Rye (Secale cereale L.) arabinoxylans: molecular structure, physicochemicals properties and the resulting pro-health effects


Abstract

Arabinoxylans are an essential component of dietary fiber, and their health-promoting properties are determined mainly by the content and structural features their biopolymers. Rye bread is particularly rich in these compounds; their unique features in the context of content and chemical structure of rye arabinoxylans make it a valuable component od daily diet. Long-term studies have shown the positive effect of these compounds in the aspect of prevention of civilization diseases such as type 2 diabetes, obesity, and cardiovascular diseases. Among the description of the physicochemical properties and diversity of arabinoxylans, the article contains a collection of the most important reports regarding the health-promoting effects of these polymers, as well as their metabolism in the human body.


Keywords

Rye (Secale cereale L) arabinoxylans; dietary fiber; water extract viscosity; antioxidant activity; health potential; short-chain fatty acids

Andreasen, M.F., Kroon, P.A., Williamson, G., Garcia-Conesa, M.T. (2001). Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals. J Agr Food Chem, 49, 5679–5684.
Andersson, R., Fransson, G., Tietjen, M., Aman, P. (2009). Content and molecular-weight distribution of dietary fiber components in whole-grain rye flour and bread. J Agric Food Chem, 57(5), 2004–2008.
Andrewartha, K.A., Phillips, D.R., Stone, B.A. (1979). Solution properties of wheat-flour arabinoxylans and enzymically modified arabinoxylans. Carbohyd Res, 77(1), 191-204.
Bengtsson, S., Åman, P. (1990). Isolation and chemical characterization of water-soluble arabinoxylans in rye grain. Carbohyd Polym, 12, 267–277.
Bengtsson, S., Andersson, R., Westerlund, E., Åman, P. (1992). Content, structure and viscosity of soluble arabinoxylans in rye grain from several countries. J Sci Food Agric, 58(3), 331-337.
Biely, P., Singh, S., Puchart, V. (2016). Towards enzymatic breakdown of complex plant xylan structures: State of the art. Biotechnol Adv, 34, 1260–1274.
Borneman, W.S., Hartley, R.D., Morrison, W.H., Akin, D.E., Ljungdahl, L.G. (1990). Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Appl Microb Biotechnol, 33, 345–351.
Boros, D., Bedford, M.R. (1999). Influence of water extract viscosity and exogenous enzymes on nutritive value of rye hybrids in broiler diets. J Anim Feed Sci, 8, 579–588.
Brennan, C.S. (2005). Dietary fibre, glycaemic response, and diabetes. Mol Nutr Food Res, 49, 560–570.
Broekaert, W.F., Courtin, C.M., Verbeke, K., Wiele, T.V. de, Verstraete, W., Delcour, J.A. (2011). Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit Rev Food Sci, 51, 178–194.
Bunzel, M., Ralph, J., Marita, J.M., Hatfield, R.D., Steinhart, H. (2001). Diferulates as structural components in soluble and insoluble cereal dietary fibre. J Sci Food Agr, 81, 653–660.
Bunzel, M., Ralph, J., Funk, C., Steinhart, H. (2005). Structural elucidation of new ferulic acid-containing phenolic dimers and trimers isolated from maize bran. Tetrahedron Lett, 46, 5845–5850.
Bunzel, M., Allerdings, E., Ralph, J., Steinhart, H. (2008). Cross-linking of arabinoxylans via 8-8-coupled diferulates as demonstrated by isolation and identification of diarabinosyl 8-8(cyclic)-dehydrodiferulate from maize bran. J Cereal Sci, 47, 29–40.
Chaplin, M.F. (2003). Fibre and water binding. P Nutr Soc, 62, 223–227.
Collins, T., Gerday, C., Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev, 29, 3–23.
Courtin, C.M., Delcour, J.A. (2002). Arabinoxylans and endoxylanases in wheat flour bread-making. J Cereal Sci, 35, 225–243.
Cummings, J.H. (1984). Constipation, dietary fibre and the control of large bowel function. Postgraduate Medical Journal, 60(11), 811-819.
Cummings, J.H., Englyst, H.N. (1987). Fermentation in the human large intestine and the available substrates. Am J Clin Nutr, 45(5 Suppl), 1243-55.
