RYE (SECALE CEREALE L.) PHENOLIC COMPOUNDS AS HEALTH-RELATED FACTORS


Abstract

The diversity of phenolic compounds found in rye grain makes this cereal the valuable source of these substances in everyday food. Simple phenolic compounds, as well as their metabolites, show a pro-health effect. Phenolic acids and ferulic acid dehydrodimers are included in the group of cereal antioxidants. The antioxidant activity of phenolic compounds is an essential factor in the prevention of cancer and cardiovascular diseases.


Keywords

(Secale cereale L); Rye; phenolic compounds; antioxidant activity; health potential; rye bread

Acosta-Estrada, B.A., Gutiérrez-Uribe, J.A., Serna-Saldívar, S.O. 2014. Bound phenolics in foods, a review. Food Chem, 152(1), 46–55.

Andersson, A.A.M., Dimberg, L., Åman, P., Landberg, R. 2014. Recent findings on certain bioactive compo-nents in whole grain wheat and rye. J Cereal Sci, 59(3), 294–311.

Andreasen, M.F., Christensen, L.P., Meyer, A.S., Hansen, A. 2000. Content of phenolic acids and ferulic acid dehydrodimers in 17 rye (Secale cereale L.) varieties. J Agr Food Chem, 48(7), 2837–2842.

Andreasen, M.F., Kroon, P.A., Williamson, G., Garcia-Conesa, M.T. 2001a. Esterase activity able to hydro-lyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals. J Agr Food Chem, 49(11), 5679–5684.

Andreasen, M.F., Kroon, P.A., Williamson, G., Garcia-Conesa, M.T. 2001b. Intestinal release and uptake of phenolic antioxidant diferulic acids. Free Radical Bio Med, 31(3), 304–314.

Biely, P., Singh, S., Puchart, V. 2016. Towards enzymatic breakdown of complex plant xylan structures: State of the art. Biotechnol Adv, 34(7), 1260–1274.

Bondia-Pons, I., Aura, A.-M., Vuorela, S., Kolehmainen, M., Mykkänen, H., Poutanen, K. 2009. Rye phenol-ics in nutrition and health. J Cereal Sci, 49(3), 323–336.

Brand-Williams, W., Cuvelier, M.E., Berset, C., 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Technol, 28(1), 25–30.

Budryn, G., Nebesny, E. 2006. Fenolokwasy - ich właściwości, występowanie w surowcach roślinnych, wchłanianie i przemiany metaboliczne. Bromatol Chem Toksyk, 39(2), 103–110.

Bunzel, M., Ralph, J., Marita, J.M., Hatfield, R.D., Steinhart, H. 2001. Diferulates as structural components in soluble and insoluble cereal dietary fibre. J Sci Food Agr, 81(7), 653–660.

Bushuk, W., 2001. Rye: production, chemistry, and technology, 2 edition. ed. Amer Assn of Cereal Chemists, St. Paul, Minn.

Cacak-Pietrzak, G. 2016. Wykorzystanie ziarna żyta na cele konsumpcyjne i inne. Presented at the Kontrola jakosci w obrocie i przetworstwie ziarna zboz, Krynica Morska, pp. 18–19.

Chen, Y., Ross, A.B., Åman, P., Kamal-Eldin, A. 2004. Alkylresorcinols as markers of whole grain wheat and rye in cereal products. J Agr Food Chem, 52(26), 8242–8246.

Chesson, A., Provan, G.J., Russell, W.R., Scobbie, L., Richardson, A.J., Stewart, C. 1999. Hydroxycinnamic acids in the digestive tract of livestock and humans. J Sci Food Agr, 79(3), 373–378.

Cheynier, V., Comte, G., Davies, K.M., Lattanzio, V., Martens, S. 2013. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Bioch, 72, 1–20.

Curiel, J.A., Rodríguez, H., Landete, J.M., de las Rivas, B., Muñoz, R. 2010. Ability of Lactobacillus brevis strains to degrade food phenolic acids. Food Chem,120(1), 225–229.

