Variability of selected quantitative traits in new spring barley genotypes


Abstract

The research included 19 breeding lines and 4 cultivars of spring barley from the preliminary field experiments harvested in 2020 in Radzików. All barley samples were characterized for the content of protein, non-starch polysaccharides (NSP) with soluble (S-NSP) and insoluble (I-NSP) fractions and β-glucan. Additionally, viscosity of water extracts (WEV) was measured to determine the functional properties of the grain. It was the most diverse parameter (CV = 27%) and was significantly correlated with β-glucan content (r = 0.50; for p <0.05). This dependence is shown by the results obtained for the grain of the Avatar cultivar and the RAH 744/19 breeding line, in which the content of β-glucan (5.3% and 4.8%, respectively), as well as the WEV (3.3 mPa.s and 3.0 mPa.s, respectively) were the highest. The lowest content of β – glucan (3.5%) and one of the lowest WEV values (1.4 mPa.s) were observed for KWS Jessie cultivar. Principal component analysis (PCA) showed a substantial impact of the two components PC1 and PC2 on the variability of the analyzed material showing significant variability of the 5 barley genotypes and confirmed the previous results of biochemical analyzes. Our results made it possible to indicate several genotypes that may constitute a source of variability in breeding works aimed at improving the quality of barley. Presented study also show that the grain of some new barley genotypes, with a favorable chemical composition from a fodder and brewing perspective, is a good material for future use in industry.


Keywords

barley; β – glucan; dietary fiber; non-starch polysaccharides; utility value of barley

Aastrup S. 1979. The relationship between the viscosity of an acid flour extract of barley and its β – glucan content. Carlsberg Res.Commun.44: 289‒304.

Alazmani A. 2015. Evaluation of yield and yield components of barley varieties to nitrogen. International Journal of Agriculture and Crop Sciences, 8 (1): 52- 54.

Arngren M., Hansen P. W.; Eriksen B.; Larsen J.; Larsen R. 2011. Analysis of pregerminated barley using hyperspectral image analysis. Journal of Agricultural and Food Chemistry, 59: 11385–11394.

Bach Knudsen K. E. 2014. Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poultry Science, 93: 2380‒2393.

Bhatty R. S. 1987.Relatioship between acid extract viscosity and total soluble and insoluble β – glucan contents of hulled and hulless barley. Canadian Journal of Plant Science. 67 (4): 997‒1008.

Biel W., Jacyno E. 2013. Chemical composition and nutritive value of spring hulled barley varieties. Bulgarian Journal of Agricultural Science., 19 (4): 721‒727.

Boros D., Marquardt R.R., Slominski B.A., Guenter W. 1993. Extract viscosity as an indirect assay for water-soluble pentosans content in rye. Cereal Chemistry, 70: 575‒580.

Boros D., Fraś A., Gołębiewska K., Gołębiewski D., Paczkowska O., Wiśniewska M. 2015. Wartość odżywcza i właściwości prozdrowotne ziarna odmian zbóż i nasion rzepaku zalecanych do uprawy w Polsce. Monografie i Rozprawy Naukowe IHAR-PIB, 49, 1‒119.

Caprita R., Caprita A., Cretescu I., Julean C. 2011a. Influence of temperature on the extractability of polysaccharides in barley. Animal Science and Biotechnologies, 44 (2): 81‒84.

Caprita A., Caprita R., Simulescu V. O., Drehe R. M., 2011b. Water extract viscosities correlated with soluble dietary fiber molecular weight in cereals. Journal of Agroalimentary Processes and Technologies, 17 (3): 242‒245.

Cyran M., Izydorczyk M. S., MacGregor A.W. 2002. Structural characteristics of waterextractable nonstarch polysaccharides from barley malt. Cereal Chemistry. 79 (3): 359‒366.

Cyran M., Snochowska K., Śmiałowski T. 2019. Wysokocząsteczkowe arabinoksylany ziarna pszenicy: zawartość, masa cząsteczkowa oraz związek z poziomem lepkości ekstraktu. Biuletyn IHAR., 285: 287‒288.

Englyst H.N., Cummings J.H. 1984. Simplified method for the measurement of total non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst. 109, 937‒942.

Fraś A., Gołębiewski D. Gołębiewska K., Mańkowski D.R., Boros D. 2018. Content of nutrient and bioactive non-nutrient components in different oat products. Quality Assurance and Safety of Crops & Foods: 10: 307‒313.

Gamlath J., Aldred G.P., Panozzo J. F. 2008. Barley (1‒3; 1‒4)-β – glucan and arabinoxylan content are related to karnel hardness and water uptake. Journal of Cereaal Science. 47: 365‒371.

Gąsiorowski H. 1997. Jęczmień chemia i technologia. PWRiL, Poznań, wyd. I.

Greenberg D. C., Whitmore E. T. 1974. A rapid method for estimating the viscosity of barley extracts. J. Inst. Brew. 80: 31‒33.

Grochowicz J., Dominik P., Fabisiak A. 2017. Możliwości wykorzystania żywności naturalnej jako efekt ogólnoświatowego trendu w zakresie zapotrzebowania na żywność prozdrowotną. Zeszyty Naukowe UV. 54 (3): 223‒240.