Cyran, M.R., Rakowska, M., Wasilewko, J., Buraczewska, L. (1995). Degradation of dietary fibre polysaccharides of rye in the intestinal tract of growing pigs used as a model animal for studying digestion in humans. J Anim Feed Sci, 4, 217–227.
Cyran, M., Courtin, C.M., Delcour, J.A. (2003). Structural features of arabinoxylans extracted with water at different temperatures from two rye flours of diverse breadmaking quality. J Agr Food Chem, 51, 4404–4416.
Cyran, M., Courtin, C.M., Delcour, J.A. (2004). Heterogeneity in the fine structure of alkali-extractable arabinoxylans isolated from two rye flours with high and low breadmaking quality and their coexistence with other cell wall components. J Agr Food Chem, 52, 2671–2680.
Cyran, M.R., Cygankiewicz, A. (2004). Variability in the content of water-extractable and water-unextractable non-starch polysaccharides in rye flour and their relationship to baking quality parameters. Cereal Res Com, 32, 143-150.
Cyran, M.R., Saulnier, L. (2005). Cell wall fractions isolated from outer layers of rye grain by sequential treatment with a -amylase and proteinase: structural investigation of polymers in two ryes with contrasting breadmaking quality. J Agr Food Chem, 53, 9213–9224.
Cyran, M.R., Saulnier, L. (2007). Association and structural diversity of hemicelluloses in the cell walls of rye outer layers: comparison between two ryes with opposite breadmaking quality. J Agr Food Chem, 55, 2329–2341.
Cyran, M.R. (2010). Structural characterization of feruloylated arabinoxylans and xylans released from water-unextractable cell walls of rye outer layers upon treatment with lichenase and cellulase. Carbohyd Res, 345(7), 899–907.
Cyran, M.R., Ceglińska, A., Kolasińska, I. (2012). Depolymerization degree of water-extractable arabinoxylans in rye bread: characteristics of inbred lines used for breeding of bread cultivars. J Agric Food Chem, 60(35), 8720–8730.
Cyran, M.R. (2015). Dietary Fiber Arabinoxylans in Processed Rye: Milling- and Breadmaking-Induced Changes. In: Preedy, V. (Eds.) Processing and Impact on Active Components in Food, Academic Press, pp.319-328.
de Buanafina, M.M.O., (2009). Feruloylation in grasses: current and future perspectives. Mol Plant, 2(5), 861–872.
Debyser, W., Peumans, W., Van Damme, E., Delcour, J. (1999). Triticum aestivum xylanase inhibitor (TAXI), a new class of enzyme inhibitor affecting breadmaking performance. J Cereal Sci, 30, 39–43.
Delcour, J.A., Aman, P., Courtin, C.M., Hamaker, B.R., Verbeke, K. (2016). Prebiotics, fermentable dietary fiber, and health claims. Adv Nutr, 7(1), 1–4.
Dervilly-Pinel, G., Rimsten, L., Saulnier, L., Andersson, R., Åman, P. (2001). Water-extractable arabinoxylan from pearled flours of wheat, barley, rye and triticale. Evidence for the presence of ferulic acid dimers and their involvement in gel formation. J Cereal Sci, 34, 207–214.
Dobberstein, D., Bunzel, M. (2010). Separation and detection of cell wall-bound ferulic acid dehydrodimers and dehydrotrimers in cereals and other plant materials by reversed phase high-performance liquid chromatography with ultraviolet detection. J Agr Food Chem, 58, 8927–8935.
Döring, C., Jekle, M., Becker, T. (2016). Technological and analytical methods for arabinoxylan quantification from cereals. Crit Rev Food Sci, 56, 999–1011.
Dornez, E., Gebruers, K., Delcour, J.A., Courtin, C.M. (2009). Grain-associated xylanases: occurrence, variability, and implications for cereal processing. Trends Food Sci Tech, 20, 495–510.
Dynkowska, W.M., Cyran, M.R., Ceglińska, A. (2015). Soluble and cell wall-bound phenolic acids and ferulic acid dehydrodimers in rye flour and five bread model systems: insight into mechanisms of improved availability. J Sci Food Agric. 2015, 95(5):1103-15.
Ebringerová, A., Hromádková, Z., Petráková, E., Hricovíni, M. (1990). Structural features of a water-soluble l-arabino-d-xylan from rye bran. Carbohyd Res, 198, 57–66.
Fazary, A.E., Ju, Y.-H. (2007). Feruloyl esterases as biotechnological tools: current and future perspectives. Acta Bioct Bioph Sin, 39, 811–828.