Dedio, W., Hill, R.D., Evans, L.E. 1972. Anthocyanins in the pericarp and coleoptiles of purple-seeded rye. Can J Plant Sci, 52(6), 981–983.

Dimberg, L.H., Moltenberg, E.L., Solheim, R., Frolich, W. 1996. Variation in oat groats due to variety, stor-age and heat treatment. I: Phenolic compounds. J Cereal Sci, 24(3), 263-272.

During, A., Debouche, C., Raas, T., Larondelle, Y. 2012. Among plant lignans, pinoresinol has the strongest antiinflammatory properties in human intestinal Caco-2 cells. J Nutr, 142(10), 1798–1805.

Dykes, L., Rooney, L.W. 2007. Phenolic compounds in cereal grains and their health benefits. Cereal Foods Worlds, 105–111.

Dynkowska, W.M., Cyran, M.R., Ceglińska, A. 2015. Soluble and cell wall-bound phenolic acids and ferulic acid dehydrodimers in rye flour and five bread model system: Insight into mechanisms of improved availability. J Sci Food Agr, 95(5), 1103–1115.

FAOSTAT http://www.fao.org/faostat/en/#home

Fazary, A.E., Ju, Y.-H. 2007. Feruloyl esterases as biotechnological tools: current and future perspectives. Acta Bioch Bioph Sin, 39(11), 811–828.

Figueroa-Espinoza, M.C., Rouau, X. 1998. Oxidative cross-linking of pentosans by a fungal laccase and horseradish peroxidase: mechanism of linkage between feruloylated arabinoxylans. Cereal Chem, 75(2), 259–265.

Gänzle, M.G. 2014. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol, 37, 2-10.

Geissman, T., Neukom, H. 1973. A note of ferulic acid as a constituent of the water-insoluble pentosans of wheat flour. Cereal Chem, 50, 414–416.

Glitsø, L.V., Bach Knudsen, K.E. 1999. Milling of whole grain rye to obtain fractions with different dietary fibre characteristics. J Cereal Sci, 29(1), 89–97.

Gulçin, İ. 2012. Antioxidant activity of food constituents: an overview. Arch Toxicol, 86(3), 345–391.

Hansen, H.B., Rasmussen, C.V., Knudsen, K.E.B., Hansen, Å. 2003. Effects of genotype and harvest year on content and composition of dietaty fibre in rye (Secale cereale L.) grain. J Sci Food Agr, 83(1), 76-85.

Hatfield, R.D., Rancour, D.M., Marita, J.M. 2017. Grass cell walls: A story of cross-linking. Front Plant Sci 7, 2056.

Heim, K.E., Tagliaferro, A.R., Bobilya, D.J. 2002. Flavonoid antioxidants: Chem, metabolism and structure-activity relationships. J Nutr Biochem, 13(10), 572–584.

Heiniö, R.-L., Liukkonen, K.-H., Katina, K., Myllymäki, O., Poutanen, K. 2003. Milling fractionation of rye produces different sensory profiles of both flour and bread. LWT - Food Sci Technol, 36(6), 577–583.

Heiniö, R.-L., Liukkonen, K.-H., Myllymäki, O., Pihlava, J.-M., Adlercreutz, H., Heinonen, S.-M., Poutanen, K. 2008. Quantities of phenolic compounds and their impacts on the perceived flavour attributes of rye grain. J Cereal Sci, 47(3), 566–575.

Huang, D., Ou, B., Prior, R.L. 2005. The chemistry behind antioxidant aapacity assays. J Agr Food Chem, 53(6), 1841–1856.

Iiyama, K., Lam, T.B.T., Stone, B.A. 1994. Covalent cross-links in the cell wall. Plant Physiol, 104(2), 315–320.

Izydorczyk, M.S., Biliaderis, C.G. 1995. Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohyd Polym, 28(1), 33–48.

Kamal-Eldin, A., Appelqvist, L.A. 1996. The chemistry and antioxidant properties of tocopherols and tocotri-enols. Lipids, 31(7), 671–701.

