RYE (SECALE CEREALE L.) PHENOLIC COMPOUNDS AS HEALTH-RELATED FACTORS
Wioletta M. Dynkowska
w.dynkowska@ihar.edu.plPlant Biochemistry and Physiology Department, Plant Breeding and Acclimatization Institute – National Research Institute,Radzików, 05-870 Błonie (Poland)
http://orcid.org/0000-0001-8563-7032
Abstract
The diversity of phenolic compounds found in rye grain makes this cereal the valuable source of these substances in everyday food. Simple phenolic compounds, as well as their metabolites, show a pro-health effect. Phenolic acids and ferulic acid dehydrodimers are included in the group of cereal antioxidants. The antioxidant activity of phenolic compounds is an essential factor in the prevention of cancer and cardiovascular diseases.
Keywords:
(Secale cereale L), Rye, phenolic compounds, antioxidant activity, health potential, rye breadReferences
Acosta-Estrada, B.A., Gutiérrez-Uribe, J.A., Serna-Saldívar, S.O. 2014. Bound phenolics in foods, a review. Food Chem, 152(1), 46–55.
Google Scholar
Andersson, A.A.M., Dimberg, L., Åman, P., Landberg, R. 2014. Recent findings on certain bioactive compo-nents in whole grain wheat and rye. J Cereal Sci, 59(3), 294–311.
Google Scholar
Andreasen, M.F., Christensen, L.P., Meyer, A.S., Hansen, A. 2000. Content of phenolic acids and ferulic acid dehydrodimers in 17 rye (Secale cereale L.) varieties. J Agr Food Chem, 48(7), 2837–2842.
Google Scholar
Andreasen, M.F., Kroon, P.A., Williamson, G., Garcia-Conesa, M.T. 2001a. Esterase activity able to hydro-lyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals. J Agr Food Chem, 49(11), 5679–5684.
Google Scholar
Andreasen, M.F., Kroon, P.A., Williamson, G., Garcia-Conesa, M.T. 2001b. Intestinal release and uptake of phenolic antioxidant diferulic acids. Free Radical Bio Med, 31(3), 304–314.
Google Scholar
Biely, P., Singh, S., Puchart, V. 2016. Towards enzymatic breakdown of complex plant xylan structures: State of the art. Biotechnol Adv, 34(7), 1260–1274.
Google Scholar
Bondia-Pons, I., Aura, A.-M., Vuorela, S., Kolehmainen, M., Mykkänen, H., Poutanen, K. 2009. Rye phenol-ics in nutrition and health. J Cereal Sci, 49(3), 323–336.
Google Scholar
Brand-Williams, W., Cuvelier, M.E., Berset, C., 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Technol, 28(1), 25–30.
Google Scholar
Budryn, G., Nebesny, E. 2006. Fenolokwasy - ich właściwości, występowanie w surowcach roślinnych, wchłanianie i przemiany metaboliczne. Bromatol Chem Toksyk, 39(2), 103–110.
Google Scholar
Bunzel, M., Ralph, J., Marita, J.M., Hatfield, R.D., Steinhart, H. 2001. Diferulates as structural components in soluble and insoluble cereal dietary fibre. J Sci Food Agr, 81(7), 653–660.
Google Scholar
Bushuk, W., 2001. Rye: production, chemistry, and technology, 2 edition. ed. Amer Assn of Cereal Chemists, St. Paul, Minn.
Google Scholar
Cacak-Pietrzak, G. 2016. Wykorzystanie ziarna żyta na cele konsumpcyjne i inne. Presented at the Kontrola jakosci w obrocie i przetworstwie ziarna zboz, Krynica Morska, pp. 18–19.
Google Scholar
Chen, Y., Ross, A.B., Åman, P., Kamal-Eldin, A. 2004. Alkylresorcinols as markers of whole grain wheat and rye in cereal products. J Agr Food Chem, 52(26), 8242–8246.
Google Scholar
Chesson, A., Provan, G.J., Russell, W.R., Scobbie, L., Richardson, A.J., Stewart, C. 1999. Hydroxycinnamic acids in the digestive tract of livestock and humans. J Sci Food Agr, 79(3), 373–378.
Google Scholar
Cheynier, V., Comte, G., Davies, K.M., Lattanzio, V., Martens, S. 2013. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Bioch, 72, 1–20.
