Variations in α-, β-amylase and α-glycosidase activities in two genotypes of wheat under NaCl salinity stress
Chaffei Haouari Chiraz
Unité de Recherche Nutrition et Métabolisme Azotés et Protéines de Stress (99UR/09-20), Département de Biologie, Faculté des Sciences de Tunis. Campus Universitaire El Manar I, 1060, Tunis, Tunisie (Tunisia)
Hajjaji Nasraoui Afef
hajajiafef@yahoo.frUnité de Recherche Nutrition et Métabolisme Azotés et Protéines de Stress (99UR/09-20), Département de Biologie, Faculté des Sciences de Tunis. Campus Universitaire El Manar I, 1060, Tunis, Tunisie (Tunisia)
Bouthour Donia
Unité de Recherche Nutrition et Métabolisme Azotés et Protéines de Stress (99UR/09-20), Département de Biologie, Faculté des Sciences de Tunis. Campus Universitaire El Manar I, 1060, Tunis, Tunisie (Tunisia)
Gouia Houda
Unité de Recherche Nutrition et Métabolisme Azotés et Protéines de Stress (99UR/09-20), Département de Biologie, Faculté des Sciences de Tunis. Campus Universitaire El Manar I, 1060, Tunis, Tunisie (Tunisia)
Abstract
Two wheat differing in salt sensitivity, was examined for osmolyte contents and activities of α-amylase, β-amylase and α-glucosidase enzymes involved in seeds germination, in absence as well as in presence of 100, 150, 200 and 300 mM NaCl. The inhibitory effects of NaCl differed, depending on the species tested. In wild wheat specie (Triticum monococcum), with reduced germination percentage and lower relative water content, the increase in NaCl concentration resulted in the decrease in endogenous level of proline, total soluble sugars and activities of the main enzymes involved in the germination process. In contrast, cultivated wheat specie (Triticum aestivum) seed in response to salt stress accumulated higher proline and total soluble carbohydrate concentrations which improved their water status and the enzyme activities involved in the germination process. Differential response of the different species of wheat to salt stress is governed by the accumulation of osmolytes in seeds.
Keywords:
amylases, glucosidases, salinity, wheat speciesReferences
Ashraf, M., Foolad, M.R. (2005). Pre-sowing seed treatment, a shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Advances in Agronomy, 88, 223-271.
Google Scholar
Ates, E., Tekeli, A.S. (2007). Salinity tolerance of Persian clove lines at germination and seedling stage. World. J. Agr. Sci, 3(1), 71-79.
Google Scholar
Bates, L.S., Waldren, R.P. and Teare, I.D. (1973) Rapid determination of free praline for water stress studies. Plant Soil, 39, 205-208.
Google Scholar
Ben Dkhil, B. and Denden, M. (2010). Salt stress induced changes in germination, sugars, starch and enzyme of carbohydrate metabolism in Abelmoschus esculentus (L.) Moench seeds. African Journal of Agricultural Research, 5(12), 1412-1418.
Google Scholar
Bergmeyer, H.U., Bergmeyer, J. and Gra, M. (1983) Enzymes in methods. enzymatic analysis, Academic press New York.
Google Scholar
Canas, R.A., Canovas, F.M. and Canton, F.R. (2006). High levels of asparagines synthetase in hypocotyls of pine seedlings suggest a role of the enzyme in re-allocation of seed scord nitrogen. Planta, 224, 83-95.
Google Scholar
Chakraborty, R. and Kar, R.K. (2008). Differential water uptake kinetics in axes and cotyledons during seed germination of Vigna radiata under chilling temperature and cycloheximide treatment. Brazilian Journal of Plant Physiology, 20(4), 277-284.
Google Scholar
Collado, M.B., Arturi, M.J., Aulicine, M.B. and Molina, M.C. (2010). Identification of salt tolerance in seedling of maize (Zea mays L) with the cell membrane stability. Inter. J. Plant Sci, 1(5), 126-132.
Google Scholar
Coombe, B.G., Choen, D. and Paleg, L.G. (1967). Barley endosperm for gibberellin, parameters of response system. Plant Physiol, 42, 641-645.
Google Scholar
Dodd, G.L. and Donovan, L.A. (1999). Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. Am. J. Bot, 86, 1146-1153.
Google Scholar
Gonçalo, A., De Souza, F., Ferreira, B.S., Dias, J.M., Queiroz, K.S., Alan, T., Branco Ricardo, A.T.E., Smith, B., Oliveira, J.G. and Garcia. A.B. 2003. Accumulation of SALT protein in rice plants as a response to environmental stresses. Plant Sci, 164(4), 623-628.
