Functional factor analysis in sesame under water - limiting stress: New concept on an old method
Sadollah Mansouri
sadollahmasouri@yahoo.comOil Seed Crop Res. Department, Seed & Plant Improvement Institute, Karaj, I. R. Iran; (Iran, Islamic Republic of)
Masood Soltani Najafabadi
Oil Seed Crop Res. Department, Seed & Plant Improvement Institute, Karaj, I. R. Iran (Iran, Islamic Republic of)
Maghsadollah Esmailov
Genetics and Selection Department, Agricultural University of Tajikistan, Tajikistan (Tajikistan)
Mostafa Aghaee
Seed & Plant Improvement Institute, Karaj, I. R. Iran (Iran, Islamic Republic of)
Abstrakt
Multivariate statistical analysis, through their ability to extract hidden relationship between various traits, has a wide application in breeding programs. Having physiological concept on the multivariate analysis, factor analysis was used to extract differential relationships between different components involving in assimilate partitioning in sesame under regular irrigation regime and limited irrigation. The analysis revealed that under regular irrigation regime, the stored and/or currently produced assimilates are allocated to the filling seeds. However, incidence of water shortage in the beginning of flowering time make shifts in assimilate partitioning from formation of new seeds or capsules to the not-matured pre-formed seeds, which results in seeds with more nutrient storage. This indicates the requirement for change in breeding strategies under sub-optimal condition. The possible common language between factor concept in multivariate analysis, QTLs in genetics, and transcription factors in molecular biology is indicated.
Słowa kluczowe:
assimilate partitioning, factor analysis, QTL, sesame, transcription factorBibliografia
Al-Sayed, H. M., Fateh, H. S., Fares, W. M., & Attaya, A. S. (2012). Multivariate analysis of sugar yield factors in sugar cane. American-Eurasian Journal of Sustainable Agriculture, 6(1), 44-50.
Google Scholar
Araus, J. L., Slafer, G. A., Royo, C., & Serret, M. D. (2008). Breeding for yield potential and stress adaptation in cereals. Critical Reviews in Plant Science, 27, 377-412. http://dx.doi.org/10.1080/07352680802467736 .
Google Scholar
Banerjee, P. P., & Kole, P. C. (2006). Genetic variability for some physiological characters in sesame (Sesame indicum L). Sesame & Safflower News, 21, 20-24.
Google Scholar
Blum, A. (1996). Crop responses to drought and the interpretation of adaptation. Plant Growth Reg. 20, 135-148.
Google Scholar
Boureima, S., Eylettes, M., Diouf, M., Diop, T. A., & Damme, P. V. (2011). Sensitivity of seed germination and seedling radicle growth to drought stress in sesame (Sesamum indicum L.). Res. J. Environ. Sci., 5(6), 557-564. http://dx.doi.org/10.3923 / rjes.2011.557.564
Google Scholar
Brem, R. B., Yvert, G., Clinton, R., & Kruglyak, L. (2002). Genetic dissection of transcriptional regulation in budding yeast. Science, 296(5568), 752-5. http://dx.doi.org/10.1126/science.1069516
Google Scholar
Chaves, M. M. (1991). Effects of water deficits on carbon assimilation. J. Exp. Bot., 42(1), 1-16. http://dx.doi.org/10.1093 / jxb/42.1.1
Google Scholar
Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought − from genes to the whole plant. Func. Plant Biol., 30(3), 239-264. http://dx.doi.org/10.1071 / FP02076
Google Scholar
Chen, J. L., & Reynolds, J. F. (1997). A coordination model of whole-plant carbon allocation in relation to water stress. Ann. Bot., 80(1), 45-55. http://dx.doi.org/10.1006 / anbo.1997.0406
Google Scholar
Doust, A. (2007). Architectural evolution and its implications for domestication in grasses. Ann Bot, 100(5), 941-950. http://dx.doi.org/10.1093 / aob/mcm040
Google Scholar
Fruchter, B. (1967). Introduction to factor analysis. New York: D. Van Nostrand Company.
Google Scholar
Geiger, D. R., Koch, K. E., & Shieh, W. J. (1996). Effect of environmental factors on whole plant assimilate partitioning and associated gene expression. J Exp Bot, 47(Special issue), 1229-1238.
Google Scholar
Gilad, Y., Rifkin, S. A., & Pritchard, J. K. (2008). Revealing the architecture of gene regulation: the promise of eQTL studies. Trends in genetics, 24(8), 408-415. http://dx.doi.org/10.1016/j.tig.2008.06.001
Google Scholar
Hodge, A., Berta, G., Doussan, C., Merchan, F., & Crespi, M. (2009). Plant root growth, architecture and function. Plant Soil, 321, 153-187. http://dx.doi.org/10.1007 / s11104-009-9929-9
Google Scholar
Joshi, A. B. (1961). Sesame, A monograph. Indian Cetral Oil Seeds Committee.
Google Scholar
Kasperbauer, M. J. (1987). Far-Red Light Reflection from Green Leaves and Effects on Phytochrome-Mediated Assimilate Partitioning under Field Conditions. Plant Physiol, 85(2), 350-354.
Google Scholar
Lawson, H. A., Cady, J. E., Partridge, C., Wolf, J. B., Semenkovich, C. F., & Cheverud, J. M. (2011). Genetic effects at pleiotropic loci are context-dependent with consequences for the maintenance of genetic varia-tion in populations. PLoS Genet., 7(9), e1002256. http://dx.doi.org/10.1371/journal.pgen.1002256
Google Scholar
Lee, J., & Kaltsikes, P. J. (1973). Multivariate statistical analysis of grain yield and agronomic characters in Durum wheat. Theor. Appl. Genet., 43(5), 226-231.