Feng, G., Flanagan, B.M., Mikkelsen, D., Williams, B.A., Yu, W., Gilbert, R.G., Gidley, M.J. (2018). Mechanisms of utilization of arabinoxylans by a porcine faecal inoculums: competition and co-operation. Sci Rep 8, 4546. https://doi.org/10.1038/s41598-018-22818-4
Fengler, A.I., Marquardt, R.R. (1988). Water-soluble pentosans from rye: I. Isolation, partial purification, and characterization. Cereal Chem, 65, 291–297.
Fierens, E., Rombouts, S., Gebruers, K., Goesaert, H., Brijs, K., Beaugrand, J., Volckaert, G., Van Campenhout, S., Proost, P., Courtin, C.M., Delcour, J.A. (2007). TLXI, a novel type of xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family. Biochem J, 403(3), 583–591.
Figueroa-Espinoza, M.C., Rouau, X. (1998). Oxidative cross-linking of pentosans by a fungal laccase and horseradish peroxidase: mechanism of linkage between feruloylated arabinoxylans. Cereal Chem, 75, 259–265.
Fincher, G.B., Stone, B.A. (1986). Cell walls and their components in cereal grain technology. Adv Cereal Sci Tech, 8, 207–295.
Garcia-Conesa, M.T., Kroon, P.A., Ralph, J., Mellon, F.A., Colquhoun, I.J., Saulnier, L., Thibault, J.F., Williamson, G. (1999). A cinnamoyl esterase from Aspergillus niger can break plant cell wall cross-links without release of free diferulic acids. Eur J Biochem, 266, 644–652.
Gąsiorowski, H., (1994). Żyto: chemia i technologia, 1st ed. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa, PL.
Girhammar, U., Nair, B.M. (1992). Isolation, separation and characterization of water soluble non-starch polysaccharides from wheat and rye. Food Hydrocolloid, 6, 285–299.
Glitsø, L.V., Bach Knudsen, K.E. (1999). Milling of whole grain rye to obtain fractions with different dietary fibre characteristics. J Cereal Sci, 29, 89–97.
Goesaert, H., Gebruers, K., Courtin, C.M., Proost, P., Van Damme, J., Delcour, J.A. (2002). A family of ‘TAXI’-like endoxylanase inhibitors in rye. J Cereal Sci, 36, 177–185.
Grootaert, C., Delcour, J.A., Courtin, C.M., Broekaert, W.F., Verstraete, W., Van de Wiele, T. (2007). Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends Food Sci Tech, 18, 64–71.
Hansen, H.B., Andreasen, M.F., Nielsen, M.M., Larsen, L.M., Bach Knudsen, K.E., Meyer, A.S., Christiensen, L.P., Hansen, A. (2002) Changes in dietary fibre, phenolic acids and activity of endogenous enzymes during rye bread-making. Eur Food Res Technol, 214(1), 33-42.
Hansen, H.B., Rasmussen, C.V., Knudsen, K.E.B., Hansen, Å. (2003). Effects of genotype and harvest year on content and composition of dietaty fibre in rye (Secale cereale L.) grain. J Sci Food Agric, 83(1), 76-85.
Hansen, H.B., Møller, B., Andersen, S.B., Jørgensen, J.R., Hansen, Å. (2004). Grain characteristics, chemical composition, and functional properties of rye (Secale cereale L.) as influenced by genotype and harvest year. J Agric Food Chem, 83(1), 76-85.
Hatfield, R.D., Ralph, J., Grabber, J.H. (1999). Cell wall cross-linking by ferulates and diferulates in grasses. J Sci Food Agr, 79, 403–407.
Hatfield, R.D., Rancour, D.M., Marita, J.M. (2017). Grass cell walls: A story of cross-linking. Frontiers in Plant Science 7.
Heiniö, R.-L., Liukkonen, K.-H., Katina, K., Myllymäki, O., Poutanen, K. (2003). Milling fractionation of rye produces different sensory profiles of both flour and bread. Food Sci Technol – LEB, 6, 577–583.
Henningsson, Å., Björck, I., Nyman, M. (2001). Short-chain fatty acid formation at fermentation of indigestible carbohydrates. Food Nutr Res, 45, 165–168.
