MOLECULAR DIVERSITY AND PHYLOGENY OF TRITICUM-AEGILOPS SPECIES POSSESSING D GENOME REVEALED BY SSR AND ISSR MARKERS
Hoda Moradkhani
Department of Plant breeding, Kermanshah branch, Islamic Azad University, Kermanshah, Iran (Iran, Islamic Republic of)
Ali Ashraf Mehrabi
Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Ilam, Ilam, Iran (Iran, Islamic Republic of)
Alireza Etminan
Department of Plant breeding, Kermanshah branch, Islamic Azad University, Kermanshah, Iran (Iran, Islamic Republic of)
Alireza Pour-Aboughadareh
a.poraboghadareh@edu.ikiu.ac.irDepartment of Plant Breeding and Production, Imam Khomeini International University, Qazvin, Iran (Iran, Islamic Republic of)
Abstract
The aim of this study is investigation the applicability of SSR and ISSR markers in evaluating the genetic relationships in twenty accessions of Aegilops and Triticum species with D genome in different ploidy levels. Totally, 119 bands and 46 alleles were detected using ten primers for ISSR and SSR markers, respectively. Polymorphism Information Content values for all primers ranged from 0.345 to 0.375 with an average of 0.367 for SSR, and varied from 0.29 to 0.44 with the average 0.37 for ISSR marker. Analysis of molecular variance (AMOVA) revealed that 81% (ISSR) and 84% (SSR) of variability was partitioned among individu-als within populations. Comparing the genetic diversity of Aegilops and Triticum accessions, based on genetic parameters, shows that genetic variation of Ae. crassa and Ae. tauschii species are higher than other species, especially in terms of Nei’s gene diversity. Cluster analysis, based on both markers, separated total accessions in three groups. However, classification based on SSR marker data was not conformed to classification ac-cording to ISSR marker data. Principal co-ordinate analysis (PCoA) for SSR and ISSR data showed that, the first two components clarified 53.48% and 49.91% of the total variation, respectively. This analysis (PCoA), also, indicated consistent patterns of genetic relationships for ISSR data sets, however, the grouping of acces-sions was not completely accorded to their own geographical origins. Consequently, a high level of genetic diversity was revealed from the accessions sampled from different eco-geographical regions of Iran.
Keywords:
Aegilops, genetic diversity, ISSR, molecular phylogeny, Triticum, SSRReferences
Aghaei M.J., Mozafari J., Taleei A.R., Naghavi M.R., Omidi M. 2008. Distribution and diversity of Aegilops tauschii in Iran. Genetic Resources and Crop Evolution. 55: 341-349.
Google Scholar
Bornet B., Branchard M. 2001. Nonanchored inter simple sequence repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Molecular Biology Reports. 19: 209-215.
Google Scholar
Cox T.S., Raupp W.J., Wilson D.L., Gill B.S., Leath S., Bockus W.W., Browder L.E. 1992. Resistance to foliar diseases in a collection of Triticum tauschii germplasm. Plant Disease Journal. 76: 1061-1064.
Google Scholar
Darwin. 2009. Dissimilarity Analysis and Representation for Windows. Available at http://darwin.cirad.fr/darwin.
Google Scholar
Deshpande K., Apte G.S., Bahulikar R., Lagu M., Kulkarni B., Suresh H., Singh N., Rao M., Gupta V., Pant A., Ranjekar P. 2001. Genetic diversity across the natural populations of three montane plant species from the WG, India revealed by ISSR repeats. Molecular Ecology. 10: 2397-2408.
Google Scholar
Doyle J.J., Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phyto-chemical. Bulletin. 19:11-15.
Google Scholar
Dudnikov A.J., Kawahara T. 2006. Aegilops tauschii: genetic variation in Iran. Genetic Resources and Crop Evolution. 53:579-586.
Google Scholar
Dvorak J., Luo M.C., Yang Z.L., Zhang H.B. 1998. The structure of the Aegilops tauschii gene pool and the evolution of hexaploid wheat. Theoretical and Applied Genetics. 97: 657-670.
