CHARACTERISTICS OF CRY1AB PROTEIN FROM BIOINSECTICIDES AND INSECT RESISTANT GM CROPS
Ewelina Żmijewska
GMO Controlling Laboratory, Plant Breeding and Acclimatization Institute– National Research Institute1 , Plant Biotechnology and Cytogenetics Department, Plant Breeding and Acclimatization Institute– National Research Institute2 ; (Poland)
Anna Linkiewicz
a.linkiewicz@ihar.edu.plGMO Controlling Laboratory, Plant Breeding and Acclimatization Institute– National Research Institute1 , Plant Biotechnology and Cytogenetics Department, Plant Breeding and Acclimatization Institute– National Research Institute2 ; (Poland)
Magdalena Żurawska-Zajfert
GMO Controlling Laboratory, Plant Breeding and Acclimatization Institute– National Research Institute1 , Plant Biotechnology and Cytogenetics Department, Plant Breeding and Acclimatization Institute– National Research Institute2 ; (Poland)
Katarzyna Grelewska-Nowotko
GMO Controlling Laboratory, Plant Breeding and Acclimatization Institute– National Research Institute1 , Plant Biotechnology and Cytogenetics Department, Plant Breeding and Acclimatization Institute– National Research Institute2 (Poland)
Sławomir Sowa
GMO Controlling Laboratory, Plant Breeding and Acclimatization Institute– National Research Institute1 , Plant Biotechnology and Cytogenetics Department, Plant Breeding and Acclimatization Institute– National Research Institute2 ; (Poland)
Janusz Zimny
Plant Biotechnology and Cytogenetics Department, Plant Breeding and Acclimatization Institute– National Research Institute (Poland)
Abstrakt
Biological insecticides are an effective method used in plant protection. One of the most widely used active substances in biological insecticides is Cry1Ab protein, which is toxic for lepidopteran insects. This protein is produced during bacterial sporulation by Bacillus thuringiensis. Other sources of Cry1Ab protein are genetically modified plants (GM) with expression of cry1Ab gene. Cry1Ab protein in both bioinsecticides and GM plants is present in the form of protoxin, which requires activation by enzymatic treatment in the gut of susceptible insects. So far, Cry1Ab mode of action is not fully understood, but there are 3 main concepts describing it. Two of them assume that a toxic protein after binding to receptors in the insect gut penetrates into the cells, causing pore formation in the gut, which leads to the death of the sensitive insect. In the third model Cry1Ab toxic action is a result of toxin-induced chemical processes initiating a cell death pathway. This work describes the structure and mode of action of Cry1Ab protein, present in biological insecticides and genetically modified plants.
Słowa kluczowe:
biological insecticide, Cry1Ab protein, Cry protein mode of action, GM plantBibliografia
Abel C., John A., Adamczyk J. 2004. Relative concentration of Cry1A in maize leaves and cotton bolls with diverse chlorophyll content and corresponding larval development of fall armyworm (Lepidoptera: Noctuidae) and southwestern maize borer (Lepidoptera: Crambidae) on maize whorl leaf profiles. Journal of Economic Entomology 97 (5): 1737–1744.
Google Scholar
Abbott Laboratories. 1992. Bt Products Manual. Abbott, North Chicago, IL, USA.
Google Scholar
Adamczyk J. J., Hardee D. D., Adams L. C., Sumerford D. V. 2001. Correlating differences in larval survival and development of bollworm (Lepidoptera: Noctuidae) and fall armyworm (Lepidoptera: Noctuidae) to
Google Scholar
differential expression of Cry1A (c) δ‑endotoxin in various plant parts among commercial cultivars of transgenic Bacillus thuringiensis cotton. Journal of Economic Entomology 94 (1): 284–290.
Google Scholar
APVMA. 2010. Public Chemical Information System (PUBCRIS) [Search for Bacillus thuringiensis]. Australian Pesticides and Veterinary Management Authority (AVPMA), Symonston, Australia. http:// services.apvma.gov.au/PubcrisWebClient/.
Google Scholar
Bechtel D. B., Bulla L. A. Jr.1976. Electron microscope study of sporulation and parasporal crystal formation in Bacillus thuringiensis. Journal of Bacteriology 1976. 127 (3): 1472-1481.
Google Scholar
Bereś P.K., Gabarkiewicz R. 2008. Preventing spread of Ostrinia nubilalis Hbn. by cultivation of Bt transgenic maize–First field experiments in southeastern Poland. IOBC/WPRS Bulletin 33: 31–35.
