BIOCHEMICAL AND PHYSIOLOGICAL CHANGES IN RESPONSE TO SALINITY IN LEAVES AND ROOTS OF TWO DURUM WHEAT (TRITICUM DURUM DESF.) GENOTYPES

Donia Bouthour

donia_bouthour@hotmail.com
Unité de recherche « Nutrition et Métabolisme Azotés et Protéines de Stress », Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1060, Tunis, Tunisie. (Tunisia)

Tawba Kalai


Unité de recherche « Nutrition et Métabolisme Azotés et Protéines de Stress », Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1060, Tunis, Tunisie (Tunisia)

Houda Gouia


Unité de recherche « Nutrition et Métabolisme Azotés et Protéines de Stress », Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1060, Tunis, Tunisie. (Tunisia)

Chaffei-Haouari Chiraz


Unité de recherche « Nutrition et Métabolisme Azotés et Protéines de Stress », Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1060, Tunis, Tunisie (Tunisia)


Abstract

Salt stress is a major abiotic stress that limits agricultural productivity in many regions of the world. To understand the molecular basis of the salt stress response, two wheat (Triticum durum Desf.) cultivars, Karim and Azizi, which are of agronomic significance in Tunisia, were grown under non-saline and saline conditions (100 mM). Leaves and roots of control and salt-stressed plants were harvested after 11 days of salt treatment. Karim cultivar may behave as a typical Na+ include, which compartmentalizes Na+ within the leaf cell vacuoles where it could be used as an osmoticum to lower the osmotic potential necessary for the maintenance of the plant hydric status. While, accumulation of K+ was greater in Karim cultivar compared to Azizi, in both organs, presenting an important manifestation of salinity tolerance. Significant changes in metabolism of antioxidative system were observed, with an increase in protein tyrosine nitration, which indicates that salinity stress induces a nitro-oxidative stress.


Keywords:

durum wheat, oxidative stress, protein nitration, salinity stress

Aebi, H. 1984. Catalase in vitro. Meth. Enzym. 105, 121-126.
Google Scholar

Airaki, M., Sánchez-Moreno, L., Leterrier, M., Barroso, J.B., Palma, J.M., Corpas, F.J. 2011. Detection and quantification of S-nitrosoglutathione (GSNO) in pepper (Capsicum annuum L.) plant organs by LC-ES/ MS. Plant Cell Physiol. 52, 2006-2015.
Google Scholar

Al-Hakimi, M., Hamada, A.M. 2001. Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamine or sodium salicylate. Biol. Plant. 44, 253-261.
Google Scholar

Apel, K., Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373-399.
Google Scholar

Ashraf, M., Harris, P.J.C. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166, 3-16.
Google Scholar

Ashraf, M. 2009. Biotechnological appr ach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 27, 84-93.
Google Scholar

Ashraf, M.A., Ashraf, M., Shahbaza, M. 2012. Growth stage-based modulation in antioxidant defense system and proline accumulation in two hexaploid wheat (Triticum aestivum L.) cultivars differing in salinity tolerance. Flora, 207, 388-397.
Google Scholar

Athar, H., Khan, A., Ashraf, M. 2008. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Env. Exp. Bot. 63, 224-231.
Google Scholar

Ayers, R.S., Westcot, D.W. 1985. Water quality for agriculture. FAO Irrigation Drainage Paper. 29, 174.
Google Scholar

Azizpour, K., Shakiba, M.R., Khosh Kholgh Sima, N., Alyari, H., Moghaddam, M., Esfandiari, E., Pessarakli, M. 2010. Physiological response of spring durum wheat genotypes to salinity. J. Plant Nutri. 33, 859- 873.
Google Scholar

Beauchamp, C., Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276-287.
Google Scholar

Bor, M., Ozdemir, F., Turkan, I. 2003. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet (Beta vulgaris L.) and wild beet (Beta maritime L.). Plant Sci. 164, 77-84.
Google Scholar

Chaki, M., Fernández-Ocaña, A.M., Valderrama, R., Carreras, A., Esteban, F.J., Luque, F., GómezRodríguez, M.V., Begara-Morales, J.C., Corpas, F.J., Barroso, J.B. 2009. Involvement of reactive nitro- gen and oxygen species (RNS and ROS) in sunflower-mildew interaction. Plant Cell Physiol. 50, 265- 279.
Google Scholar

