Variability of selected quantitative traits in new spring barley genotypes

Magdalena Wiśniewska

m.wisniewska@ihar.edu.pl
Plant Breeding and Acclimatization Institute - National Research Institute (Poland)

Anna Fraś


Plant Breeding and Acclimatization Institute - National Research Institute (Poland)
http://orcid.org/0000-0003-2289-5960

Agnieszka Dmoch


Plant Breeding and Acclimatization Institute - National Research Institute (Poland)

Abstract

The research included 19 breeding lines and 4 cultivars of spring barley from the preliminary field experiments harvested in 2020 in Radzików. All barley samples were characterized for the content of protein, non-starch polysaccharides (NSP) with soluble (S-NSP) and insoluble (I-NSP) fractions and β-glucan. Additionally, viscosity of water extracts (WEV) was measured to determine the functional properties of the grain. It was the most diverse parameter (CV = 27%) and was significantly correlated with β-glucan content (r = 0.50; for p <0.05). This dependence is shown by the results obtained for the grain of the Avatar cultivar and the RAH 744/19 breeding line, in which the content of β-glucan (5.3% and 4.8%, respectively), as well as the WEV (3.3 mPa.s and 3.0 mPa.s, respectively) were the highest. The lowest content of β – glucan (3.5%) and one of the lowest WEV values (1.4 mPa.s) were observed for KWS Jessie cultivar. Principal component analysis (PCA) showed a substantial impact of the two components PC1 and PC2 on the variability of the analyzed material showing significant variability of the 5 barley genotypes and confirmed the previous results of biochemical analyzes. Our results made it possible to indicate several genotypes that may constitute a source of variability in breeding works aimed at improving the quality of barley. Presented study also show that the grain of some new barley genotypes, with a favorable chemical composition from a fodder and brewing perspective, is a good material for future use in industry.

Supporting Agencies

DS 1-1-00-2-02

Keywords:

barley, β – glucan, dietary fiber, non-starch polysaccharides, utility value of barley

Aastrup S. 1979. The relationship between the viscosity of an acid flour extract of barley and its β – glucan content. Carlsberg Res.Commun.44: 289‒304.
Google Scholar

Alazmani A. 2015. Evaluation of yield and yield components of barley varieties to nitrogen. International Journal of Agriculture and Crop Sciences, 8 (1): 52- 54.
Google Scholar

Arngren M., Hansen P. W.; Eriksen B.; Larsen J.; Larsen R. 2011. Analysis of pregerminated barley using hyperspectral image analysis. Journal of Agricultural and Food Chemistry, 59: 11385–11394.
Google Scholar

Bach Knudsen K. E. 2014. Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poultry Science, 93: 2380‒2393.
Google Scholar

Bhatty R. S. 1987.Relatioship between acid extract viscosity and total soluble and insoluble β – glucan contents of hulled and hulless barley. Canadian Journal of Plant Science. 67 (4): 997‒1008.
Google Scholar

Biel W., Jacyno E. 2013. Chemical composition and nutritive value of spring hulled barley varieties. Bulgarian Journal of Agricultural Science., 19 (4): 721‒727.
Google Scholar

Boros D., Marquardt R.R., Slominski B.A., Guenter W. 1993. Extract viscosity as an indirect assay for water-soluble pentosans content in rye. Cereal Chemistry, 70: 575‒580.
Google Scholar

Boros D., Fraś A., Gołębiewska K., Gołębiewski D., Paczkowska O., Wiśniewska M. 2015. Wartość odżywcza i właściwości prozdrowotne ziarna odmian zbóż i nasion rzepaku zalecanych do uprawy w Polsce. Monografie i Rozprawy Naukowe IHAR-PIB, 49, 1‒119.
Google Scholar

Caprita R., Caprita A., Cretescu I., Julean C. 2011a. Influence of temperature on the extractability of polysaccharides in barley. Animal Science and Biotechnologies, 44 (2): 81‒84.
Google Scholar

Caprita A., Caprita R., Simulescu V. O., Drehe R. M., 2011b. Water extract viscosities correlated with soluble dietary fiber molecular weight in cereals. Journal of Agroalimentary Processes and Technologies, 17 (3): 242‒245.
Google Scholar