Google Scholar
Curiel, J.A., Rodríguez, H., Landete, J.M., de las Rivas, B., Muñoz, R. 2010. Ability of Lactobacillus brevis strains to degrade food phenolic acids. Food Chem,120(1), 225–229.
Google Scholar
Dedio, W., Hill, R.D., Evans, L.E. 1972. Anthocyanins in the pericarp and coleoptiles of purple-seeded rye. Can J Plant Sci, 52(6), 981–983.
Google Scholar
Dimberg, L.H., Moltenberg, E.L., Solheim, R., Frolich, W. 1996. Variation in oat groats due to variety, stor-age and heat treatment. I: Phenolic compounds. J Cereal Sci, 24(3), 263-272.
Google Scholar
During, A., Debouche, C., Raas, T., Larondelle, Y. 2012. Among plant lignans, pinoresinol has the strongest antiinflammatory properties in human intestinal Caco-2 cells. J Nutr, 142(10), 1798–1805.
Google Scholar
Dykes, L., Rooney, L.W. 2007. Phenolic compounds in cereal grains and their health benefits. Cereal Foods Worlds, 105–111.
Google Scholar
Dynkowska, W.M., Cyran, M.R., Ceglińska, A. 2015. Soluble and cell wall-bound phenolic acids and ferulic acid dehydrodimers in rye flour and five bread model system: Insight into mechanisms of improved availability. J Sci Food Agr, 95(5), 1103–1115.
Google Scholar
FAOSTAT http://www.fao.org/faostat/en/#home
Google Scholar
Fazary, A.E., Ju, Y.-H. 2007. Feruloyl esterases as biotechnological tools: current and future perspectives. Acta Bioch Bioph Sin, 39(11), 811–828.
Google Scholar
Figueroa-Espinoza, M.C., Rouau, X. 1998. Oxidative cross-linking of pentosans by a fungal laccase and horseradish peroxidase: mechanism of linkage between feruloylated arabinoxylans. Cereal Chem, 75(2), 259–265.
Google Scholar
Gänzle, M.G. 2014. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol, 37, 2-10.
Google Scholar
Geissman, T., Neukom, H. 1973. A note of ferulic acid as a constituent of the water-insoluble pentosans of wheat flour. Cereal Chem, 50, 414–416.
Google Scholar
Glitsø, L.V., Bach Knudsen, K.E. 1999. Milling of whole grain rye to obtain fractions with different dietary fibre characteristics. J Cereal Sci, 29(1), 89–97.
Google Scholar
Gulçin, İ. 2012. Antioxidant activity of food constituents: an overview. Arch Toxicol, 86(3), 345–391.
Google Scholar
Hansen, H.B., Rasmussen, C.V., Knudsen, K.E.B., Hansen, Å. 2003. Effects of genotype and harvest year on content and composition of dietaty fibre in rye (Secale cereale L.) grain. J Sci Food Agr, 83(1), 76-85.
Google Scholar
Hatfield, R.D., Rancour, D.M., Marita, J.M. 2017. Grass cell walls: A story of cross-linking. Front Plant Sci 7, 2056.
Google Scholar
Heim, K.E., Tagliaferro, A.R., Bobilya, D.J. 2002. Flavonoid antioxidants: Chem, metabolism and structure-activity relationships. J Nutr Biochem, 13(10), 572–584.
Google Scholar
Heiniö, R.-L., Liukkonen, K.-H., Katina, K., Myllymäki, O., Poutanen, K. 2003. Milling fractionation of rye produces different sensory profiles of both flour and bread. LWT - Food Sci Technol, 36(6), 577–583.
Google Scholar
Heiniö, R.-L., Liukkonen, K.-H., Myllymäki, O., Pihlava, J.-M., Adlercreutz, H., Heinonen, S.-M., Poutanen, K. 2008. Quantities of phenolic compounds and their impacts on the perceived flavour attributes of rye grain. J Cereal Sci, 47(3), 566–575.
Google Scholar
Huang, D., Ou, B., Prior, R.L. 2005. The chemistry behind antioxidant aapacity assays. J Agr Food Chem, 53(6), 1841–1856.
Google Scholar
Iiyama, K., Lam, T.B.T., Stone, B.A. 1994. Covalent cross-links in the cell wall. Plant Physiol, 104(2), 315–320.
Google Scholar
Izydorczyk, M.S., Biliaderis, C.G. 1995. Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohyd Polym, 28(1), 33–48.