Google Scholar
Bietlot H., Carey P. R., Choma C., Kaplan H., Lessard T., Pozsgay M. 1989. Facile preparation and characterization of the toxin from Bacillus thuringiensis var. kurstaki. Biochemical Journal 260 (1): 87–91.
Google Scholar
Bravo A., S.S., Soberón M. 2007. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49: 423–435.
Google Scholar
Bravo A., Sánchez J., Kouskoura T., Crickmore N. 2002. N-Terminal Activation Is an Essential Early Step in the Mechanism of Action of the Bacillus Thuringiensis Cry1Ac Insecticidal Toxin. Journal of Biological Chemistry 277 (27): 23985-23987.
Google Scholar
Bravo A., Likitvivatanavong S., Gill S. S., Soberón M. 2011. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology 41 (7): 423 –31.
Google Scholar
Crickmore N., Zeigler D. R., Schnepf E., Van Rie J., Lereclus D., Baum J., Bravo A.,
Google Scholar
Dean D. H. Bacillus thuringiensis toxin nomenclature. 2010.
Google Scholar
http://www.biols.susx.ac.uk/Home/Neil_Crickmore/Bt/index.html.
Google Scholar
DeLucca A. J., Simonson J. G., Larson A. D. 1981. Bacillus thuringiensis distribution in soils of the United States. Canadian Journal of Microbiology 27 (9): 865–870.
Google Scholar
Dutton A., Alessandro M. D., Romeis J., Bigler F. 2004. Assessing expression of Bt-toxin (Cry1Ab) in transgenic maize under different environmental conditions. IOBC / WPRS Bulletin 27 (3): 49–56.
Google Scholar
Douville M., Gagné F., Masson L., McKay J., Blaise C. 2001. Tracking the source of Bacillus thuringiensis Cry1Ab endotoxin in the environment. Biochemical Systematics Ecology 33: 219–232.
Google Scholar
Directive (EU) 2015/412 of the European Parliament and of the Council of 11 March 2015 amending Directive 2001/18/EC as regards the possibility for the Member States to restrict or prohibit the cultivation of genetically modified organisms (GMOs) in their territory. Official Journal of the European Union. L 68/1.
Google Scholar
Frankenhuyzen K., Gringorten J. L., Gauthier D., Milne R. E., Masson L., Peferoen M. 1993. Toxicity of activated CryI proteins from Bacillus thuringiensis to six forest Lepidoptera and Bombyx mori. Journal of Invertebrate Pathology 62: 295–301.
Google Scholar
Frankenhuyzen K. 2013. Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. Journal of Invertebrate Pathology 114 (1): 76–85.
Google Scholar
Gill S. S., Cowles E. A., Pietrantonio P. V. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annual Review of Entomology 37:615–636.
Google Scholar
Glare, T. R.; O’Callaghan, M. 2000. Bacillus thuringiensis: biology, ecology and safety. Chichester: J. Wiley. 350 p.
Google Scholar
Grochulski P., Masson L., Borisova S., Pusztai-Carey M., Schwartz J. L., Brousseau R., Cygler M. 1995. Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. Journal of Molecular Biology 254 (3): 447–464.
Google Scholar
Haider, M. Z., Ellar D. J. 1989. Functional mapping of an entomocidal δ-endotoxin. Journal of Molecular Biology 208 (1): 183–94.
Google Scholar
Hernández M., Pla M., Esteve T., Prat S., Puigdomènech P., Ferrando A. 2003. A specific real-time quantitative PCR detection system for event MON810 in maize YieldGard® based on the 3′-transgene integration sequence. Transgenic Research 12 (2): 179–89.
Google Scholar
Hodgman T. C., Ellar D. J. 1990. Models for the structure and function of the Bacillus thuringiensis δendotoxins determined by compilational analysis. DNA Sequence 1: 97–106.
Google Scholar
Höfte, H., de Greve, J., Jansens S. S., Mahillon J., Ampe C., Vandekerckhove J., Vanderbruggen H., van Montagu M., Zabeau M. 1986. Structural and functional analysis of a cloned delta endotoxin of Bacillus thuringiensis Berliner 1715. European Journal of Biochemistry/FEBS 161 (2): 273–280.
Google Scholar
Habuštová O., Doležal P., Spitzer L., Svobodová Z., Hussein H., Sehnal F. 2012. Impact of Cry1Ab toxin expression on the non-target insects dwelling on maize plants. Journal of Applied Entomology 138 (3): 164–172.
Google Scholar
James C. 2016. ISAAA Brief 51-2015: Executive Summary
Google Scholar
Jurat-Fuentes J. L., Adang M. J. 2006. Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae. Journal of Invertebrate Pathology 92 (3): 166–171.