Cyran M., Izydorczyk M. S., MacGregor A.W. 2002. Structural characteristics of waterextractable nonstarch polysaccharides from barley malt. Cereal Chemistry. 79 (3): 359‒366.
Google Scholar

Cyran M., Snochowska K., Śmiałowski T. 2019. Wysokocząsteczkowe arabinoksylany ziarna pszenicy: zawartość, masa cząsteczkowa oraz związek z poziomem lepkości ekstraktu. Biuletyn IHAR., 285: 287‒288.
Google Scholar

Englyst H.N., Cummings J.H. 1984. Simplified method for the measurement of total non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst. 109, 937‒942.
Google Scholar

Fraś A., Gołębiewski D. Gołębiewska K., Mańkowski D.R., Boros D. 2018. Content of nutrient and bioactive non-nutrient components in different oat products. Quality Assurance and Safety of Crops & Foods: 10: 307‒313.
Google Scholar

Gamlath J., Aldred G.P., Panozzo J. F. 2008. Barley (1‒3; 1‒4)-β – glucan and arabinoxylan content are related to karnel hardness and water uptake. Journal of Cereaal Science. 47: 365‒371.
Google Scholar

Gąsiorowski H. 1997. Jęczmień chemia i technologia. PWRiL, Poznań, wyd. I.
Google Scholar

Greenberg D. C., Whitmore E. T. 1974. A rapid method for estimating the viscosity of barley extracts. J. Inst. Brew. 80: 31‒33.
Google Scholar

Grochowicz J., Dominik P., Fabisiak A. 2017. Możliwości wykorzystania żywności naturalnej jako efekt ogólnoświatowego trendu w zakresie zapotrzebowania na żywność prozdrowotną. Zeszyty Naukowe UV. 54 (3): 223‒240.
Google Scholar

Haverlentova M., Babulicova M., Koseva B., Dyulgerova B. K., Hendrichova J., Valcheva D. D., Valchev D. G., Hašana R. 2020. Grain quality of spring barley genotypes grown at agro-ecological conditions of the Slovak Republic and the Republic of Bulgaria. Journal of Central European Agriculture. 21 (4): 775‒788.
Google Scholar

Henrion M., Francey C, Lê K. – A., Lamothe L. 2019. Cereal β – glucans: The impact of processing and how it affects physiological responses. Nutrients. 11 (8): 1729‒1742.
Google Scholar

Idehen E., Tang Y., Sang S. 2017. Bioactive phytochemicals in barley. J. Food Drug Anal., 25 (1): 148–161.
Google Scholar

Izydorczyk M. S., Storsley J., Labossiere D., MacGregor A. W., Rossnagel B. G. 2000. Variation in total and soluble β – glucan content in hulless barley: effects of thermal, physical and enzymic treatments. Journal of Agricultural and Food Chemistry. 48: 982‒989.
Google Scholar

Izydorczyk M.S., Dexter J.E. 2008. Barley β – glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products – a Review. Food Research International 41: 850‒868.
Google Scholar

Jadhav S. J., Lutz S. E., Ghorpade V. M., Salunkhe D. K. 1998. Barley: chemistry and value-added processing. Critical Reviews in Food Science and Nutrition, 38 (2): 123–171.
Google Scholar

Jin J. L., Speers R. A., Paulson A. T., Stewart R. J. 2004. Barley β – glucan and their degradation during malting and brewing. Technical Quarterly Master Brewers Association of the Americas. 41: 231‒240.
Google Scholar

Klockiewicz – Kamińska E. 2005. Metoda oceny wartości browarnej i klasyfikacja jakościowa odmian jęczmienia. Wiadomości odmianoznawcze, COBORU, Słupia Wielka, zeszyt 80.
Google Scholar

Kunze W. 2010.Technology Brewing and Malting., 4th International Edition, VLB Berlin, Germany.
Google Scholar

