Pathogenicity and potential capacity for producing mycotoxins by Fusarium sambucinum and Fusarium solani isolates derived from potato tubers.

Leszek Lenc

lenc@utp.edu.pl
University of Technology and Life Sciences in Bydgoszcz, Department of Phytopathology and Molecular Mycology, Kordeckiego 20, 85-225 Bydgoszcz. (Poland)


Abstract

Studies of potential abilities of F. sambucinum to produce trichothecenes was conducted on isolates previously confirmed as belonging to this species by PCR. In all cases, A positive result for the presence of Tri5 gene, coding the ability to synthesize these mycotoxins. There was no potential to synthesize trichothecenes by F. solani.

Further analysis concerned the potential ability of F. sambucinum to produce group B trichothecenes (DON and NIV). No isolate gave the expected amplification product (282 bp for deoxynivalenol and 312 bp for nivalenol), which would indicate the potential for producing these mycotoxins. Studies have shown the ability to produce trichothecenes of group A.

Analysis of the potential ability for the synthesis of enniatins by F. sambucinum showed that 91% of isolates gave of 332 bp amplification product, which proves them as potencial producers of these mycotoxins.

There were significant differences in the pathogenicity of F. sambucinum and F. solani represented by the size of decay caused by these species. The rotten tissue area caused by F. sambucinum was about 10 times bigger than after inoculation by F. solani. Furthermore, isolates within the same species (F. sambucinum) showed diverse pathogenicity. It should be noted, however, that the concentration of mycotoxins does not depend on the size of rotten tissue of potato tubers. Isolate, which caused the most severe disease symptoms, produced low concentrations of mycotoxins.


Keywords:

F. sambucinum, F. solani, mycotoxins, pathogenicity, PCR, potato

Altomare C., Logrieco A., Bottalico A., Mule G., Moretti A., Evidente A. 1995. Production of type A trichothecenes and enniatin B by Fusarium sambucinum Fuckel sensu lato. Mycopathologia 129: 177– 181.
Google Scholar

Chandler E.A., Duncan R.S., Thomsett M.A., Nicholson P. 2003. Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiol. and Mol. Plant Path. 62: 355-367.
Google Scholar

Desjardins A.E., Plattner R.D. 1989. Trichothecene toxin production by strains of Gibberella pulicaris (Fusarium sambucinum) in liquid culture and in potato tubers. J. Agricult. Food Chem. 37 (2): 388-392.
Google Scholar

Doyle J. J., Doyle J. L. 1990: Isolation of plant DNA from fresh tissue. Focus 12: 13-15.
Google Scholar

Edwards S.G., Pirgozliev S.R., Hare M.C., Jenkinson P. 2001. Quantification of trichothecene-producing Fusarium species in harvested grain by competitive PCR to determine the efficacies of fungicides against Fusarium Head Blight of winter wheat. Appl. and Environ. Microb. 67: 1575–1580.
Google Scholar

El-Banna A. A., Scott P. M., Lau P. Y., Sakuma T., Platt H: W. & Campbell V. 1984. Formation of trichothecenes by Fusarium solani var. coeruleum and Fusarium sambucinum in potatoes. Appl. and Environ. Microb. 47 (5): 1169-1171.
Google Scholar

Ellner S.G. 2002. Mycotoxins in potato tubers infected by Fusarium sambucinum. Mycotoxin Research 18: 57 -61.
Google Scholar

Hohn T.M., Desjardins A.E. 1992. Isolation and gene disruption of the Tox5 geneencoding trichodiene synthase in Gibberella pulicaris. Mol. Plant-Microb. Interact. 5:149-156.
Google Scholar

Kulik T., Pszczółkowska A., Fordoński G., Olszewski J. 2007. PCR approach based on the esyn1 gene for the detection of potential enniatin-producing Fusarium species. International Journal of Food Microbiology 116: 319–324.
Google Scholar

Kurzawińska H. 1994. Zbiorowiska grzybów środowiska glebowego z uprawy ziemniaka i ich wpływ na sprawców suchej zgnilizny bulw w zależności od nawożenia azotowego. Zesz. Nauk AR w Krakowie, Rozpr. hab. 192.
Google Scholar