Chaki, M., Valderrama, R., Fernández-Ocaña, A.M., Carreras, A., Gómez- Rodríguez, M.V., Pedradas, J.R., Begara-Morales, J.C., Sánchez-Calvo, B., Luque, F., Leterrier, M., Corpas, F.J., Barroso, J.B. 2011. Mechanical wounding induces a nitrosative stress by downregulation of GSNO reductase and a rise of S-nitrosothiols in sunflower (Helianthus annuus) seedlings. J. Exp. Bot. 62, 1803-1813.
Google Scholar

Chinnusamy, V., Jagendorf, A., Zhu, J.K. 2005. Understanding and improving salt tolerance in plants. Crop Sci. 45, 437-448.
Google Scholar

Conklin, P.L., Pallanca, J.E., Last, R.L., Smirnoff, N. 1997. L-ascorbic acid metabolism in the ascorbate-deficient Arabidopsis mutant vtc1. Plant Physiol. 115, 1277-1285.
Google Scholar

Corpas, F.J., Barroso, J.B., Sandalio, L.M., Distefano, S., Palma, J.M., Lupiáñez, J.A., Del Río, L.A. 1998. A dehydrogenase mediated recycling system of NADPH in plant peroxisomes. Biochem. J. 330, 777-784.
Google Scholar

Corpas, F.J., Del Río, L.A., Barroso, J.B. 2007. Need of biomarkers of nitrosative stress in plants. Trends Plant Sci. 12, 436-438.
Google Scholar

Corpas, F.J., Chaki, M., Fernández-Ocaña, A., Valderrama, R., Palma, J.M., Carreras, A., BegaraMorales, J.C., Airaki, M., Del Río, L.A., Barroso, J.B. 2008. Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol. 49, 1711-1722.
Google Scholar

Corpas, F.J., Hayashi, M., Mano, S., Nishimura, M., Barroso, J.B. 2009. Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants. Plant Physiol. 151, 2083-2094.
Google Scholar

Corpas, F.J., Leterrier, M., Valderrama, R., Airaki, M., Chaki, M., Palma, J.M., Barroso, J.B. 2011. Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci. 181, 604-611.
Google Scholar

Corpas, F.J., Palma, J.M., Del Río, L.A., Barroso, J.B. 2013. Protein tyrosine nitration in higher plants grown under natural and stress conditions. Front Plant Sci. 4, 1-4.
Google Scholar

Dalal, M., Khanna-Chopra, R. 2001. Differential response of antioxidant enzymes in leaves of necrotic wheat hybrids and their parents. Physiol. Plant. 111, 297-304.
Google Scholar

Dalmia, A., Sawhney, V. 2004. Antioxidant defense metabolism under drought stress in wheat seedlings. Physiol. Mol. Biol. Plant. 10, 109-114.
Google Scholar

Daneshmand, F., Arvin, M.J., Kalantari, K.M. 2010. Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiol. Plant. 32, 91-101.
Google Scholar

Davis, B.J. 1964. Disc gel electrophoresis. II. Method and application to human serum proteins. Annals New York Acad. Sci. 121, 404–427.
Google Scholar

Demiral, T., Turkan, I. 2004. Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J. Plant Physiol. 161, 1089-1100.
Google Scholar

Demiral, T., Turkan, I. 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ. Exp. Bot. 53, 247-257.
Google Scholar

Durner, J., Klessig, D.F. 1999. Nitric oxide as a signal in plants. Curr. Opin. Plant Biol. 2, 369-374.
Google Scholar

Esfandiari, E., Shekari, F., Shekari, F., Esfandiari, M. 2007. The effect of salt stress on antioxidant enzymes activity and lipid peroxidation on the wheat seedling. Not. Bot. Horti. Agrobot. ClujNapoca. 35, 48-56.
Google Scholar

Fahmy, A.S., Mohamed, T.M., Mohamed, S.A., Saker, M.M. 1998. Effect of salt stress on antioxidant activities in cell suspension cultures of cantaloupe (Cucumis melo). Egyptian J. Physiol. Sci. 22, 315-326.
Google Scholar

Fercha, A. 2011. Some physiological and biochemical effects of NaCl salinity on durum wheat (Triticum durum Desf.), Adv. Biol. Res. 5, 315-322.
Google Scholar