Google Scholar
Kamath S. P., Anuradha S., Vidya H .S., Mohan K. S., Dudin Y. 2010. Bacillus thuringiensis Cry1Ab Protein in tissues of YieldGard® (MON810) corn hybrids tested at multiple field locations in India. Crop Protection 29 (9): 921–926.
Google Scholar
Knowles B. H. 1994. Mechanism of action of Bacillus thuringiensis insecticidal δ‑endotoxins. In: Advances in Insect Physiology (Evans P. D., ed.). Academic Press, 24: 275–308.
Google Scholar
Kumar P. A., Sharma R. P., Malik V. S. 1996. The insecticidal proteins of Bacillus thuringiensis. Advances in Applied Microbiology 42: 1–43.
Google Scholar
Li J. D., Carroll J., Ellar D. J. 1991. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 a resolution. Nature 353 (6347): 815–821.
Google Scholar
Lisowicz F., Tekiela A. 2004. Szkodniki i choroby kukurydzy oraz ich zwalczanie. s. 52–64. In: Technologia produkcji kukurydzy (Dubas A., red.). Wieś Jutra Warszawa.
Google Scholar
Malinowski H. 1999. Stan badań nad odpornością owadów na toksyny Bacillus thuringiensis. Prace Inst. Bad. Leśn. Ser. A, 876: 53–92.
Google Scholar
Martens J. W. M., Visser B., Vlak J. M., Bosch D. Mapping and characterization of the entomocidal domain of the Bacillus thuringiensis. Molecular and General Genetics 247 (4): 482–487.
Google Scholar
Martin P. A. W., Travers R. S. 1989. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Applied and Environmental Microbiology 55 (10): 2437–2442.
Google Scholar
Meissle, M., Mouron, P., Musa, T., Bigler, F., Pons, X., Vasileiadis, V.P., Otto, S., Antichi,D., Kiss, J., Pálinkás, Z., Dorner, Z., van der Weide, R., Groten, J., Czembor, E., Adamczyk, J., Thibord, J.-B.,
Google Scholar
Melander, B., Cordsen Nielsen, G., Poulsen, R.T.,Zimmermann, O., Verschwele, A., Oldenburg, E., 2010. Pests, pesticide use and alternative options in European maize production: current status and future prospects. Journal of Applied Entomology 134: 357–375.
Google Scholar
Milne R., Kaplan H. 1993. Milne R., Kaplan H. 1993. Purification and characterization of a trypsin-like digestive enzyme from Spruce budworm (Choristoneura fumiferana) responsible for the activation of deltaendotoxin from Bacillus thuringiensis. Insect Biochemistry and Molecular Biology 23 (6): 663–673.
Google Scholar
Milner R. J. 1994. History of Bacillus thuringiensis. Agriculture, Ecosystems & Environment 49 (1): 9–13.
Google Scholar
Monsanto. 2016. Annual monitoring report on the cultivation of MON810 in 2015. Czech Republic, Portugal, Romania, Slovakia and Spain.
Google Scholar
Mrówczyński M., Boroń M., Wachowiak H., 2005. Ochrona kukurydzy przed szkodnikami. Program ochrony kukurydzy, Plantpress, Kraków, 7–14.
Google Scholar
Nair M.S., Dean D.H. 2008. All domains of Cry1A toxins insert into insect brush border membranes. Journal of Biological Chemistry 283: 26324–26331.
Google Scholar
Nguyen H. T., Jehle J. A. 2007. Quantitative analysis of the seasonal and tissue-specific expression of Cry1Ab in transgenic maize Mon810. Journal of Plant Diseases and Protection 114 (2): 82–87.
Google Scholar
Olsen K. M., Daly J. C., Holt H. E., Finnegan E. J. 2005. Season-long variation in expression of Cry1Ac gene and efficacy of Bacillus thuringiensis toxin in transgenic cotton against Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology 98 (3): 1007–1017.
Google Scholar
Pigott C. R., Ellar D. J. 2007. Role of Receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews: 71 (2): 255–281.
Google Scholar
Rosati A., Bogani P., Santarlasci L., Buiatti M., 2008. Characterisation of 3‟ transgene insertion site and derived mRNAs in MON810 YieldGard maize. Plant Molecular Biology 67: 271–281
Google Scholar
Saladini M.A., Blandino M., Reyneri A., Alma A. 2008. Impact of insecticide treatments on Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) and their influence on the mycotoxin contamination of maize kernels. Pest Management Science 64 (11): 1170–1178.
Google Scholar
Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D. R., Dean D. H. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews: 62 (3): 775–806.