Google Scholar
Fahima T, Roder M., Grama A., Vnero E. 1998. Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistance to yellow rust. Theoretical and Applied Genetics. 96: 187-195.
Google Scholar
Kilian B., Mammen K., Millet E., Sharma R., Graner A., Salamini F., Hammer K., Ozkan H. 2011. Aegilops. In: Kole C (ed) Wild crop relatives, genomic and breeding resources, cereals. Springer-Verlag, Berlin, Germany.
Google Scholar
Kimber G., Feldman M. 1987. Wild Wheat. An Introduction. Special report 353, University of Missouri.
Google Scholar
Lagercrantz U., Ellegren H., Andersson L. 1993. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Research. 21: 1111–1115.
Google Scholar
Lagudah E.S., Halloran G.M. 1988. Phylogenetic relationships of Triticum tauschii the D genome donor to hexaploid wheat. 1: Variation in HMW subunits of glutenin and gliadins. Theoretical and Applied Ge-netics. 75: 592-598.
Google Scholar
Le H.T., Reikosky D.A., Olien C.R., Cress C.E. 1986. Freezing hardiness of some accessions of Triticum tauschii and Triticum turgidum var. durum. Canadian Journal of Plant Science. 66: 893-899.
Google Scholar
Limin A.E., Fowler D.B. 1981. Cold hardiness of some relatives of hexaploid wheat. Canadian Journal of Botany. 59: 572-573.
Google Scholar
Lubbers E.L., Gill K.S., Cox T.S., Gill B.S. 1991. Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome. 34: 354-361.
Google Scholar
Masoumi S.M., Kahrizi D., Rostami-Ahmadvandi H., Soorni J., Kiani S., Mostafaie A., Yari K. 2012. Genetic diversity study of some medicinal plant accessions belong to Apiaceae family based on seed storage proteins patterns. Molecular Biology Reports. 39: 10361-10365.
Google Scholar
Moghaddam M., Ehdaie B., Waines G. 2000. Genetic diversity in populations of wild diploid wheat (Triticum urartu Thum. ex. Gandil) revealed by Isozymes markers. Genetic Resources and Crop Evolution. 47: 323-334.
Google Scholar
Morgante M., Olivieri A.M. 1993. PCR-amplified microsatellites as markers in plant genetics. The Plant Journal. 3: 175-182.
Google Scholar
Nagaoka T., Ogihara Y. 1997. Applicability of intersimple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theoretical and Applied Genetics. 94: 597-602.
Google Scholar
Naghavi M.R., Mardi M., Pirseyedi S.M., Kazemi M., Potki P., Ghaffari M.R. 2007. Comparison of genetic variation among accessions of Aegilops tauschii using AFLP and SSR markers. Genetic Resources and Crop Evolution. 54: 237-240.
Google Scholar
Naghavi M.R., Aghaei M.J., Taleei A.R., Omidi M., Hassani M.E. 2008. Genetic diversity of hexaploid wheat and three Aegilops species using microsatellite markers. In: Rudi A, Eastwood R, Lagudah E, Langridge P, Lynne MM (ed) The 11th International Wheat Genetics Symposium, Sydney University Press, Syd-ney.
Google Scholar
Naghavi M.R., Aghaei M.J., Taleei A.R., Omidi M., Mozafari J., Hassani M.E. 2009. Genetic diversity of the D-genome in T. aestivum and Aegilops species using SSR markers. Genetic Resources and Crop Evolu-tion. 56: 499-506.
Google Scholar
Naghavi M.R., Hajikram M., Taleei A.R., Aghaei M.J. 2010. Microsatellite analysis of genetic diversity and population genetic structure of Aegilops tauschii Coss. in northern Iran. Genetic Resources and Crop Evolution. 57: 423-430.
Google Scholar
Peakall R., Smouse P.E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teach-ing and research. Molecular Ecology. 6: 288-295.
Google Scholar
Pestsova E., Korzun V., Gncharov N.P., Hammer K., Ganal M.W., Roder M.S. 2000. Microsatellite analysis of Aegilops tauschii germplasm. Theoretical and Applied Genetics. 101: 100-106.