Foyer, C.H., Lelandais, M., Kunert, K.J. 2004. Photooxidative stress in plants. Physiol. Plant. 92, 696- 717.
Google Scholar

Foyer, C.H., Noctor, G. 2011. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155, 2-18.
Google Scholar

Gagneul, D., Aïnouche, A., Duhaz, C., Lugan, R., Larher, F.R., Bouchereau, A. 2007. A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiol. 144, 1598-1611.
Google Scholar

Gorham, J., Wyn Jones, R.G., Bristol, A. 1990. Partial characterization of the trait for enhanced K+ - Na+ discrimination in the D genome of wheat. Planta. 180, 590-597.
Google Scholar

Gueta-Dahan, Y., Yaniv, Z., Zilinskas, B.A., Ben-Hayyim, G. 1997. Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus. Planta. 203, 460-469.
Google Scholar

Hao, F., Wang, X., Chen, J. 2006. Involvement of plasma-membrane NADPH oxidase in nickelinduced oxidative stress in roots of wheat seedlings. Plant Sci. 170, 151-158.
Google Scholar

Harinasut, P., Srisunak, S., Pitukchaisopol, S., Charoensataporn, R. 2000. Mechanisms of adaptation to increasing salinity of mulberry: Proline content and ascorbate peroxidase activity in leaves of multiple shoots. Sci. Asia. 26, 207-211.
Google Scholar

Hernandez, J.A., Olmos, E., Corpas, F.J., Sevilla, F., Del Rio, L.A. 1995. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci. 105, 151-167.
Google Scholar

Hernandez, J.A., Jimenez, A., Mullineaux, P., Sevilla, F. 2000. Tolerance of pea (Pisum sativum L.) to long term salt stress is associated with induction of antioxidant defences. Plant Cell Environ. 23, 853-862.
Google Scholar

James, R.A., Munns, R., Von Caemmerer, S., Trejo, C., Miller, C., Condon, T.A.G. 2006. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+ , K+ and Clin saltaffected barley and durum wheat. Plant Cell Environ. 29, 2185-2197.
Google Scholar

Katerji, N., Van Hoorn, J.W., Hamdy, A., Mastrorilli, M., Nachit, M.M., Oweis, T. 2005. Salt tolerance analysis of chickpea, faba bean and durum wheat varieties. II. Durum wheat. Agric. Water Managen. 72, 195-207.
Google Scholar

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-685.
Google Scholar

Levigneron, A., Lopez, F., Vasut, G. 1995. Les plantes faces au stress salin. Cahiers Agric. 4, 263- 273.
Google Scholar

Liang, Y.C., Chen, Q., Lui, Q., Zhang, W.H., Ding, R.X. 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J. Plant Physiol. 160, 1157-1164.
Google Scholar

López-Huertas, E., Corpas, F.J., Sandalio, L.M., Del Rio, L.A. 1999. Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem. J. 337, 531-536.
Google Scholar

Manai, J., Gouia, H., Corpas, F.J. 2014. Redox and nitric oxide homeostasis are affected in tomato (Solanum lycopersicum) roots under salinity-induced oxidative stress. J. Plant Physiol. 171, 1028 -1035.
Google Scholar

Mandhania, S., Madan, S., Sawhney, V. 2006. Antioxidant defense mechanism under salt stress in wheat seedlings. Biol. Plant. 50, 227-231.
Google Scholar

Marschner, H. 1995. Part I, Nutritional Physiology. In: Marschner, H. (ed). Mineral nutrition of higher plants, 2nd edition. Academic Press, London. 18-30, 313-363.
Google Scholar

Meneguzzo, S., Navari-Izzo, F., Izzo, R. 1999. Antioxidative reponses of shoots and roots of wheat to increasing NaCl concentrations. J. Plant Physiol. 155, 274-280.
Google Scholar

Miller, G., Shulaev, V., Mittler, R. 2008. Reactive oxygen signaling and abiotic stress. Physiol. Plant. 133, 481-489.
Google Scholar

Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405-410.
Google Scholar

Mittova, V., Tal, M., Volokita, M., Guy, M. 2003. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt tolerant tomato species Lycopersicon pennellii. Plant Cell Environ. 26, 845-856.
Google Scholar

Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25, 239-250.
Google Scholar

Munns, R., James, R.A. 2003. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil. 253, 201-218.
Google Scholar

