BIOCHEMICAL AND PHYSIOLOGICAL CHANGES IN RESPONSE TO SALINITY IN LEAVES AND ROOTS OF TWO DURUM WHEAT (TRITICUM DURUM DESF.) GENOTYPES



Abstract

Salt stress is a major abiotic stress that limits agricultural productivity in many regions of the world. To understand the molecular basis of the salt stress response, two wheat (Triticum durum Desf.) cultivars, Karim and Azizi, which are of agronomic significance in Tunisia, were grown under non-saline and saline conditions (100 mM). Leaves and roots of control and salt-stressed plants were harvested after 11 days of salt treatment. Karim cultivar may behave as a typical Na+ include, which compartmentalizes Na+ within the leaf cell vacuoles where it could be used as an osmoticum to lower the osmotic potential necessary for the maintenance of the plant hydric status. While, accumulation of K+ was greater in Karim cultivar compared to Azizi, in both organs, presenting an important manifestation of salinity tolerance. Significant changes in metabolism of antioxidative system were observed, with an increase in protein tyrosine nitration, which indicates that salinity stress induces a nitro-oxidative stress.


Keywords

durum wheat; oxidative stress; protein nitration; salinity stress

Aebi, H. 1984. Catalase in vitro. Meth. Enzym. 105, 121-126.

Airaki, M., Sánchez-Moreno, L., Leterrier, M., Barroso, J.B., Palma, J.M., Corpas, F.J. 2011. Detection and quantification of S-nitrosoglutathione (GSNO) in pepper (Capsicum annuum L.) plant organs by LC-ES/ MS. Plant Cell Physiol. 52, 2006-2015.

Al-Hakimi, M., Hamada, A.M. 2001. Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamine or sodium salicylate. Biol. Plant. 44, 253-261.

Apel, K., Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373-399.

Ashraf, M., Harris, P.J.C. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166, 3-16.

Ashraf, M. 2009. Biotechnological appr ach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 27, 84-93.

Ashraf, M.A., Ashraf, M., Shahbaza, M. 2012. Growth stage-based modulation in antioxidant defense system and proline accumulation in two hexaploid wheat (Triticum aestivum L.) cultivars differing in salinity tolerance. Flora, 207, 388-397.

Athar, H., Khan, A., Ashraf, M. 2008. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Env. Exp. Bot. 63, 224-231.

Ayers, R.S., Westcot, D.W. 1985. Water quality for agriculture. FAO Irrigation Drainage Paper. 29, 174.

Azizpour, K., Shakiba, M.R., Khosh Kholgh Sima, N., Alyari, H., Moghaddam, M., Esfandiari, E., Pessarakli, M. 2010. Physiological response of spring durum wheat genotypes to salinity. J. Plant Nutri. 33, 859- 873.

Beauchamp, C., Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276-287.

Bor, M., Ozdemir, F., Turkan, I. 2003. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet (Beta vulgaris L.) and wild beet (Beta maritime L.). Plant Sci. 164, 77-84.

Chaki, M., Fernández-Ocaña, A.M., Valderrama, R., Carreras, A., Esteban, F.J., Luque, F., GómezRodríguez, M.V., Begara-Morales, J.C., Corpas, F.J., Barroso, J.B. 2009. Involvement of reactive nitro- gen and oxygen species (RNS and ROS) in sunflower-mildew interaction. Plant Cell Physiol. 50, 265- 279.

Chaki, M., Valderrama, R., Fernández-Ocaña, A.M., Carreras, A., Gómez- Rodríguez, M.V., Pedradas, J.R., Begara-Morales, J.C., Sánchez-Calvo, B., Luque, F., Leterrier, M., Corpas, F.J., Barroso, J.B. 2011. Mechanical wounding induces a nitrosative stress by downregulation of GSNO reductase and a rise of S-nitrosothiols in sunflower (Helianthus annuus) seedlings. J. Exp. Bot. 62, 1803-1813.

Chinnusamy, V., Jagendorf, A., Zhu, J.K. 2005. Understanding and improving salt tolerance in plants. Crop Sci. 45, 437-448.

Conklin, P.L., Pallanca, J.E., Last, R.L., Smirnoff, N. 1997. L-ascorbic acid metabolism in the ascorbate-deficient Arabidopsis mutant vtc1. Plant Physiol. 115, 1277-1285.

Corpas, F.J., Barroso, J.B., Sandalio, L.M., Distefano, S., Palma, J.M., Lupiáñez, J.A., Del Río, L.A. 1998. A dehydrogenase mediated recycling system of NADPH in plant peroxisomes. Biochem. J. 330, 777-784.

Corpas, F.J., Del Río, L.A., Barroso, J.B. 2007. Need of biomarkers of nitrosative stress in plants. Trends Plant Sci. 12, 436-438.

Corpas, F.J., Chaki, M., Fernández-Ocaña, A., Valderrama, R., Palma, J.M., Carreras, A., BegaraMorales, J.C., Airaki, M., Del Río, L.A., Barroso, J.B. 2008. Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol. 49, 1711-1722.