Latus-Ziętkiwicz D. 1993. Toksynotwórczość grzybów rodzaju Fusarium powodujących suchą zgniliznę bulw ziemniaka podczas przechowywania. Rozpr. dr, AR Poznań.
Google Scholar

Lenc L., Łukanowski A., Sadowski Cz. 2008. The use of PCR amplification In determining the toxigenic potential of Fusarium sambucinum and F. solani isolated from tubers with symptoms of dry rot. Phytopathol. Pol. 48: 13-23.
Google Scholar

Leslie J.F., Summerell B.A. 2006. The Fusarium Laboratory Manual. Blackwell Pub. Prof. first ed.
Google Scholar

Mateo J.J., Mateo R., Jiménez M. 2002. Accumulation of type A trichothecenes in maize, wheat and rice by Fusarium sporotrichioides isolates under diverse culture conditions. Int. J. of Food Microb. 72: 115– 123.
Google Scholar

Mishra P.K., Fox R.T.V., Culham A. 2003. Development of A PCR-based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiology Letters 218: 329-332.
Google Scholar

Rafai P., Bata A., Vanyi A., Papp Z., Brydl E., Jakab L., Tuboly S., Tury E. 1995. Effect of various levels of T-2 toxin on the clinical status, performance and metabolism of growing pigs. Vet. Rec. 136: 485-489.
Google Scholar

Ripperger H., Seifert K., Römer A., Rulkötter J. 1975. Isolierung von Diacetoxyscirpenol aus Fusarium solani var. coeruleum. Phytochemistry, 14: 2298-2299.
Google Scholar

Rotter R.G., Thompson B.K., Trenholm H.L., Prelusky D.B., Hartin K.E., Miller J.D. 1992. A preliminary examination of potential interaction between deoxynivalenol (DON) and other selected Fusarium metabolites in growing pigs. Can. J. Anim. Sci. 72: 107-116.
Google Scholar

Stachewicz H., Pett B., Pett B., Kleinhempel D., Brazda G., Effmert M. 1978. Zur Bedeutung der Mischinffektion (Erwinia carotovora var. atroseptica, Fusarium spp., Phoma exiqua var. exiqua) bei der Kartoffel. Tagungsber. Akad. Landwirtsch. DDR, 157: 101-111.
Google Scholar

Steyn P.S., Vleggaar R., Rabie C.J., Kriek N.P.J., Harington J.S. 1978. Trichotecene mycotoxins from Fusarium sulphureum. Phytochemistry.17: 949-951.
Google Scholar

Sveeney M.J., Dobson A.D.W. 1999. Molecular biology of mycotoxin biosynthesis. FEMS Microbiology Letters 175: 149-163.
Google Scholar

Ward T.J., Bielawski J.P., Kistler H.C., Sullivan E., O’Donnell K. 2002. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc. of the National Acad. of Sci. 99: 9278–9283.
Google Scholar

Wharton P.S., Tumbalam P., Kirk W.W. 2006. First report of potato tuber sprout rotcaused by Fusarium sambucinum in Michigan. Plant Dis. 90 : 1460
Google Scholar

Download


Published
2011-12-20

Cited by

Lenc, L. . (2011). Pathogenicity and potential capacity for producing mycotoxins by Fusarium sambucinum and Fusarium solani isolates derived from potato tubers. Plant Breeding and Seed Science, 64, 23–34. Retrieved from http://ojs.ihar.edu.pl/index.php/pbss/article/view/339

Authors

Leszek Lenc 
lenc@utp.edu.pl
University of Technology and Life Sciences in Bydgoszcz, Department of Phytopathology and Molecular Mycology, Kordeckiego 20, 85-225 Bydgoszcz. Poland

Statistics

Abstract views: 91
PDF downloads: 49


License

All articles published in electronic form under CC BY-SA 4.0, in open access, the full content of the licence is available at: https://creativecommons.org/licenses/by-sa/4.0/legalcode.pl .