Ikegami, S., Tsuchihashi, N., Nagayama, S., Harada, H., Nishide, E., Innami, S. (1983). Effect of indigestible polysaccharides on function of digestion and absorption in rats. Jpn Soc Nutr Food Sci, 36, 163-168 (in Japanese).
Ikegami, S., Tsuchihashi, F., Harada, H., Tsuchihashi, N., Nishide, E., Innami, S. (1990). Effect of viscous indigestible polysaccharides on pancreatic-biliary secretion and digestive organs in rats. J Nutr, 120(4), 353-360.
Iiyama, K., Lam, T.B.T., Stone, B.A. (1994). Covalent cross-links in the cell wall. Plant Physiol. 104, 315–320.
Izydorczyk, M.S., Biliaderis, C.G., Bushuk, W. (1990). Oxidative gelation studies of water-soluble pentosans from wheat. J Cereal Sci, 11, 153–169.
Izydorczyk, M.S., Biliaderis, C.G. (1995). Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym, 4 28, 33–48.
Jelaca, S.L., Hlynka, I. (1972). Effect of wheat-flour pentosans in dough, gluten and bread. Cereal Chem, 489–495.
Jenkins, D.J.A., Marchie, A., Augustin, L.S.A., Ros, E., Kendall, C.W.C. (2004). Viscous dietary fibre and metabolic effects. Clin. Nutr. Suppl., Effects and benefits of fibre in clinical practice. Proceedings of a Consensus Conference. 1, 39–49.
Jordan, D.B. (2008). Beta-D-xylosidase from Selenomonas ruminantium: catalyzed reactions with natural and artificial substrates. Appl Biochem Biotechnol, 146, 137–149.
Juntunen, K.S., Laaksonen, D.E., Autio, K., Niskanen, L.K., Holst, J.J., Savolainen, K.E., Liukkonen, K.-H., Poutanen, K.S., Mykkänen, H.M. (2003). Structural differences between rye and wheat breads but not total fiber content may explain the lower postprandial insulin response to rye bread. Am J Clin Nutr, 78, 957–964.
Kim, S.K., D’Appolonia, B.L. (1977). Bread staling studies. III. Effect of pentosans on dough, bread, and bread staling rate. Cereal Chem, 2, 225–229.
Knudsen, K.E.B., Jensen, B.B., Andersen, J.O., Hansen, I. (1991). Gastrointestinal implications in pigs of wheat and oat fractions. 2. Microbial activity in the gastrointestinal tract. Brit J Nutr, 65, 233–248.
Knudsen, K.E.B., Lærke, H.N. (2010). Rye arabinoxylans: molecular structure, physicochemical properties and physiological effects in the gastrointestinal tract. Cereal Chem, 87, 353–362.
Kroon, P., Garcia-Conesa, M., Fillingham, I., Hazlewood, G., Williamson, G. (1999). Release of ferulic acid dehydrodimers from plant cell walls by feruloyl esterases. J Sci Food Agr, 79, 428–434.
Kroon, P.A., Williamson, G. (1999). Hydroxycinnamates in plants and food: current and future perspectives. J Sci Food Agr, 79, 355–361.
Lagaert, S., Pollet, A., Delcour, J.A., Lavigne, R., Courtin, C.M., Volckaert, G. (2010). Substrate specificity of three recombinant α-l-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides. Biochem Biophys Res Commun, 402, 644–650.
Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P.M., Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res, 42, D490-495.
Lu, Z.X., Walker, K.Z., Muir, J.G., O’Dea, K. (2004). Arabinoxylan fibre improves metabolic control in people with Type II diabetes. Eur J Clin Nutr, 58, 621–628.
Malunga, L.N., Beta, T. (2015). Antioxidant capacity of arabinoxylan oligosaccharide fractions prepared from wheat aleurone using Trichoderma viride or Neocallimastix patriciarum xylanase. Food Chem,167, 311–319.
Malunga, L.N., Izydorczyk, M., Beta, T. (2017). Effect of water-extractable arabinoxylans from wheat aleurone and bran on lipid peroxidation and factors influencing their antioxidant capacity. Bioactive Carbohydrates and Dietary Fibre, 10(1), 20-26.
McCleary, B.V., De Vries, J., Rader, J.I., Cohen, G., Prosky, L., Mugford, D.C., Champ, M., Okuma, K. (2011). Collaborative study report: Determination of insoluble, soluble and total dietary fiber (Codex Definition) by an enzymatic-gravimetric method and liquid chromatography. AACC International Report. Cereal Food World, 56(6), 238-247.
