Pathogenicity and potential capacity for producing mycotoxins by Fusarium sambucinum and Fusarium solani isolates derived from potato tubers.
Leszek Lenc
lenc@utp.edu.plUniversity of Technology and Life Sciences in Bydgoszcz, Department of Phytopathology and Molecular Mycology, Kordeckiego 20, 85-225 Bydgoszcz. (Poland)
Abstract
Studies of potential abilities of F. sambucinum to produce trichothecenes was conducted on isolates previously confirmed as belonging to this species by PCR. In all cases, A positive result for the presence of Tri5 gene, coding the ability to synthesize these mycotoxins. There was no potential to synthesize trichothecenes by F. solani.
Further analysis concerned the potential ability of F. sambucinum to produce group B trichothecenes (DON and NIV). No isolate gave the expected amplification product (282 bp for deoxynivalenol and 312 bp for nivalenol), which would indicate the potential for producing these mycotoxins. Studies have shown the ability to produce trichothecenes of group A.
Analysis of the potential ability for the synthesis of enniatins by F. sambucinum showed that 91% of isolates gave of 332 bp amplification product, which proves them as potencial producers of these mycotoxins.
There were significant differences in the pathogenicity of F. sambucinum and F. solani represented by the size of decay caused by these species. The rotten tissue area caused by F. sambucinum was about 10 times bigger than after inoculation by F. solani. Furthermore, isolates within the same species (F. sambucinum) showed diverse pathogenicity. It should be noted, however, that the concentration of mycotoxins does not depend on the size of rotten tissue of potato tubers. Isolate, which caused the most severe disease symptoms, produced low concentrations of mycotoxins.
Keywords:
F. sambucinum, F. solani, mycotoxins, pathogenicity, PCR, potatoReferences
Altomare C., Logrieco A., Bottalico A., Mule G., Moretti A., Evidente A. 1995. Production of type A trichothecenes and enniatin B by Fusarium sambucinum Fuckel sensu lato. Mycopathologia 129: 177– 181.
Google Scholar
Chandler E.A., Duncan R.S., Thomsett M.A., Nicholson P. 2003. Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiol. and Mol. Plant Path. 62: 355-367.
Google Scholar
Desjardins A.E., Plattner R.D. 1989. Trichothecene toxin production by strains of Gibberella pulicaris (Fusarium sambucinum) in liquid culture and in potato tubers. J. Agricult. Food Chem. 37 (2): 388-392.
Google Scholar
Doyle J. J., Doyle J. L. 1990: Isolation of plant DNA from fresh tissue. Focus 12: 13-15.
Google Scholar
Edwards S.G., Pirgozliev S.R., Hare M.C., Jenkinson P. 2001. Quantification of trichothecene-producing Fusarium species in harvested grain by competitive PCR to determine the efficacies of fungicides against Fusarium Head Blight of winter wheat. Appl. and Environ. Microb. 67: 1575–1580.
Google Scholar
El-Banna A. A., Scott P. M., Lau P. Y., Sakuma T., Platt H: W. & Campbell V. 1984. Formation of trichothecenes by Fusarium solani var. coeruleum and Fusarium sambucinum in potatoes. Appl. and Environ. Microb. 47 (5): 1169-1171.
Google Scholar
Ellner S.G. 2002. Mycotoxins in potato tubers infected by Fusarium sambucinum. Mycotoxin Research 18: 57 -61.
Google Scholar
Hohn T.M., Desjardins A.E. 1992. Isolation and gene disruption of the Tox5 geneencoding trichodiene synthase in Gibberella pulicaris. Mol. Plant-Microb. Interact. 5:149-156.
Google Scholar
Kulik T., Pszczółkowska A., Fordoński G., Olszewski J. 2007. PCR approach based on the esyn1 gene for the detection of potential enniatin-producing Fusarium species. International Journal of Food Microbiology 116: 319–324.