Google Scholar
Peterson G., Seberg O., Yde M., Berthelsen K. 2006. Phylogenetic relation of Triticum and Aegilops evidence for the origin of the A, B and D genomes of common wheat (Triticum aestivum). Molecular Phylogenet-ics and Evolution. 39: 70-82.
Google Scholar
Powell W., Morgante M., Andre C., Hanafey M., Vogel J., Tingey S., Rafalski A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding. 2: 225-238.
Google Scholar
Roder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P., Ganal M.W. 1998. A microsatellite map of wheat. Genetic. 149: 2007-2023.
Google Scholar
Saeidi H, Rahiminejad M.R., Vallian S., Heslop-Harison J.S. 2006. Biodiversity of diploid D-genome Ae-gilops tauschii Coss. In Iran measured using microsatellites. Genetic Resources and Crop Evolution. 53: 1477-1484.
Google Scholar
Saidi M., Movahedi K., Mehrabi M., Kahrizi D. 2013. Molecular genetic diversity of Satureja bachtiarica. Molecular Biology Reports. 40(11): 6501-6508.
Google Scholar
Schachtman D.P., Lagudah E.S., Munns R. 1992. The expression of salt tolerance from Triticum tauschii in hexaploid wheat. Theoretical Applied Genetics. 84: 714-719.
Google Scholar
Tahernezhad Z., Zamani M.J., Solouki M., Zahravi M., Imamjomeh A.A., Aghaei M.J., Bihamta M.R. 2010. Genetic diversity of Iranian Aegilops tauschii Coss. Using microsatellite molecular markers and morpho-logical traits. Molecular Biology Reports 37: 3413-3420.
Google Scholar
Tatikonda L., Wani S.P., Kannan S., Beerelli N., Sreedevi T.K., Hoisington D.A., Devi P., Varshney R.A. 2009. AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L. a biofuel plant. Plant Science. 176: 505-513.
Google Scholar
Van Slageren M.N. 1994. Wild wheat: a monograph of Aegilops L. and Amblyopyrom (Jaub & Spach) Eig. Wageningen, Netherlands.
Google Scholar
Wolfe A.D., Liston A. 1998. Contributions of PCR-based methods to plant systematics and evolutionary biology. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants: DNA sequencing. Kluwer, New York, USA.
Google Scholar
Yan Y., Hsam S.L.K., Yu J.Z, Jiang Y., Ohtsuka I., Zeller F.J. 2003. HMW and LMW glutenin alleles among putative tetraploid and hexaploid European spelt wheat (Triticum spelta L.) progenitors. Theoretical Applied Genetics. 107: 1321-1330.
Google Scholar
Yeh F.C., Yang R.C., Boyle T. 1999. Microsoft Window-based freeware for population genetic analysis (POPGENE), ver.1.31. http://ftp.microsoft.com/softlib/MSLFILES/HPGL.EXE.
Google Scholar
Zietkiewicz E., Rafalski A., Labuda D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genetics. 20: 176-183.
Google Scholar
Authors
Hoda MoradkhaniDepartment of Plant breeding, Kermanshah branch, Islamic Azad University, Kermanshah, Iran Iran, Islamic Republic of
Authors
Ali Ashraf MehrabiDepartment of Agronomy and Plant Breeding, Faculty of Agriculture, University of Ilam, Ilam, Iran Iran, Islamic Republic of
Authors
Alireza EtminanDepartment of Plant breeding, Kermanshah branch, Islamic Azad University, Kermanshah, Iran Iran, Islamic Republic of
Authors
Alireza Pour-Aboughadareha.poraboghadareh@edu.ikiu.ac.ir
Department of Plant Breeding and Production, Imam Khomeini International University, Qazvin, Iran Iran, Islamic Republic of
Statistics
Abstract views: 226PDF downloads: 84
License
All articles published in electronic form under CC BY-SA 4.0, in open access, the full content of the licence is available at: https://creativecommons.org/licenses/by-sa/4.0/legalcode.pl .