Cloning and heterologous expression of candidate DON-inactivating UDP-glucosyltranferases from rice and wheat in yeast.

Wolfgang Schweiger

wolfgang.schweiger@boku.ac.at
Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences, A-1190 Vienna, Austria. (Austria)

Barbara Steiner


Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Applied Life Sciences, A-3430 Tulln, Austria. (Austria)

Apinun Limmongkon


Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Applied Life Sciences, A-3430 Tulln, Austria. (Austria)

Kurt Brunner


Institute of Chemical Engineering, Vienna University of Technology, A-1060 Vienna, Austria. (Austria)

Marc Lemmens


Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Applied Life Sciences, A-3430 Tulln, Austria. (Austria)

Franz Berthiller


Center for Analytical Chemistry, Depart- ment of Agrobiotechnology, University of Natural Resources and Applied Life Sciences, A-3430 Tulln, Austria. (Austria)

Hermann Bürstmayr


Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Applied Life Sciences, A-3430 Tulln, Austria. (Austria)

Gerhard Adam


Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences, A-1190 Vienna, Austria. (Austria)


Abstrakt

Fusarium graminearum and related species causing Fusarium head blight of cereals and ear rot of maize produce the trichothecene toxin and virulence factor deoxynivalenol (DON). Plants can detoxify DON to a variable extent into deoxynivalenol-3-O-glucoside (D3G). We have previously reported the DON inactivat- ing glucosyltransferase (UGT) AtUGT73C5 from Arabidopsis thaliana (Poppenberger et al, 2003). Our goal was to identify UGT genes from monocotyledonous crop plants with this enzymatic activity. The two selected rice candidate genes with the highest sequence similarity with AtUGT73C5 were expressed in a toxin sensitive yeast strain but failed to protect against DON. A full length cDNA clone corresponding to a transcript derived fragment (TDF108) from wheat, which was reported to be specifically expressed in wheat genotypes contain- ing the quantitative trait locus Qfhs.ndsu-3BS for Fusarium spreading resistance (Steiner et al, 2009) was reconstructed. Only cDNAs with a few sequence deviations from TF108 could be cloned. However, toxin sensitive yeast strains expressing this wheat UGT cDNA did not show a resistant phenotype. The main diffi- culty in generating full length cDNAs for functional validation by heterologous expression in yeast is the enormous number of the UGT superfamily members in plants, with 107 UGT genes plus some pseudogenes in Arabidopsis thaliana and about 150 putative UGT genes in grasses. We conclude that neither sequence simi- larity nor inducibility are good predictors of substrate specificity.

 


Słowa kluczowe:

deoxynivalenol, Fusarium graminearum, phase II detoxification, rice, UDP-glucosyltranferase, wheat

Berthiller F., Dall'asta C., Corradini R., Marchelli R., Sulyok M., Krska R., Adam G., Schuhmacher R. 2009. Occurrence of deoxynivalenol and its 3-beta-D-glucoside in wheat and maize. Food Addit. Contam. 26:507-511.
Google Scholar

Boddu J., Cho S., Muehlbauer G.J. 2007. Transcriptome analysis of trichothecene-induced gene expression in barley. Mol. Plant-Microbe Interact. 20:1364-1375.
Google Scholar

Desmond O.J., Manners J.M., Schenk P.M., Maclean D.J., Kazan K. 2008. Gene expression analysis of the wheat response to infection by Fusarium pseudograminearum. Physiol. Mol. Plant Path. 73:40–47.
Google Scholar

Lemmens M., Scholz U., Berthiller F., Dall'Asta C., Koutnik A., Schuhmacher R., Adam G., Buerstmayr H., Mesterházy A., Krska R., Ruckenbauer P. 2005. The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol. Plant- Microbe Interact.18:1318-1324.
Google Scholar

Lulin M., Yi S., Aizhong C., Zengjun Q., Liping X., Peidu C., Dajun L., Xiu-E W. 2009. Molecular cloning and characterization of an up-regulated UDP-glucosyltransferase gene induced by DON from Triticum aestivum L. cv. Wangshuibai. Mol. Biol. Rep. 37:785-795.
Google Scholar

Mitterbauer R., Karl T., Adam G. 2002. Saccharomyces cerevisiae URH1 (encoding uridine-cytidine N- ribohydrolase): functional complementation by a nucleoside hydrolase from a protozoan parasite and by a mammalian uridine phosphorylase. Appl. Environ. Microbiol. 68:1336-1343.
Google Scholar

Poppenberger B., Berthiller F., Lucyshyn D., Sieberer T., Schuhmacher R., Krska R., Kuchler K., Glössl J., Luschnig C., Adam G. 2003. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP- glucosyltransferase from Arabidopsis thaliana. J. Biol. Chem. 278:47905-47914.
Google Scholar

Schweiger W., Boddu J., Shin S., Poppenberger B., Berthiller F., Lemmens M., Muehlbauer G.J., Adam G. 2010. Validation of a candidate deoxynivalenol-inactivating UDP-glucosyltransferase from barley by heterologous expression in yeast. Mol. Plant. Microbe Interact. 23:977-986.
Google Scholar

Steiner B., Kurz H., Lemmens M., Buerstmayr H. 2009. Differential gene expression of related wheat lines with contrasting levels of head blight resistance after Fusarium graminearum inoculation. Theor. Appl. Genet. 118:753-764.
Google Scholar


Opublikowane
2011-12-20

Cited By / Share

Schweiger, W. ., Steiner, B. ., Limmongkon, A. ., Brunner, K. ., Lemmens, M. ., Berthiller, F. ., … Adam, G. . (2011). Cloning and heterologous expression of candidate DON-inactivating UDP-glucosyltranferases from rice and wheat in yeast. Plant Breeding and Seed Science, 64, 105–112. Pobrano z http://ojs.ihar.edu.pl/index.php/pbss/article/view/347

Autorzy

Wolfgang Schweiger 
wolfgang.schweiger@boku.ac.at
Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences, A-1190 Vienna, Austria. Austria

Autorzy

Barbara Steiner 

Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Applied Life Sciences, A-3430 Tulln, Austria. Austria

Autorzy

Apinun Limmongkon 

Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Applied Life Sciences, A-3430 Tulln, Austria. Austria

Autorzy

Kurt Brunner 

Institute of Chemical Engineering, Vienna University of Technology, A-1060 Vienna, Austria. Austria

Autorzy

Marc Lemmens 

Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Applied Life Sciences, A-3430 Tulln, Austria. Austria

Autorzy

Franz Berthiller 

Center for Analytical Chemistry, Depart- ment of Agrobiotechnology, University of Natural Resources and Applied Life Sciences, A-3430 Tulln, Austria. Austria

Autorzy

Hermann Bürstmayr 

Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, University of Natural Resources and Applied Life Sciences, A-3430 Tulln, Austria. Austria

Autorzy

Gerhard Adam 

Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences, A-1190 Vienna, Austria. Austria

Statystyki

Abstract views: 92
PDF downloads: 42


Licencja

Wszystkie artykuły publikowane w formie elektronicznej na mocy licencji CC BY-SA 4.0, w otwartym dostępie (open access), pełna treść licencji jest dostępna pod adresem: https://creativecommons.org/licenses/by-sa/4.0/legalcode.pl .