Google Scholar
Lucas, J. E., Kung, H.-N., & Chi, J.-T. A. (2010). Latent factor analysis to discover pathway-associated puta-tive segmental aneuploidies in human cancers. PLoS Comput Biol, 6(9), e1000920.
Google Scholar
Mangin, B., Thoquet, P., & Grimsley, N. (1998). Pleiotropic QTL analysis. Biometrics, 54(1), 88-99.
Google Scholar
Mansouri, S., & NaJafabadi, M. S. (2004). Study and systemic analysis oon yield and yield components asso-ciation for sesame (Sesamum indicum L.) breeding. Seed & Plant, 20(2), 149-165.
Google Scholar
Mostafavi, K., Shoahosseini, M., & Geive, H. S. (2011). Multivariate analysis of variation among traits of corn hybrids traits under drought stress. Int. J. AgriSci., 1(7), 416-422.
Google Scholar
Narayanan, A., & Reddy, K. B. (1982). Growth, development and yield of sesame (Sesamum indicum L.) cultivars. Field Crop Res. 5, 217-224.
Google Scholar
Reisen, D., Marty, F., & Leborgne-Castel, N. (2005). New insights into the tonoplast architecture of plant vacuoles and vacuolar dynamics during osmotic stress. BMC Plant Biol., 5, 13. http://dx.doi.org/10.1186/1471-2229-5-13
Google Scholar
Rosielle, A. A., & Hamblin, J. (1981). Theoretical aspect of selection for yield in stress and non-stress envi-ronment. Crop Sci., 21(6), 943-946. http://dx.doi.org/10.2135/cropsci1981.0011183X002100060033x
Google Scholar
Sabouri, H., Rabiei, B., & Fazlalipour, M. (2008). Use of selection indices based on multivariate analysis for improv-ing grain yield in rice. Rice Sci., 14(4), 303-310. http://dx.doi.org/10.1016/S1672-6308(09)60008-1
Google Scholar
Salehi, M., Tajik, M., & Ebadi, A. G. (2008). The study of relationship between different traits in common bean (Phaseolus volgaris L.) with multivariate statistical methods. Am.-Eu. J. Agric. & Environ. Sci., 3(6), 806-809.
Google Scholar
Sauer, N. (2007). Molecular physiology of higher plant sucrose transporters. FEBS Lett, 581(12), 2309-2317.
Google Scholar
http://dx.doi.org/10.1016/j.febslet.2007.03.048
Google Scholar
Schadt, E. E., Monks, S. A., Drake, T. A., Lusis, A. J., Che, N., Colinayo, V., Friend, S. H. (2003). Genetics of gene expression surveyed in maize, mouse and man. Nature, 422, 297-302. http://dx.doi.org/10.1038/nature01434
Google Scholar
Shah, F., Huang, J., Cui, K., Nie, L., Shah, T., Chen, C., & Wang, K. (2011). Impact of high-temperature stress on rice plant and its traits related to tolerance. J. Agric. Sci., 1-12. http://dx.doi.org/10.1017 /
Google Scholar
S0021859611000360
Google Scholar
Sharma-Natu, P., & Ghildiyal, M. C. (2005). Potential targets for improving photosynthesis and crop yield. Curr. Sci., 88(12), 1918-1928.
Google Scholar
Sinclair, T. R., & Rufty, T. W. (2012). Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Glob. Food Sec., 1(2), 94-98. http://dx.doi.org/10.1016/j.gfs.2012.07.001
Google Scholar
Stitt, M., & Schulze, D. (1994). Does Rubisco control the rate of photosynthesis and plant growth? An exer-cise in molecular ecophysiology. Plant, Cell & Environ., 17(5), 465-487. http://dx.doi.org/10.1111 /
Google Scholar
j.1365-3040.1994.tb00144.x
Google Scholar
Taize, L., Zaiger, E. (1998). Plant Physiology. Sundeland: Sinauer Associations.
Google Scholar
Witcombe, J. R., Hollington, P. A., Howarth, C. J., Reader, S., & Steele, K. A. (2007). Breeding for abiotic stresses for sustainable agriculture. Philos Trans R Soc Lond B Biol Sci., 363(1492), 703-16.
Google Scholar
Xu, Z., Zhou, & Shimizu, H. (2010). Plant responses to drought and rewatering. Plant Signal Beh., 5(6), 649-654.
Google Scholar
Zhang, S. W., Li, C. H., Cao, J., Zhang, Y. C., Zhang, S. Q., Xia, Y. F., … Sun, Y. (2009). Altered architec-ture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiol, 151(4), 1889-1901. http://dx.doi.org/10.1104/pp.109.146803
Google Scholar
Autorzy
Sadollah Mansourisadollahmasouri@yahoo.com
Oil Seed Crop Res. Department, Seed & Plant Improvement Institute, Karaj, I. R. Iran; Iran, Islamic Republic of
Autorzy
Masood Soltani NajafabadiOil Seed Crop Res. Department, Seed & Plant Improvement Institute, Karaj, I. R. Iran Iran, Islamic Republic of
Autorzy
Maghsadollah EsmailovGenetics and Selection Department, Agricultural University of Tajikistan, Tajikistan Tajikistan
Autorzy
Mostafa AghaeeSeed & Plant Improvement Institute, Karaj, I. R. Iran Iran, Islamic Republic of
Statystyki
Abstract views: 146PDF downloads: 49
Licencja
Wszystkie artykuły publikowane w formie elektronicznej na mocy licencji CC BY-SA 4.0, w otwartym dostępie (open access), pełna treść licencji jest dostępna pod adresem: https://creativecommons.org/licenses/by-sa/4.0/legalcode.pl .