Katina, K., Heiniö, R.-L.,Autio, K., Poutanen, K. 2006. Optimization of sourdough process for improved sensory profile and texture of wheat bread. LWT - Food Sci Technol, 39(10), 1189–1202.

Katina, K., Liukkonen, K.-H., Kaukovirta-Norja, A., Adlercreutz, H., Heinonen, S.-M., Lampi, A.-M., Pihla-va, J.-M., Poutanen, K. 2007. Fermentation-induced changes in the nutritional value of native or germi-nated rye. J Cereal Sci, 46(3), 348–355.

Kołodziejczyk-Czepas, J., Szejk, M., Pawlak, A., Żbikowska, H.M. 2015. Właściwości przeciwutleniające kwasu kawowego i jego pochodnych. Żywn-Nauk Technol Ja, 3(100), 5–17.

Kroon, P.A., Williamson, G. 1999. Hydroxycinnamates in plants and food: current and future perspectives. J Sci Food Agr, 79(3), 355–361.

Kroon, P., Garcia-Conesa, M., Fillingham, I., Hazlewood, G., Williamson, G. 1999. Release of ferulic acid dehydrodimers from plant cell walls by feruloyl esterases. J Sci Food Agr, 79(3), 428–434.

Kulawinek, M., Jaromin, A., Kozubek, A., Zarnowski, R. 2008. Alkylresorcinols in selected Polish rye and wheat cereals and whole-grain cereal products. J Agr Food Chem, 56(16), 7236–7242.

Lam, T.B.T., Kadoya, K., Iiyama, K. 2001. Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the β-position, in grass cell walls. Phytochemistry, 57(6), 987–992.

Maeda, H., Dudareva, N., 2012. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol, 63, 73–105.

Mancuso, C., Santangelo, R. 2014. Ferulic acid: pharmacological and toxicological aspects. Food Chem Toxi-col, 65, 185–195.

Masuda, T., Yamada, K., Akiyama, J., Someya, T., Odaka, Y., Takeda, Y., Tori, M., Nakashima, K., Maeka-wa, T., Sone, Y. 2008. Antioxidation mechanism studies of caffeic acid: identification of antioxidation products of methyl caffeate from lipid oxidation. J Agr Food Chem, 56(14), 5947–5952.

Mathew, S., Abraham, T.E. 2004. Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit Rev Biotechnol, 24(2-3), 59–83.

Mathew, S., Abraham, T.E. 2006. Bioconversions of ferulic acid, an hydroxycinnamic acid. Crit Rev Microbi-ol, 32(3), 115–125.

Meents, M.J., Watanabe, Y., Samuels, A.L. 2018. The cell biology of secondary cell wall biosynthesis. Ann Bot, 121(6), 1107–1125.

Micard, V., Landazuri, T., Surget, A., Moukha, S., Labat, M., Rouau, X. 2002. Demethylation of ferulic acid and feruloyl arabinoxylan by microbial cel extracts. LWT - Food Sci Technol, 35(3), 272–276.

Michalska, A., Ceglinska, A., Amarowicz, R., Piskula, M.K., Szawara-Nowak, D., Zielinski, H. 2007a. Anti-oxidant contents and antioxidative properties of traditional rye breads. J Agr Food Chem, 55(3), 734–740.

Michalska, A., Ceglińska, A., Zieliński, H. 2007b. Bioactive compounds in rye flours with different extraction rates. Eur Food Res Technol, 225(3-4), 545–551.

Moltenberg, E.L., Solheim, Dimberg, L.H., R., Frolich, W. 1996. Variation in oat groats due to variety, stor-age and heat treatment. II: Sensory quality. J Cereal Sci, 24(3), 273-282.

Moon, J.-K., Shibamoto, T. 2009. Antioxidant assays for plant and food components. J Agr Food Chem, 57(5), 1655–1666.