Google Scholar
Schwartz J.L., Lu Y.J., Sohnlein P., Brousseau R., Laprade R., Masson L., Adang M.J. 1997. Ion channels formed in planar lipid bilayers by Bacillus thuringiensis toxins in the presence of Manduca sexta midgut receptors. FEBS Letters 412: 270–276.
Google Scholar
Smith C. M. 2005. Plant Resistance to Arthropods. Molecular and Conventional Aproaches: 303–343.
Google Scholar
Soberón M., Pérez R. V., Núñez-Valdez M. E., Lorence A., Gómez I., Sánchez J., Bravo A. 2000. Evidence for intermolecular interaction as a necessary step for pore formation activity and toxicity of Bacillus thuringiensis Cry1Ab toxin. FEMS Microbiology Letters 191: 221–225.
Google Scholar
Soberón M., Pardo L., Muñóz-Garay C., Sánchez J., Gómez I., Porta H., Bravo A. 2010. Pore formation by Cry toxins. p. 127–142. In: Proteins membrane binding and pore formation (Anderluh G. and Lakey J., eds.),. Advances in Experimental Medicine and Biology 677, Springer New York.
Google Scholar
Sunilkumar G., Mohr L. A., Lopata-Finch E., Emani C., Rathore K. S. 2002. Developmental and tissuespecific expression of CaMV 35S promoter in cotton as revealed by GFP. Plant Molecular Biology 50 (3): 463–474.
Google Scholar
Székács A., Lauber E., Juracsek J., Darvas B. 2010 a. Cry1Ab toxin production of MON 810 transgenic maize. Environmental Toxicology and Chemistry 29 (1): 182–190.
Google Scholar
UE DG SANCO. 2010. EU Pesticides Database [Search for Bacillus thuringiensis ]. European Union Directorate General, Health and Consumers (EU DG SANCO) Belgium http://ec.europa.eu/sanco_pesticides/public/index.cfm?event=activesubstance.selection
Google Scholar
US EPA. 2016. Biopesticide registration action document. Bacillus thuringiensis (Bt) plant incorporated protectants. United States Environmental Protection Agency, Washington. https://www.epa.gov/ingredients-used-pesticide-products/what-are-biopesticides
Google Scholar
Whiteley H. R., Schnepf H. E. 1986. The molecular biology of parasporal crystal body formation in Bacillus thuringiensis. Annual Review of Microbiology 40: 549–576.
Google Scholar
Zhang X., Candas M., Griko N. B., Taussig R., Bulla L. A. 2006. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proceedings of the National Academy of Sciences USA 103 (26): 9897–9902
Google Scholar
Autorzy
Ewelina ŻmijewskaGMO Controlling Laboratory, Plant Breeding and Acclimatization Institute– National Research Institute1 , Plant Biotechnology and Cytogenetics Department, Plant Breeding and Acclimatization Institute– National Research Institute2 ; Poland
Autorzy
Anna Linkiewicza.linkiewicz@ihar.edu.pl
GMO Controlling Laboratory, Plant Breeding and Acclimatization Institute– National Research Institute1 , Plant Biotechnology and Cytogenetics Department, Plant Breeding and Acclimatization Institute– National Research Institute2 ; Poland
Autorzy
Magdalena Żurawska-ZajfertGMO Controlling Laboratory, Plant Breeding and Acclimatization Institute– National Research Institute1 , Plant Biotechnology and Cytogenetics Department, Plant Breeding and Acclimatization Institute– National Research Institute2 ; Poland
Autorzy
Katarzyna Grelewska-NowotkoGMO Controlling Laboratory, Plant Breeding and Acclimatization Institute– National Research Institute1 , Plant Biotechnology and Cytogenetics Department, Plant Breeding and Acclimatization Institute– National Research Institute2 Poland
Autorzy
Sławomir SowaGMO Controlling Laboratory, Plant Breeding and Acclimatization Institute– National Research Institute1 , Plant Biotechnology and Cytogenetics Department, Plant Breeding and Acclimatization Institute– National Research Institute2 ; Poland
Autorzy
Janusz ZimnyPlant Biotechnology and Cytogenetics Department, Plant Breeding and Acclimatization Institute– National Research Institute Poland
Statystyki
Abstract views: 175PDF downloads: 64
Licencja
Wszystkie artykuły publikowane w formie elektronicznej na mocy licencji CC BY-SA 4.0, w otwartym dostępie (open access), pełna treść licencji jest dostępna pod adresem: https://creativecommons.org/licenses/by-sa/4.0/legalcode.pl .