Munns, R., Tester, M. 2008. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 59, 651-681.
Google Scholar

Navarro, J.M., Flores, P., Garrido, C., Martinez, V. 2006. Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem. 96, 66- 73.
Google Scholar

Noble, D.R., Swift, H.R., Williams, D.L.H. 1999. Nitric oxide release from S-nitrosoglutathione (GSNO). Chem. Commun. 18, 2317-2318.
Google Scholar

Sagi, M., Fluhr, R. 2001. Superoxide production by plant homologues of the gp91(phox) NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol. 126, 128-1298.
Google Scholar

Sairam, R.K., Srivastava, G.C. 2002. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci. 162, 897-904.
Google Scholar

Sairam, R.K., Roa, K.V., Srivastava, G.C. 2002. Differential response of wheat cultivar genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163, 1037-1048.
Google Scholar

Sairam, R.K., Srivastava, G.C., Agarwal, S., Meena, R.C. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol. Plant. 49, 85-91.
Google Scholar

Saito, S., Yamamoto-Katou, A., Yoshioka, H., Doke, N., Kawakita, K. 2006. Peroxynitrite generation and tyrosine nitration in defense responses in tobacco BY-2 cells. Plant Cell Physiol. 47, 689- 697.
Google Scholar

Tejera, N.A., Soussi, M., Lluch, C. 2006. Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environ. Exp. Bot. 58, 17-24.
Google Scholar

Tester, M., Davenport, R. 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91, 503- 527.
Google Scholar

Turkana, I., Demiral, T. 2009. Recent developments in understanding salinity tolerance. Environ. Exp. Bot. 67, 2-9.
Google Scholar

Valderrama, R., Corpas, F.J., Carreras, A. Gomez-Rodriguez, M.V., Chaki, M., Pedrajas, J.R., Fernandez-Ocana, A., Del Rio, L.A., Barroso, J.B. 2006. The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant Cell Environ. 29, 1449–1459.
Google Scholar

Valderrama, R., Corpas, F.J., Carreras, A., Fernández-Ocana, A., Chaki, M., Luque, F.,GomezRodriguez, M.V., Colmenero-Varea, P., Del Rio, L.A., Barroso, J.B. 2007. Nitrosative stress in plants. FEBS Lett. 581, 453-461.
Google Scholar

Vranova, E., Inzé, D., Van Breusegem, F. 2002. Signal transduction during oxidative stress. J. Exp. Bot. 53, 1227-1236.
Google Scholar

Zhu, J.K. 2002. Salt and drought stress signal transduction in plants. Ann. Rev. Plant Biol. 53, 247- 273.
Google Scholar

Zorb, C., Schmitt, S., Neeb, A., Karl, S., Linder, M., Schubert, S. 2004. The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specific adaptation. Plant Sci. 167, 91-100.
Google Scholar

Download


Published
2016-12-20

Cited by

Bouthour, D., Kalai, T., Gouia, H., & Chiraz, C.-H. (2016). BIOCHEMICAL AND PHYSIOLOGICAL CHANGES IN RESPONSE TO SALINITY IN LEAVES AND ROOTS OF TWO DURUM WHEAT (TRITICUM DURUM DESF.) GENOTYPES. Plant Breeding and Seed Science, 74, 57–72. Retrieved from http://ojs.ihar.edu.pl/index.php/pbss/article/view/223

Authors

Donia Bouthour 
donia_bouthour@hotmail.com
Unité de recherche « Nutrition et Métabolisme Azotés et Protéines de Stress », Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1060, Tunis, Tunisie. Tunisia

Authors

Tawba Kalai 

Unité de recherche « Nutrition et Métabolisme Azotés et Protéines de Stress », Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1060, Tunis, Tunisie Tunisia

Authors

Houda Gouia 

Unité de recherche « Nutrition et Métabolisme Azotés et Protéines de Stress », Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1060, Tunis, Tunisie. Tunisia

Authors

Chaffei-Haouari Chiraz 

Unité de recherche « Nutrition et Métabolisme Azotés et Protéines de Stress », Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1060, Tunis, Tunisie Tunisia

Statistics

Abstract views: 112
PDF downloads: 39


License

All articles published in electronic form under CC BY-SA 4.0, in open access, the full content of the licence is available at: https://creativecommons.org/licenses/by-sa/4.0/legalcode.pl .