Moore, A.M., Martinez-Munoz, I., Hoseney, R.C. 1990. Factors affecting the oxidative gelation of wheat water-solubles’. Cereal Chem, 67(1), 81–84.

Naczk, M., Shahidi, F. 2004. Extraction and analysis of phenolics in food. J Chromatogr A, 1054(1-2), 95–111.

Natella, F., Nardini, M., Di Felice, M., Scaccini, C., 1999. Benzoic and cinnamic acid derivatives as antioxi-dants: structure-activity relation. J Agr Food Chem, 47(4), 1453–1459.

Nimse, S.B., Pal, D. 2015. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv, 5, 27986–28006.

Nyström, L., Lampi, A.-M., Andersson, A.A.M., Kamal-Eldin, A., Gebruers, K., Courtin, C.M., Delcour, J.A., Li, L., Ward, J.L., Fraś, A., Boros, D., Rakszegi, M., Bedő, Z., Shewry, P.R., Piironen, V. 2008. Phyto-chemicals and Dietary Fiber Components in Rye Varieties in the HEALTHGRAIN Diversity Screen. J Agr Food Chem, 56(21), 9758–9766.

Ou, S., Kwok, K.-C. 2004. Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agr, 84(11), 1261–1269.

Pihlava, J.-M., Nordlund, E., Heiniö, R.-L., Hietaniemi, V., Lehtinen, P., Poutanen, K. 2015. Phenolic com-pounds in wholegrain rye and its fractions. J Food Compos Anal, 38, 89–97.

Pihlava, J.-M., Hellström, J., Kurtelius, T., Mattila, P. 2018. Flavonoids, anthocyanins, phenolamides, benzox-azinoids, lignans and alkylresorcinols in rye (Secale cereale L.) and some rye products. J Cereal Sci, 79(1), 183–192.

Piironen, V., Sylväoja, E.-L., Varo, P., Salminen, K., Koivistoinen, P. (1986). Tocopherols and tocotrienols in cereal products rom Finland. Cereal Chem, 63(2), 78–81.

Pisoschi, A.M., Pop, A. 2015. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem, 97, 55–74.

Poutanen, K., Flander, L., Katina, K. 2009. Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol, 26(7), 693–699.

Poutanen, K., Åman, P. (eds.) 2014. Rye and Health, 1st ed. AACC International.

Prior, R.L., Wu, X., Schaich, K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agr Food Chem, 53(10), 4290–4302.

Quideau, S., Deffieux, D., Douat-Casassus, C., Pouységu, L. 2011. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed Engl, 50, 586–621.

Ragaee, S.M., Campbell, G.L., Scoles, G.J., McLeod, J.G., Tyler, R.T. 2001. Studies on rye (Secale cereal L.) lines exhibiting a range of extracts viscosities. 1. Composition, molecular weight distribution of water extract, and biochemical characteristics of purified water-extractable arabinoxylan. J Agric Food Chem, 49(5), 2437-2445.

Ragaee, S.M., Abdel-Aal, E., Noaman, M. 2006. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem, 98(1), 32-38.

Ralph, J., Quideau, S., Grabber, J.H., Hatfield, R.D. 1994. Identification and synthesis of new ferulic acid dehydrodimers present in grass cell walls. J Chem Soc Perkin 1, 23, 3485–3498.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio Med, 26(9-10), 1231–1237.

Rice-Evans, C.A., Miller, N.J., Paganga, G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio Med, 20(7), 933–956.

Rice-Evans, C., Miller, N., Paganga, G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci 2(4), 152–159.

Statistical Yearbook 2017. Główny Urząd Statystyczny, Rozkrut, D. (ed.) Zakład Wydawnictw Statystycz-nych, Warszawa. pp. 495.

Rodríguez, H., Curiel, J.A., Landete, J.M., de las Rivas, B., de Felipe, F.L., Gómez-Cordovés, C., Mancheño, J.M., Muñoz, R. 2009. Food phenolics and lactic acid bacteria. International J Food Microb, 132(2-3), 79-90.