Google Scholar
Hansen, J. and Moller. I.B. (1975). Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Analytical Biochemistry, 68(1), 87-94.
Google Scholar
Jiménez-Bremont, J.F., Becerra-Flora, A., Hernández-Lucero, A., Rodríguez-Kessler, M., Acosta-Gallegos, J.A., and Ramírez-Pimentel, J.G. (2006). Proline accumulation in two bean cultivars under salt stress and the effect of polyamines and ornithine. Biol. Plant, 50(4), 763-766.
Google Scholar
Kaur, R., Liu, X., Gjoerup, O., Zhang, A., Yuan, X., Balk, S.P., Schneider, M.C. and Lu, M.L. (2005). Activation of p21-activated kinase 6 by MAP kinase kinase 6 and p38 MAP kinase. J. Bio. Chem, 280(5), 3323-3330.
Google Scholar
Mares, D. and Mrva, K. (2008). Late-maturity α-amylase: Low falling number in wheat in the absence of preharvest sprouting. Journal of Cereal Science, 47(1), 6-17.
Google Scholar
Misic, D., Siler, B., Flipovic, B., Popovic, Z., Zivkovic, S., Cvetic, T. and Mijovic, A. (2009). Rapid selection of salt tolerant genotypes of the poltentially medicinal plant Centaurium maritimum. Arch. Biol. Sci. Belgrade, 61(1), 57-69.
Google Scholar
Pakniyat, H. and Armion, M. (2007). Sodium and Proline Accumulation as Osmoregulators in Tolerance of Sugar Beet Genotypes to Salinity. Pak. J. Biol. Sci, 10, 4081-4086.
Google Scholar
Ricardo, A., Queiroz José, E., Lígia, M., de Silva, M., Joaquim, A., Silveira, G., Rocha, M.A. and Viégas, P.R.A. (2003). Plant growth, accumulation and solute partitioning of four forest species under salt stress. Rev. Bras. Eng. Agríc. Ambient, 7(2), 258-262.
Google Scholar
Silveira, J.A.G., Melo, A.R.B., Viegas, R.A. and Oliveira, J.T.A. 2001. Salinité des effets induits sur l'assimilation d'azote liées à la croissance des plantes de niébé. Enviro. Exp. Bot, 46, 171-179.
Google Scholar
Sokal, R.R. and Rohlf, F.J. (1969). Biometry. WH Freeman and company, pp: 327-332.
Google Scholar
Sultana, N., Ikeda, T. and Kashem, M.A. (2001). Effect of foliar spray of nutrient solutions on photosynthesis, dry matter accumulation and yield in seawater-stressed rice. Env. Exp. Bot, 46(2), 129-140.
Google Scholar
Sticklen, M.B. (2008). Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nature Reviews Genetics, 9(6), 433-443.
Google Scholar
Yamasaki, Y. (2003). β-Amylase in germinating millet seeds. Phytochemistry, 64(5): 935-939.
Google Scholar
Yildz, M. and Terzi, H. (2008). Effects of NaCl on protein profiles of tetraploid and hexaploid wheat species and their diploid wild progenitors. Plant Soil Environ, 54(6), 227-233.
Google Scholar
Authors
Chaffei Haouari ChirazUnité de Recherche Nutrition et Métabolisme Azotés et Protéines de Stress (99UR/09-20), Département de Biologie, Faculté des Sciences de Tunis. Campus Universitaire El Manar I, 1060, Tunis, Tunisie Tunisia
Authors
Hajjaji Nasraoui Afefhajajiafef@yahoo.fr
Unité de Recherche Nutrition et Métabolisme Azotés et Protéines de Stress (99UR/09-20), Département de Biologie, Faculté des Sciences de Tunis. Campus Universitaire El Manar I, 1060, Tunis, Tunisie Tunisia
Authors
Bouthour DoniaUnité de Recherche Nutrition et Métabolisme Azotés et Protéines de Stress (99UR/09-20), Département de Biologie, Faculté des Sciences de Tunis. Campus Universitaire El Manar I, 1060, Tunis, Tunisie Tunisia
Authors
Gouia HoudaUnité de Recherche Nutrition et Métabolisme Azotés et Protéines de Stress (99UR/09-20), Département de Biologie, Faculté des Sciences de Tunis. Campus Universitaire El Manar I, 1060, Tunis, Tunisie Tunisia
Statistics
Abstract views: 118PDF downloads: 48
License
All articles published in electronic form under CC BY-SA 4.0, in open access, the full content of the licence is available at: https://creativecommons.org/licenses/by-sa/4.0/legalcode.pl .