Google Scholar
Kamal-Eldin, A., Appelqvist, L.A. 1996. The chemistry and antioxidant properties of tocopherols and tocotri-enols. Lipids, 31(7), 671–701.
Google Scholar
Katina, K., Heiniö, R.-L.,Autio, K., Poutanen, K. 2006. Optimization of sourdough process for improved sensory profile and texture of wheat bread. LWT - Food Sci Technol, 39(10), 1189–1202.
Google Scholar
Katina, K., Liukkonen, K.-H., Kaukovirta-Norja, A., Adlercreutz, H., Heinonen, S.-M., Lampi, A.-M., Pihla-va, J.-M., Poutanen, K. 2007. Fermentation-induced changes in the nutritional value of native or germi-nated rye. J Cereal Sci, 46(3), 348–355.
Google Scholar
Kołodziejczyk-Czepas, J., Szejk, M., Pawlak, A., Żbikowska, H.M. 2015. Właściwości przeciwutleniające kwasu kawowego i jego pochodnych. Żywn-Nauk Technol Ja, 3(100), 5–17.
Google Scholar
Kroon, P.A., Williamson, G. 1999. Hydroxycinnamates in plants and food: current and future perspectives. J Sci Food Agr, 79(3), 355–361.
Google Scholar
Kroon, P., Garcia-Conesa, M., Fillingham, I., Hazlewood, G., Williamson, G. 1999. Release of ferulic acid dehydrodimers from plant cell walls by feruloyl esterases. J Sci Food Agr, 79(3), 428–434.
Google Scholar
Kulawinek, M., Jaromin, A., Kozubek, A., Zarnowski, R. 2008. Alkylresorcinols in selected Polish rye and wheat cereals and whole-grain cereal products. J Agr Food Chem, 56(16), 7236–7242.
Google Scholar
Lam, T.B.T., Kadoya, K., Iiyama, K. 2001. Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the β-position, in grass cell walls. Phytochemistry, 57(6), 987–992.
Google Scholar
Maeda, H., Dudareva, N., 2012. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol, 63, 73–105.
Google Scholar
Mancuso, C., Santangelo, R. 2014. Ferulic acid: pharmacological and toxicological aspects. Food Chem Toxi-col, 65, 185–195.
Google Scholar
Masuda, T., Yamada, K., Akiyama, J., Someya, T., Odaka, Y., Takeda, Y., Tori, M., Nakashima, K., Maeka-wa, T., Sone, Y. 2008. Antioxidation mechanism studies of caffeic acid: identification of antioxidation products of methyl caffeate from lipid oxidation. J Agr Food Chem, 56(14), 5947–5952.
Google Scholar
Mathew, S., Abraham, T.E. 2004. Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit Rev Biotechnol, 24(2-3), 59–83.
Google Scholar
Mathew, S., Abraham, T.E. 2006. Bioconversions of ferulic acid, an hydroxycinnamic acid. Crit Rev Microbi-ol, 32(3), 115–125.
Google Scholar
Meents, M.J., Watanabe, Y., Samuels, A.L. 2018. The cell biology of secondary cell wall biosynthesis. Ann Bot, 121(6), 1107–1125.
Google Scholar
Micard, V., Landazuri, T., Surget, A., Moukha, S., Labat, M., Rouau, X. 2002. Demethylation of ferulic acid and feruloyl arabinoxylan by microbial cel extracts. LWT - Food Sci Technol, 35(3), 272–276.
Google Scholar
Michalska, A., Ceglinska, A., Amarowicz, R., Piskula, M.K., Szawara-Nowak, D., Zielinski, H. 2007a. Anti-oxidant contents and antioxidative properties of traditional rye breads. J Agr Food Chem, 55(3), 734–740.
Google Scholar
Michalska, A., Ceglińska, A., Zieliński, H. 2007b. Bioactive compounds in rye flours with different extraction rates. Eur Food Res Technol, 225(3-4), 545–551.
Google Scholar
Moltenberg, E.L., Solheim, Dimberg, L.H., R., Frolich, W. 1996. Variation in oat groats due to variety, stor-age and heat treatment. II: Sensory quality. J Cereal Sci, 24(3), 273-282.
Google Scholar
Moon, J.-K., Shibamoto, T. 2009. Antioxidant assays for plant and food components. J Agr Food Chem, 57(5), 1655–1666.