Rothwell, J.A., Urpi-Sarda, M., Boto-Ordoñez, M., Llorach, R., Farran-Codina, A., Barupal, D.K., Neveu, V., Manach, C., Andres-Lacueva, C., Scalbert, A. 2016. Systematic analysis of the polyphenol metabolome using the Phenol-Explorer database. Mol Nutr Food Res, 60(1), 203–211.

Saulnier, L., Thibault, J.F. 1999. Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans. J Sci Food Agr, 79(3), 396–402.

Selma, M.V., Espín, J.C., Tomás-Barberán, F.A. 2009. Interaction between phenolics and gut microbiota: role in human health. J Agr Food Chem, 57(15), 6485–6501.

Shahidi, F., Yeo, J.-D. 2016. Insoluble-bound phenolics in food. Molecules, 21(9), https://doi.org/10.3390/molecules21091216.

Slavin, J.L. 2000. Mechanisms for the impact of whole grain foods on cancer risk. J Am Coll Nutr, 19(3 Suppl), 300S-307S.

Sroka, Z., Cisowski, W. 2003. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem Toxicol, 41(6), 753–758.

Suzuki, Y., Esumi, Y., Uramoto, M., Kono, Y., Sakurai, A. 1997. Structural analyses of carbon chains in 5-alk(en)ylresorcinols of rye and wheat whole flour by tandem mass spectrometry. BioSci Biotech Bioch, 61(3), 480–486.

Suzuki, Y., Esumi, Y., Yamaguchi, I. 1999. Structures of 5-alkylresorcinol-related analogues in rye. Phyto-chemistry, 52(2), 281–289.

Tzin, V., Galili, G. 2010. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant, 3(6), 956–972.

van Beek, S., Priest, F.G. 2000. Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation. Appl Environ Microbiol, 66(12), 5322–5328.

Vinkx, C.J.A. Nieuwenhove, C.G. van, Delcour, J.A. 1991. Physicochemical and functional properties of rye nonstarch polysaccharides. III. Oxidative gelation of a fraction containing water-soluble pentosans and proteins. Cereal Chem, 68(6), 617-622.

Virtanen, A.I., Hietala, P.K. 1955. 2(3)-Benzoxazolinone, an anti-fusarium factior in rye seedlings. Acta Chem Scand, 9, 1543–1544.

Viskupičová, J., Ondrejovič, M., Šturdík, E. 2008. Bioavailability and metabolism of flavonoids. J Food Nutr Res, 47(4), 151–162.

Weaver, L.M., Herrmann, K.M. 1997. Dynamics of the shikimate pathway in plants. Trends Plant Sci, 2(9), 346–351.

Williams, R.J., Spencer, J.P.E., Rice-Evans, C. 2004. Flavonoids: antioxidants or signalling molecules? Free Radical Bio Med, 36(7), 838–849.

Williamson, G., Day, A.J., Plumb, G.W., Couteau, D. 2000. Human metabolic pathways of dietary flavonoids and cinnamates. Biochem Soc T, 28(2), 16–22.

Wong, K.K., Tan, L.U., Saddler, J.N. 1988. Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev, 52(3), 305–317.

Zhao, Z., Moghadasian, M.H. 2008. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chem,109(4), 691–702.

Zieliński, H., Ceglińska, A., Michalska, A. 2007. Antioxidant contents and properties as quality indices of rye cultivars. Food Chem, 104(3), 980–988.

Download

Published : 2019-12-30


Dynkowska, W. M. (2019). RYE (SECALE CEREALE L.) PHENOLIC COMPOUNDS AS HEALTH-RELATED FACTORS. Plant Breeding and Seed Science, 79, 9-24. https://doi.org/10.37317/pbss-2019-0002

Wioletta M. Dynkowska  w.dynkowska@ihar.edu.pl
Plant Biochemistry and Physiology Department, Plant Breeding and Acclimatization Institute – National Research Institute,Radzików, 05-870 Błonie  Poland
http://orcid.org/0000-0001-8563-7032