Haverlentova M., Babulicova M., Koseva B., Dyulgerova B. K., Hendrichova J., Valcheva D. D., Valchev D. G., Hašana R. 2020. Grain quality of spring barley genotypes grown at agro-ecological conditions of the Slovak Republic and the Republic of Bulgaria. Journal of Central European Agriculture. 21 (4): 775‒788.

Henrion M., Francey C, Lê K. – A., Lamothe L. 2019. Cereal β – glucans: The impact of processing and how it affects physiological responses. Nutrients. 11 (8): 1729‒1742.

Idehen E., Tang Y., Sang S. 2017. Bioactive phytochemicals in barley. J. Food Drug Anal., 25 (1): 148–161.

Izydorczyk M. S., Storsley J., Labossiere D., MacGregor A. W., Rossnagel B. G. 2000. Variation in total and soluble β – glucan content in hulless barley: effects of thermal, physical and enzymic treatments. Journal of Agricultural and Food Chemistry. 48: 982‒989.

Izydorczyk M.S., Dexter J.E. 2008. Barley β – glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products – a Review. Food Research International 41: 850‒868.

Jadhav S. J., Lutz S. E., Ghorpade V. M., Salunkhe D. K. 1998. Barley: chemistry and value-added processing. Critical Reviews in Food Science and Nutrition, 38 (2): 123–171.

Jin J. L., Speers R. A., Paulson A. T., Stewart R. J. 2004. Barley β – glucan and their degradation during malting and brewing. Technical Quarterly Master Brewers Association of the Americas. 41: 231‒240.

Klockiewicz – Kamińska E. 2005. Metoda oceny wartości browarnej i klasyfikacja jakościowa odmian jęczmienia. Wiadomości odmianoznawcze, COBORU, Słupia Wielka, zeszyt 80.

Kunze W. 2010.Technology Brewing and Malting., 4th International Edition, VLB Berlin, Germany.

Lazaridou A, Biliaderis C.G., Micha-Screttas M., Steele B.R., 2004. A comparative study on structure-function relations of mixed-linkadge (1‒3), (1‒4) linear β-glucans. Food Hydrocolloids. 18: 837‒855.

Mudgil D., Barak S. 2013. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: reviev. Int. J. Biol. Macromol. 61: 1‒6.

Narina S.S., Hamama A. A., Bhardwaj H. L. 2012. Nutritional and mineral composition of flax sprouts. Journal of Agricultural Science, 4 (11): 60‒65.

Newman C.; Newman R.; Brief A. 2006. History of Barley Foods. Cereal Foods World, 51:4–7.

Nishantha M. D. L. C., Zhao X., Jeewani D. C., Bian J., Nie X., Weining S. 2018. Direct comparison of β – glucan content in wild and cultivated barley. International Journal of Food Properties, 21 (1): 2218‒2228.

Noworolnik K. 2014. Agrotechnika w kształtowaniu plonu i jakości ziarna jęczmienia jarego na cele pastewne i spożywcze. Studia i raporty IUNG – PIB. 41 (15): 21‒37.

Perczyńska A., Marciniak-Łukasiak K., Żbikowska A., 2017. Rola β-glukanu w przeciwdziałaniu chorobom cywilizacyjnym. Kosmos. 66: 379- 388.

Prasadi N. V. P., Joye I. J. 2020. Dietary fibre from whole grains and their benefits on metabolic health. Nutrients. 12: 3045‒3066.

Sorour M. A., Ramadan B. R., Mehanni A. E., Kobacy W. 2021. Impact of soaking and germination process on starch and non – starch polysaccharides in some Egyptian barley cultivars. Journal of Food and Dairy Science, 12 (6): 147‒151.

Sterna V., Zute S., Jâkobsone I. 2015. Grain composition and functional ingredients of barley varieties created in Latvia. Proceedings of the Latvian Academy of Sciences 69 (4): 158–162.

Wirkijowska A., Rzedzicki Z., Sobota A., Sykut-Domańska E., Zarzycki P., Bartoszek K., Kuzawińska E. 2016. Jęczmień w żywieniu człowieka. Polish Journal of Agronomy 25: 41–50.

Wiśniewska M., Boros D., Zych J. 2020. Wartość pokarmowa wybranych mieszanek zbóż jarych z roślinami bobowatymi grubonasiennymi. Biuletyn IHAR. 289: 51‒62.

Zhang X., Xue D., Wu F., Zhang G. 2013. Genotypic and environmental variations of arabinoxylan content and endoxylanase activity in barley grains. Journal of Integrative Agriculture, 12 (8): 1489‒1494.

Zieliński H., Achremowicz B., Przygodzka M. 2012. Przeciwutleniacze ziarniaków zbóż. Żywność. Nauka. Technologia. Jakość. 80 (1): 5‒26.

Download

Published : 2021-11-30


Wiśniewska, M., Fraś, A., & Dmoch, A. (2021). Variability of selected quantitative traits in new spring barley genotypes. Plant Breeding and Seed Science, 82, 19-30. https://doi.org/10.37317/pbss-2021-0002

Magdalena Wiśniewska  m.wisniewska@ihar.edu.pl
Plant Breeding and Acclimatization Institute - National Research Institute   Poland
Anna Fraś 
Plant Breeding and Acclimatization Institute - National Research Institute   Poland
http://orcid.org/0000-0003-2289-5960
Agnieszka Dmoch 
Plant Breeding and Acclimatization Institute - National Research Institute   Poland