Google Scholar
Moore, A.M., Martinez-Munoz, I., Hoseney, R.C. 1990. Factors affecting the oxidative gelation of wheat water-solubles’. Cereal Chem, 67(1), 81–84.
Google Scholar
Naczk, M., Shahidi, F. 2004. Extraction and analysis of phenolics in food. J Chromatogr A, 1054(1-2), 95–111.
Google Scholar
Natella, F., Nardini, M., Di Felice, M., Scaccini, C., 1999. Benzoic and cinnamic acid derivatives as antioxi-dants: structure-activity relation. J Agr Food Chem, 47(4), 1453–1459.
Google Scholar
Nimse, S.B., Pal, D. 2015. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv, 5, 27986–28006.
Google Scholar
Nyström, L., Lampi, A.-M., Andersson, A.A.M., Kamal-Eldin, A., Gebruers, K., Courtin, C.M., Delcour, J.A., Li, L., Ward, J.L., Fraś, A., Boros, D., Rakszegi, M., Bedő, Z., Shewry, P.R., Piironen, V. 2008. Phyto-chemicals and Dietary Fiber Components in Rye Varieties in the HEALTHGRAIN Diversity Screen. J Agr Food Chem, 56(21), 9758–9766.
Google Scholar
Ou, S., Kwok, K.-C. 2004. Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agr, 84(11), 1261–1269.
Google Scholar
Pihlava, J.-M., Nordlund, E., Heiniö, R.-L., Hietaniemi, V., Lehtinen, P., Poutanen, K. 2015. Phenolic com-pounds in wholegrain rye and its fractions. J Food Compos Anal, 38, 89–97.
Google Scholar
Pihlava, J.-M., Hellström, J., Kurtelius, T., Mattila, P. 2018. Flavonoids, anthocyanins, phenolamides, benzox-azinoids, lignans and alkylresorcinols in rye (Secale cereale L.) and some rye products. J Cereal Sci, 79(1), 183–192.
Google Scholar
Piironen, V., Sylväoja, E.-L., Varo, P., Salminen, K., Koivistoinen, P. (1986). Tocopherols and tocotrienols in cereal products rom Finland. Cereal Chem, 63(2), 78–81.
Google Scholar
Pisoschi, A.M., Pop, A. 2015. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem, 97, 55–74.
Google Scholar
Poutanen, K., Flander, L., Katina, K. 2009. Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol, 26(7), 693–699.
Google Scholar
Poutanen, K., Åman, P. (eds.) 2014. Rye and Health, 1st ed. AACC International.
Google Scholar
Prior, R.L., Wu, X., Schaich, K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agr Food Chem, 53(10), 4290–4302.
Google Scholar
Quideau, S., Deffieux, D., Douat-Casassus, C., Pouységu, L. 2011. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed Engl, 50, 586–621.
Google Scholar
Ragaee, S.M., Campbell, G.L., Scoles, G.J., McLeod, J.G., Tyler, R.T. 2001. Studies on rye (Secale cereal L.) lines exhibiting a range of extracts viscosities. 1. Composition, molecular weight distribution of water extract, and biochemical characteristics of purified water-extractable arabinoxylan. J Agric Food Chem, 49(5), 2437-2445.
Google Scholar
Ragaee, S.M., Abdel-Aal, E., Noaman, M. 2006. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem, 98(1), 32-38.
Google Scholar
Ralph, J., Quideau, S., Grabber, J.H., Hatfield, R.D. 1994. Identification and synthesis of new ferulic acid dehydrodimers present in grass cell walls. J Chem Soc Perkin 1, 23, 3485–3498.
Google Scholar
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio Med, 26(9-10), 1231–1237.
Google Scholar
Rice-Evans, C.A., Miller, N.J., Paganga, G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio Med, 20(7), 933–956.
Google Scholar
Rice-Evans, C., Miller, N., Paganga, G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci 2(4), 152–159.
Google Scholar
Statistical Yearbook 2017. Główny Urząd Statystyczny, Rozkrut, D. (ed.) Zakład Wydawnictw Statystycz-nych, Warszawa. pp. 495.
Google Scholar
Rodríguez, H., Curiel, J.A., Landete, J.M., de las Rivas, B., de Felipe, F.L., Gómez-Cordovés, C., Mancheño, J.M., Muñoz, R. 2009. Food phenolics and lactic acid bacteria. International J Food Microb, 132(2-3), 79-90.