Corpas, F.J., Hayashi, M., Mano, S., Nishimura, M., Barroso, J.B. 2009. Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants. Plant Physiol. 151, 2083-2094.

Corpas, F.J., Leterrier, M., Valderrama, R., Airaki, M., Chaki, M., Palma, J.M., Barroso, J.B. 2011. Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci. 181, 604-611.

Corpas, F.J., Palma, J.M., Del Río, L.A., Barroso, J.B. 2013. Protein tyrosine nitration in higher plants grown under natural and stress conditions. Front Plant Sci. 4, 1-4.

Dalal, M., Khanna-Chopra, R. 2001. Differential response of antioxidant enzymes in leaves of necrotic wheat hybrids and their parents. Physiol. Plant. 111, 297-304.

Dalmia, A., Sawhney, V. 2004. Antioxidant defense metabolism under drought stress in wheat seedlings. Physiol. Mol. Biol. Plant. 10, 109-114.

Daneshmand, F., Arvin, M.J., Kalantari, K.M. 2010. Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiol. Plant. 32, 91-101.

Davis, B.J. 1964. Disc gel electrophoresis. II. Method and application to human serum proteins. Annals New York Acad. Sci. 121, 404–427.

Demiral, T., Turkan, I. 2004. Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J. Plant Physiol. 161, 1089-1100.

Demiral, T., Turkan, I. 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ. Exp. Bot. 53, 247-257.

Durner, J., Klessig, D.F. 1999. Nitric oxide as a signal in plants. Curr. Opin. Plant Biol. 2, 369-374.

Esfandiari, E., Shekari, F., Shekari, F., Esfandiari, M. 2007. The effect of salt stress on antioxidant enzymes activity and lipid peroxidation on the wheat seedling. Not. Bot. Horti. Agrobot. ClujNapoca. 35, 48-56.

Fahmy, A.S., Mohamed, T.M., Mohamed, S.A., Saker, M.M. 1998. Effect of salt stress on antioxidant activities in cell suspension cultures of cantaloupe (Cucumis melo). Egyptian J. Physiol. Sci. 22, 315-326.

Fercha, A. 2011. Some physiological and biochemical effects of NaCl salinity on durum wheat (Triticum durum Desf.), Adv. Biol. Res. 5, 315-322.

Foyer, C.H., Lelandais, M., Kunert, K.J. 2004. Photooxidative stress in plants. Physiol. Plant. 92, 696- 717.

Foyer, C.H., Noctor, G. 2011. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155, 2-18.

Gagneul, D., Aïnouche, A., Duhaz, C., Lugan, R., Larher, F.R., Bouchereau, A. 2007. A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiol. 144, 1598-1611.

Gorham, J., Wyn Jones, R.G., Bristol, A. 1990. Partial characterization of the trait for enhanced K+ - Na+ discrimination in the D genome of wheat. Planta. 180, 590-597.

Gueta-Dahan, Y., Yaniv, Z., Zilinskas, B.A., Ben-Hayyim, G. 1997. Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus. Planta. 203, 460-469.

Hao, F., Wang, X., Chen, J. 2006. Involvement of plasma-membrane NADPH oxidase in nickelinduced oxidative stress in roots of wheat seedlings. Plant Sci. 170, 151-158.

Harinasut, P., Srisunak, S., Pitukchaisopol, S., Charoensataporn, R. 2000. Mechanisms of adaptation to increasing salinity of mulberry: Proline content and ascorbate peroxidase activity in leaves of multiple shoots. Sci. Asia. 26, 207-211.

Hernandez, J.A., Olmos, E., Corpas, F.J., Sevilla, F., Del Rio, L.A. 1995. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci. 105, 151-167.

Hernandez, J.A., Jimenez, A., Mullineaux, P., Sevilla, F. 2000. Tolerance of pea (Pisum sativum L.) to long term salt stress is associated with induction of antioxidant defences. Plant Cell Environ. 23, 853-862.

James, R.A., Munns, R., Von Caemmerer, S., Trejo, C., Miller, C., Condon, T.A.G. 2006. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+ , K+ and Clin saltaffected barley and durum wheat. Plant Cell Environ. 29, 2185-2197.

Katerji, N., Van Hoorn, J.W., Hamdy, A., Mastrorilli, M., Nachit, M.M., Oweis, T. 2005. Salt tolerance analysis of chickpea, faba bean and durum wheat varieties. II. Durum wheat. Agric. Water Managen. 72, 195-207.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-685.

Levigneron, A., Lopez, F., Vasut, G. 1995. Les plantes faces au stress salin. Cahiers Agric. 4, 263- 273.

Liang, Y.C., Chen, Q., Lui, Q., Zhang, W.H., Ding, R.X. 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J. Plant Physiol. 160, 1157-1164.

López-Huertas, E., Corpas, F.J., Sandalio, L.M., Del Rio, L.A. 1999. Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem. J. 337, 531-536.