McCleary, B.V., McKie, V.A., Draga, A., Rooney, E., Mangan, D., Larkin, J. (2015). Hydrolysis of wheat flour arabinoxylan, acid-debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharides by β-xylanase, α-L-arabinofuranosidase and β-xylosidase. Carbohydr Res, 407, 79-96.
Mares, D.J., Stone, B.A. (1973). Studies on wheat endosperm I. Chemical composition and ultrastructure of the cell walls. Australian J Biol Sci, 26(4): 793-812.
Mendis, M., Simsek, S. (2014). Arabinoxylans and human health. Food Hydrocolloid, 42, 239–243.
Mendis, M., Leclerc, E., Simsek, S. (2016). Arabinoxylans, gut microbiota and immunity. Carbohyd Polym, 139, 159–166.
Moore, A.M., Martinez-Munoz, I., Hoseney, R.C. (1990). Factors affecting the oxidative gelation of wheat water-solubles’. Cereal Chem, 67, 81–84.
Muralikrishna, G., Rao, M.V.S.S.T.S. (2007). Cereal non-cellulosic polysaccharides: structure and function relationship - an overview. Crit Rev Food Sci, 47, 599–610.
Nilsson, M., Åman, P., Härkönen, H., Hallmans, G., Knudsen, K.E.B., Mazur, W., Adlercreutz, H. (1997). Nutrient and lignan content, dough properties and baking performance of rye samples used in Scandinavia. Acta Agric Scand Sect B — Soil Plant Science 47, 26–34.
Nyman, M., Siljeström, M., Pedersen, B., Knudsen, K.E.B., Asp, N.-G., Johansson, C.-G., Eggum, B.O. (1984). Dietary fiber content and composition in six cereals at different extraction rates. Cereal Chem, 61(1), 14-19.
Quideau, S., Deffieux, D., Douat-Casassus, C., Pouységu, L. (2011). Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed Engl, 50, 586–621.
Quideau, S., Ralph, J. (1997). Lignin–ferulate cross-links in grasses. Part4.1–3 Incorporation of 5–5-coupleddehydrodiferulate into synthetic lignin. J Chem Soc Perkin, 1 0, 2351–2358.
Ragaee, S.M., Wood, P.J., Wang, Q., Tosh, S., Brummer, Y. (2008). Extractability, structure and molecular weight of β-glucan from Canadian rye (Secale cereale L.) whole meal. Cereal Chem, 85, 283–288.
Rakha, A., Åman, P., Andersson, R. (2010). Characterisation of dietary fibre components in rye products. Food Chem, 119(3), 859-867.
Ralph, J., Quideau, S., Grabber, J.H., Hatfield, R.D. (1994). Identification and synthesis of new ferulic acid dehydrodimers present in grass cell walls. J Chem Soc Perkin, 1 3485–3498.
Ralph, J., Hatfield, R.D., Grabber, J.H., Jung, H.J.G., Quideau, S., Helm, R.F. (1998). Cell wall cross-linking in grasses by ferulates and diferulates. Lignin Lignan Biosynth, 697 (16), 209-236.
Rasmussen, C.V., Hansen, H.B., Hansen, Å., Larsen, L.M. (2001). pH-, temperature- and time-dependent activities of endogenous endo-β-D-xylanase, β-D-xylosidase and α-L-arabinofuranosidase in extracts from ungerminated rye (Secale cereale L.) grain. J Cereal Sci, 34(1), 49-60.
Roehring, K.L. (1988) The physiological effects of dietary fiber – a review. Food Hydrocolloid, 2(1), 1-18.
Rosén, L.A.H., Östman, E.M., Björck, I.M.E. (2011a) Effects of cereal breakfasts of postprandial glucose, appetite regulation and voluntary energy intake at a subsequent standardized lunch; focusing on rye products. Nutr J, 10:7.
Rosén, L.A.H., Östman, E.M., Shewry, P.R., Ward, J.L., Andersson, A.A.M., Piironen, V., Lampi, A.-M., Rakszegi, M., Bedö, Z., Björck, I.M.E. (2011b). Postprandial glycemia, insulinemia, and satiety responses in healthy subjects after whole grain rye bread made form different rye varieties.1. J Agric Food Chem, 59(22), 12139–12148.