Google Scholar
Rothwell, J.A., Urpi-Sarda, M., Boto-Ordoñez, M., Llorach, R., Farran-Codina, A., Barupal, D.K., Neveu, V., Manach, C., Andres-Lacueva, C., Scalbert, A. 2016. Systematic analysis of the polyphenol metabolome using the Phenol-Explorer database. Mol Nutr Food Res, 60(1), 203–211.
Google Scholar
Saulnier, L., Thibault, J.F. 1999. Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans. J Sci Food Agr, 79(3), 396–402.
Google Scholar
Selma, M.V., Espín, J.C., Tomás-Barberán, F.A. 2009. Interaction between phenolics and gut microbiota: role in human health. J Agr Food Chem, 57(15), 6485–6501.
Google Scholar
Shahidi, F., Yeo, J.-D. 2016. Insoluble-bound phenolics in food. Molecules, 21(9), https://doi.org/10.3390/molecules21091216.
Google Scholar
Slavin, J.L. 2000. Mechanisms for the impact of whole grain foods on cancer risk. J Am Coll Nutr, 19(3 Suppl), 300S-307S.
Google Scholar
Sroka, Z., Cisowski, W. 2003. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem Toxicol, 41(6), 753–758.
Google Scholar
Suzuki, Y., Esumi, Y., Uramoto, M., Kono, Y., Sakurai, A. 1997. Structural analyses of carbon chains in 5-alk(en)ylresorcinols of rye and wheat whole flour by tandem mass spectrometry. BioSci Biotech Bioch, 61(3), 480–486.
Google Scholar
Suzuki, Y., Esumi, Y., Yamaguchi, I. 1999. Structures of 5-alkylresorcinol-related analogues in rye. Phyto-chemistry, 52(2), 281–289.
Google Scholar
Tzin, V., Galili, G. 2010. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant, 3(6), 956–972.
Google Scholar
van Beek, S., Priest, F.G. 2000. Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation. Appl Environ Microbiol, 66(12), 5322–5328.
Google Scholar
Vinkx, C.J.A. Nieuwenhove, C.G. van, Delcour, J.A. 1991. Physicochemical and functional properties of rye nonstarch polysaccharides. III. Oxidative gelation of a fraction containing water-soluble pentosans and proteins. Cereal Chem, 68(6), 617-622.
Google Scholar
Virtanen, A.I., Hietala, P.K. 1955. 2(3)-Benzoxazolinone, an anti-fusarium factior in rye seedlings. Acta Chem Scand, 9, 1543–1544.
Google Scholar
Viskupičová, J., Ondrejovič, M., Šturdík, E. 2008. Bioavailability and metabolism of flavonoids. J Food Nutr Res, 47(4), 151–162.
Google Scholar
Weaver, L.M., Herrmann, K.M. 1997. Dynamics of the shikimate pathway in plants. Trends Plant Sci, 2(9), 346–351.
Google Scholar
Williams, R.J., Spencer, J.P.E., Rice-Evans, C. 2004. Flavonoids: antioxidants or signalling molecules? Free Radical Bio Med, 36(7), 838–849.
Google Scholar
Williamson, G., Day, A.J., Plumb, G.W., Couteau, D. 2000. Human metabolic pathways of dietary flavonoids and cinnamates. Biochem Soc T, 28(2), 16–22.
Google Scholar
Wong, K.K., Tan, L.U., Saddler, J.N. 1988. Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev, 52(3), 305–317.
Google Scholar
Zhao, Z., Moghadasian, M.H. 2008. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chem,109(4), 691–702.
Google Scholar
Zieliński, H., Ceglińska, A., Michalska, A. 2007. Antioxidant contents and properties as quality indices of rye cultivars. Food Chem, 104(3), 980–988.
Google Scholar
Authors
Wioletta M. Dynkowskaw.dynkowska@ihar.edu.pl
Plant Biochemistry and Physiology Department, Plant Breeding and Acclimatization Institute – National Research Institute,Radzików, 05-870 Błonie Poland
http://orcid.org/0000-0001-8563-7032
Statistics
Abstract views: 396PDF downloads: 239
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All articles published in electronic form under CC BY-SA 4.0, in open access, the full content of the licence is available at: https://creativecommons.org/licenses/by-sa/4.0/legalcode.pl .