Manai, J., Gouia, H., Corpas, F.J. 2014. Redox and nitric oxide homeostasis are affected in tomato (Solanum lycopersicum) roots under salinity-induced oxidative stress. J. Plant Physiol. 171, 1028 -1035.

Mandhania, S., Madan, S., Sawhney, V. 2006. Antioxidant defense mechanism under salt stress in wheat seedlings. Biol. Plant. 50, 227-231.

Marschner, H. 1995. Part I, Nutritional Physiology. In: Marschner, H. (ed). Mineral nutrition of higher plants, 2nd edition. Academic Press, London. 18-30, 313-363.

Meneguzzo, S., Navari-Izzo, F., Izzo, R. 1999. Antioxidative reponses of shoots and roots of wheat to increasing NaCl concentrations. J. Plant Physiol. 155, 274-280.

Miller, G., Shulaev, V., Mittler, R. 2008. Reactive oxygen signaling and abiotic stress. Physiol. Plant. 133, 481-489.

Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405-410.

Mittova, V., Tal, M., Volokita, M., Guy, M. 2003. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt tolerant tomato species Lycopersicon pennellii. Plant Cell Environ. 26, 845-856.

Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25, 239-250.

Munns, R., James, R.A. 2003. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil. 253, 201-218.

Munns, R., Tester, M. 2008. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 59, 651-681.

Navarro, J.M., Flores, P., Garrido, C., Martinez, V. 2006. Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem. 96, 66- 73.

Noble, D.R., Swift, H.R., Williams, D.L.H. 1999. Nitric oxide release from S-nitrosoglutathione (GSNO). Chem. Commun. 18, 2317-2318.

Sagi, M., Fluhr, R. 2001. Superoxide production by plant homologues of the gp91(phox) NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol. 126, 128-1298.

Sairam, R.K., Srivastava, G.C. 2002. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci. 162, 897-904.

Sairam, R.K., Roa, K.V., Srivastava, G.C. 2002. Differential response of wheat cultivar genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163, 1037-1048.

Sairam, R.K., Srivastava, G.C., Agarwal, S., Meena, R.C. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol. Plant. 49, 85-91.

Saito, S., Yamamoto-Katou, A., Yoshioka, H., Doke, N., Kawakita, K. 2006. Peroxynitrite generation and tyrosine nitration in defense responses in tobacco BY-2 cells. Plant Cell Physiol. 47, 689- 697.

Tejera, N.A., Soussi, M., Lluch, C. 2006. Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environ. Exp. Bot. 58, 17-24.

Tester, M., Davenport, R. 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91, 503- 527.

Turkana, I., Demiral, T. 2009. Recent developments in understanding salinity tolerance. Environ. Exp. Bot. 67, 2-9.

Valderrama, R., Corpas, F.J., Carreras, A. Gomez-Rodriguez, M.V., Chaki, M., Pedrajas, J.R., Fernandez-Ocana, A., Del Rio, L.A., Barroso, J.B. 2006. The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant Cell Environ. 29, 1449–1459.

Valderrama, R., Corpas, F.J., Carreras, A., Fernández-Ocana, A., Chaki, M., Luque, F.,GomezRodriguez, M.V., Colmenero-Varea, P., Del Rio, L.A., Barroso, J.B. 2007. Nitrosative stress in plants. FEBS Lett. 581, 453-461.

Vranova, E., Inzé, D., Van Breusegem, F. 2002. Signal transduction during oxidative stress. J. Exp. Bot. 53, 1227-1236.

Zhu, J.K. 2002. Salt and drought stress signal transduction in plants. Ann. Rev. Plant Biol. 53, 247- 273.

Zorb, C., Schmitt, S., Neeb, A., Karl, S., Linder, M., Schubert, S. 2004. The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specific adaptation. Plant Sci. 167, 91-100.

Download

Published : 2016-12-20


Bouthour, D., Kalai, T., Gouia, H., & Chiraz, C.-H. (2016). BIOCHEMICAL AND PHYSIOLOGICAL CHANGES IN RESPONSE TO SALINITY IN LEAVES AND ROOTS OF TWO DURUM WHEAT (TRITICUM DURUM DESF.) GENOTYPES. Plant Breeding and Seed Science, 74, 57-72. Retrieved from http://ojs.ihar.edu.pl/index.php/pbss/article/view/223

Donia Bouthour  donia_bouthour@hotmail.com
Unité de recherche « Nutrition et Métabolisme Azotés et Protéines de Stress », Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1060, Tunis, Tunisie.  Tunisia
Tawba Kalai 
Unité de recherche « Nutrition et Métabolisme Azotés et Protéines de Stress », Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1060, Tunis, Tunisie  Tunisia
Houda Gouia 
Unité de recherche « Nutrition et Métabolisme Azotés et Protéines de Stress », Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1060, Tunis, Tunisie.  Tunisia
Chaffei-Haouari Chiraz 
Unité de recherche « Nutrition et Métabolisme Azotés et Protéines de Stress », Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1060, Tunis, Tunisie  Tunisia