Lazaridou A, Biliaderis C.G., Micha-Screttas M., Steele B.R., 2004. A comparative study on structure-function relations of mixed-linkadge (1‒3), (1‒4) linear β-glucans. Food Hydrocolloids. 18: 837‒855.
Google Scholar

Mudgil D., Barak S. 2013. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: reviev. Int. J. Biol. Macromol. 61: 1‒6.
Google Scholar

Narina S.S., Hamama A. A., Bhardwaj H. L. 2012. Nutritional and mineral composition of flax sprouts. Journal of Agricultural Science, 4 (11): 60‒65.
Google Scholar

Newman C.; Newman R.; Brief A. 2006. History of Barley Foods. Cereal Foods World, 51:4–7.
Google Scholar

Nishantha M. D. L. C., Zhao X., Jeewani D. C., Bian J., Nie X., Weining S. 2018. Direct comparison of β – glucan content in wild and cultivated barley. International Journal of Food Properties, 21 (1): 2218‒2228.
Google Scholar

Noworolnik K. 2014. Agrotechnika w kształtowaniu plonu i jakości ziarna jęczmienia jarego na cele pastewne i spożywcze. Studia i raporty IUNG – PIB. 41 (15): 21‒37.
Google Scholar

Perczyńska A., Marciniak-Łukasiak K., Żbikowska A., 2017. Rola β-glukanu w przeciwdziałaniu chorobom cywilizacyjnym. Kosmos. 66: 379- 388.
Google Scholar

Prasadi N. V. P., Joye I. J. 2020. Dietary fibre from whole grains and their benefits on metabolic health. Nutrients. 12: 3045‒3066.
Google Scholar

Sorour M. A., Ramadan B. R., Mehanni A. E., Kobacy W. 2021. Impact of soaking and germination process on starch and non – starch polysaccharides in some Egyptian barley cultivars. Journal of Food and Dairy Science, 12 (6): 147‒151.
Google Scholar

Sterna V., Zute S., Jâkobsone I. 2015. Grain composition and functional ingredients of barley varieties created in Latvia. Proceedings of the Latvian Academy of Sciences 69 (4): 158–162.
Google Scholar

Wirkijowska A., Rzedzicki Z., Sobota A., Sykut-Domańska E., Zarzycki P., Bartoszek K., Kuzawińska E. 2016. Jęczmień w żywieniu człowieka. Polish Journal of Agronomy 25: 41–50.
Google Scholar

Wiśniewska M., Boros D., Zych J. 2020. Wartość pokarmowa wybranych mieszanek zbóż jarych z roślinami bobowatymi grubonasiennymi. Biuletyn IHAR. 289: 51‒62.
Google Scholar

Zhang X., Xue D., Wu F., Zhang G. 2013. Genotypic and environmental variations of arabinoxylan content and endoxylanase activity in barley grains. Journal of Integrative Agriculture, 12 (8): 1489‒1494.
Google Scholar

Zieliński H., Achremowicz B., Przygodzka M. 2012. Przeciwutleniacze ziarniaków zbóż. Żywność. Nauka. Technologia. Jakość. 80 (1): 5‒26.
Google Scholar

Download


Published
2021-11-30

Cited by

Wiśniewska, M., Fraś, A., & Dmoch, A. (2021). Variability of selected quantitative traits in new spring barley genotypes. Plant Breeding and Seed Science, 82, 19–30. https://doi.org/10.37317/pbss-2021-0002

Authors

Magdalena Wiśniewska 
m.wisniewska@ihar.edu.pl
Plant Breeding and Acclimatization Institute - National Research Institute Poland

Authors

Anna Fraś 

Plant Breeding and Acclimatization Institute - National Research Institute Poland
http://orcid.org/0000-0003-2289-5960

Authors

Agnieszka Dmoch 

Plant Breeding and Acclimatization Institute - National Research Institute Poland

Statistics

Abstract views: 1354
PDF downloads: 954


License

Copyright (c) 2021 Magdalena Wiśniewska, Anna Fraś, Agnieszka Dmoch

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

All articles published in electronic form under CC BY-SA 4.0, in open access, the full content of the licence is available at: https://creativecommons.org/licenses/by-sa/4.0/legalcode.pl .