Google Scholar
Kurzawińska H. 1994. Zbiorowiska grzybów środowiska glebowego z uprawy ziemniaka i ich wpływ na sprawców suchej zgnilizny bulw w zależności od nawożenia azotowego. Zesz. Nauk AR w Krakowie, Rozpr. hab. 192.
Google Scholar
Latus-Ziętkiwicz D. 1993. Toksynotwórczość grzybów rodzaju Fusarium powodujących suchą zgniliznę bulw ziemniaka podczas przechowywania. Rozpr. dr, AR Poznań.
Google Scholar
Lenc L., Łukanowski A., Sadowski Cz. 2008. The use of PCR amplification In determining the toxigenic potential of Fusarium sambucinum and F. solani isolated from tubers with symptoms of dry rot. Phytopathol. Pol. 48: 13-23.
Google Scholar
Leslie J.F., Summerell B.A. 2006. The Fusarium Laboratory Manual. Blackwell Pub. Prof. first ed.
Google Scholar
Mateo J.J., Mateo R., Jiménez M. 2002. Accumulation of type A trichothecenes in maize, wheat and rice by Fusarium sporotrichioides isolates under diverse culture conditions. Int. J. of Food Microb. 72: 115– 123.
Google Scholar
Mishra P.K., Fox R.T.V., Culham A. 2003. Development of A PCR-based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiology Letters 218: 329-332.
Google Scholar
Rafai P., Bata A., Vanyi A., Papp Z., Brydl E., Jakab L., Tuboly S., Tury E. 1995. Effect of various levels of T-2 toxin on the clinical status, performance and metabolism of growing pigs. Vet. Rec. 136: 485-489.
Google Scholar
Ripperger H., Seifert K., Römer A., Rulkötter J. 1975. Isolierung von Diacetoxyscirpenol aus Fusarium solani var. coeruleum. Phytochemistry, 14: 2298-2299.
Google Scholar
Rotter R.G., Thompson B.K., Trenholm H.L., Prelusky D.B., Hartin K.E., Miller J.D. 1992. A preliminary examination of potential interaction between deoxynivalenol (DON) and other selected Fusarium metabolites in growing pigs. Can. J. Anim. Sci. 72: 107-116.
Google Scholar
Stachewicz H., Pett B., Pett B., Kleinhempel D., Brazda G., Effmert M. 1978. Zur Bedeutung der Mischinffektion (Erwinia carotovora var. atroseptica, Fusarium spp., Phoma exiqua var. exiqua) bei der Kartoffel. Tagungsber. Akad. Landwirtsch. DDR, 157: 101-111.
Google Scholar
Steyn P.S., Vleggaar R., Rabie C.J., Kriek N.P.J., Harington J.S. 1978. Trichotecene mycotoxins from Fusarium sulphureum. Phytochemistry.17: 949-951.
Google Scholar
Sveeney M.J., Dobson A.D.W. 1999. Molecular biology of mycotoxin biosynthesis. FEMS Microbiology Letters 175: 149-163.
Google Scholar
Ward T.J., Bielawski J.P., Kistler H.C., Sullivan E., O’Donnell K. 2002. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc. of the National Acad. of Sci. 99: 9278–9283.
Google Scholar
Wharton P.S., Tumbalam P., Kirk W.W. 2006. First report of potato tuber sprout rotcaused by Fusarium sambucinum in Michigan. Plant Dis. 90 : 1460
Google Scholar
Authors
Leszek Lenclenc@utp.edu.pl
University of Technology and Life Sciences in Bydgoszcz, Department of Phytopathology and Molecular Mycology, Kordeckiego 20, 85-225 Bydgoszcz. Poland
Statistics
Abstract views: 91PDF downloads: 49
License
All articles published in electronic form under CC BY-SA 4.0, in open access, the full content of the licence is available at: https://creativecommons.org/licenses/by-sa/4.0/legalcode.pl .