Rybka, K., Sitarski, J., Raczyńska-Bojanowska, K. (1993). Ferulic acid in rye and wheat grain and grain dietary fiber. Cereal Chem, 70, 55–59.
Saastamoinen, M., Plaami, S., Kumpulainenn, J. (1989). Pentosan and β-glucan content of Finnish winter rye varieties as compared with rye of six other countries. J Cereal Sci, 10(3), 199-207.
Saha, B.C. (2000). α-l-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol Adv, 18, 403–423.
Salyers, A.A., Vercellotti, J.R., West, S.E.H., Wilkins, T.D. (1977). Fermentation of mucin and plant polysaccharides by strain of Bacterioides from the human colon. App Environ Microbiol, 33(2), 319–322.
Saulnier, L., Crépeau, M.-J., Lahaye, M., Thibault, J.-F., Garcia-Conesa, M.T., Kroon, P.A., Williamson, G. (1999). Isolation and structural determination of two 5,5′-diferuloyl oligosaccharides indicate that maize heteroxylans are covalently cross-linked by oxidatively coupled ferulates. Carbohyd Res, 320, 82–92.
Selvendran, R.R., Stevens B.J., Du Pont M.S. (1987). Dietary fiber: chemistry, analysis and properties. Adv Food Res, 31, 117-192.
Serpen, A., Capuano, E., Fogliano, V., Gökmen, V. (2007). A new procedure to measure the antioxidant activity of insoluble food components. J Agric Food Chem, 55(19), 7676–7681.
Slavin, J.L. (2000). Mechanisms for the impact of whole grain foods on cancer risk. J Am Coll Nutr, 19, 300S-307S.
Slavin, J. (2004). Whole grains and human health. Nutr Res Rev 17, 99–110.
Slavin, J. (2013). Fiber and prebiotics: mechanisms and health benefits. Nutrients 5, 1417–1435.
Stephen, A.M., Cummings, J.H. (1980). Mechanism of action of dietary fibre in the human colon. Nature, 284(5753), 283-284.
Szwajgier, D., Targoński, Z. (2006). Charakterystyka enzymów pochodzenia mikrobiologicznego biorących udział w degradacji arabinoksylanów i ich rola w pozyskiwaniu kwasu ferulowego z wysłodzin piwowarskich. Żywność Nauka. Technologia. Jakość, 1, 5–20.
Topping, D.L. (1991). Soluble fiber polysaccharides: effects on plasma cholesterol and colonic fermentation. Nutr Rev, 49, 195–203.
Tungland, B.C., Meyer, D. (2002). Nondigestible oligo- and polysaccharides (dietary fiber): their physiology and role in human health and food. Comp Rev Food Sci F, 1(3), 90-109.
Vidmantiene, D., Juodeikiene, G. (2010). Endoxylanase and endoxylanase inhibition activities in the grain of winter rye cultivar. Zemdirb-Agric, 97, 3–10.
Vinkx, C.J.A. Nieuwenhove, C.G. van, Delcour, J.A. (1991). Physicochemical and functional properties of rye nonstarch polysaccharides. III. Oxidative gelation of a fraction containing water-soluble pentosans and proteins. Cereal Chem, 68, 617-622.
Vinkx, C.J.A., Delcour, J.A. (1996). Rye (Secale cereale L.) arabinoxylans: a critical review. J Cereal Sci, 24, 1–14.
Waldron, K.W., Parr, A.J., Ng, A., Ralph, J. (1996). Cell wall esterified phenolic dimers: identification and quantification by reverse phase high performance liquid chromatography and diode array detection. Phytochem. Anal. U. K. 7, 305–312.
Wong, K.K., Tan, L.U., Saddler, J.N. (1988). Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev, 52(3), 305–317.
Zamaratskaia, G., Johansson, D.P., Junqueira, M.A., Deissler, L., Langton, M., Hellström, P.M., Landberg, R. (2017). Impact of sourdough fermentation on appetite and postprandial metabolic responses - a randomised cross-over trial with whole grain rye crispbread. Brit J Nutr 118, 686–697.
Download

Published : 2020-12-07


Dynkowska, W. (2020). Rye (Secale cereale L.) arabinoxylans: molecular structure, physicochemicals properties and the resulting pro-health effects. Plant Breeding and Seed Science, 81, 19-38. https://doi.org/10.37317/pbss-2020-0002

Wioletta Dynkowska  w.dynkowska@ihar.edu.pl
  Poland