gawłowska, Adriana Twardawska, Marek Korbas, Jakub Danielewicz, Tomasz Góral, Bogusława Ługowska, Jolanta Belter, Edward Witkowski, Tadeusz Drzazga, Przemysław Matysik, Urszula Woźna-Pawlak, Halina Wiśniewska, Use of molecular and phenotypic markers to identify wheat eyespot resistance genes caused by Oculimacula yallundae and O. acuformis , Bulletin of Plant Breeding and Acclimatization Institute: No. 288 (2020): Regular issue
- Joanna Ukalska, Krzysztof Ukalski, Tadeusz Śmiałowski, Wiesław Mądry, An examination of diversity and interrelationships among traits in a winter wheat (Triticum aestivum L.) germplasm collection by multivariate methods. Part II. Principal component analysis using the phenotypic and genotypic correlation matrix , Bulletin of Plant Breeding and Acclimatization Institute: No. 249 (2008): Regular issue
- Wiesław Mądry, Dariusz Gozdowski, A history of the development of statistical methods for designing and analyzing agricultural experiments in the world and in Poland , Bulletin of Plant Breeding and Acclimatization Institute: No. 288 (2020): Regular issue
- Dariusz Gozdowski, Wiesław Mądry, Zdzisław Wyszyński, Analysis of correlation and path coefficients in evaluation of relationships between grain yield and its components of two spring barley cultivars , Bulletin of Plant Breeding and Acclimatization Institute: No. 248 (2008): Regular issue
- Krzysztof Ukalski, Joanna Ukalska, Tadeusz Śmiałowski, Wiesław Mądry, An examination of diversity and interrelationships among traits in a winter wheat (Triticum aestivum L.) germplasm collection by multivariate methods. Part I. Phenotypic and genotypic correlations , Bulletin of Plant Breeding and Acclimatization Institute: No. 249 (2008): Regular issue
- Marcin Studnicki, Wiesław Mądry, Tadeusz Śmiałowski, Multivariate analysis of phenotypic diversity in Polish spring wheat collection , Bulletin of Plant Breeding and Acclimatization Institute: No. 252 (2009): Regular issue
- Anna Rajfura, Wiesław Mądry, Tadeusz Drzazga, Marzena Iwańska, The clustering of locations based on multi-environment trials with different cultivars across years using the SEQRET package. Part II. An example for grain yield from winter wheat pre-registration trials , Bulletin of Plant Breeding and Acclimatization Institute: No. 250 (2008): Regular issue
- Adriana Derejko, Wiesław Mądry, Dariusz Gozdowski, Jan Rozbicki, Jan Golba, Mariusz Piechociński, Marcin Studnicki, The influence of cultivar, location, crop management intensities, and their interactions on winter wheat yield in post-registration multi-environment trials (PDO) , Bulletin of Plant Breeding and Acclimatization Institute: No. 259 (2011): Regular issue
- Mirosław Tyrka , Grzegorz Fic , Magdalena Szeliga , Marcin Jaromin , Paweł Krajewski , Paweł Milczarski , Tadeusz Drzazga , Przemysław Matysik , Róża Mazur , Teresa Sikora , Edward Witkowski , Justyna Buczkowicz , Dorota Tyrka , Genomic selection of winter wheat , Bulletin of Plant Breeding and Acclimatization Institute: No. 286 (2019): Special issue








