SEED GERMINATION PLASTICITY OF TWO ENDANGERED SPECIES OF FERULA IN THE CONTEXT OF CLIMATE CHANGE

Parvin Salehi Shanjani

psalehi1@gmail.com
Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization, P.O. Box 13185-116, Tehran, Iran (Iran, Islamic Republic of)

Amir Mousavi


National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran (Iran, Islamic Republic of)

Faeze Rasoulzadeh Farsad


Islamic Azad Universities, Tehran, Iran (Iran, Islamic Republic of)

Abstrakt

Ferula assa-foetida and F. gummosa, Apiaceae, are important endemic and endangered medicinal plants. Survival of the species is threatened by climate change, overexploiting (as source of oleo-gum resin and for-age) and lack of organized cultivation. Cultivation of these valuable medicinal plants is restricted by insuffi-cient domestication knowledge. Germination characteristics of different populations of Ferula taxa were studied with the aim of describing and comparing their responses to continuous cold stratification condition. Germination cues for the species were complex, with dormancy mechanisms present to restrict germination until cold stratification are fulfilled. Results indicated that a period of 4 weeks of stratification is sufficient for germination of F. assa-foetida, but optimal germination of F. gummosa require stratification for periods of 8 weeks. Both species were able to germinate at very low temperatures (4°C). Within-taxon differences in dor-mancy breaking and seedling emergence may interpret as local adaptations. The continued regeneration and propagation of the species in the wild will depend on the temperature and moisture status of the soil during winter and the maintenance of conditions suitable for stratification for an appropriate length of time.


Słowa kluczowe:

Dormancy, global warming, Iran, highland, local adaptation

Abdul Baki A. A., Anderson J. D. 1973. Vigor determinations in soybean seed multiple criteria. Crop Sci. 13: 630-633.
Google Scholar

Aghajanlou F., Ghorbani A. 2016. A study on the effects of some environmental factors on the distribution of Ferula gummosa and Ferula ovina in Shilander mountainous rangelands of Zanjan. Iran J. Rangeland. 9: 407-419.
Google Scholar

Aghajanlou F., Ghorbani A., Zare Chahoki M. A., Hashemi Majd K., Mostafazadeh R. 2018. The impact of environmental factors on distribution of Ferula ovina (Boiss.) Boiss. in northwest Iran. Appl. Ecol. Envi-ron. Res. 16: 977-992.
Google Scholar

Amiri M. S., Joharchi M. R. 2016. Ethnobotanical knowledge of Apiaceae family in Iran: A review. Avicenna J. Phytomed. 6: 621-635.
Google Scholar

Amiri M. J., Eslamian S. 2010. Investigation of Climate Change in Iran. J. Environ. Sci. Technol. 3: 208-216. doi:10.3923/jest.2010.208.216
Google Scholar

Amooaghaie R. 2009. The Effect Mechanism of Moist-Chilling and GA on Seed Germination and Subsequent Seedling Growth of Ferula ovina Boiss. Open Plant Sci. J. 3: 22-28.
Google Scholar

Andersson L., Milberg P. 1998. Variation in seed dormancy among mother plants, populations and years of seed collection. Seed Sci. Res. 8: 29–38.
Google Scholar

Baskin C. C., Baskin J. M. 1991. Non-deep complex morphophysiological dormancy in seeds of Osmorhiza claytonii (Apiaceae). Amer. J. Bot. 78: 588-593.
Google Scholar

Baskin C., Baskin J. M. 2014. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego: Elsevier/Academic Press.
Google Scholar

Baskin C. C., Baskin J. M., Chester E. W. 1999. Seed dormancy in the wetland winter annual Ptilianium nuttalli (Apiaceae). Wetland. 19: 23-29.
Google Scholar

Baskin C. C., Chester E. W., Baskin J. M. 1992. Deep complex morphophysiological dormancy in seeds of Thaspium pinnatifidum (Apiaceae). Int. J. Plant Sci. 153: 565–571.
Google Scholar

Baskin C. C., Meyer S. E., Baskin J. M. 1995. Two types of morphophysiological dormancy in seeds of two genera (Osmorhiza and Erythronium) with an arctotertiary distribution pattern. Amer. J. Bot. 82: 293–298.
Google Scholar

Baskin C. C., Milberg P., Andersson L., Baskin J. M. 2000. Deep complex morphophysiological dormancy in seeds of Anthriscus sylvestris (Apiaceae). Flora. 195: 245–251.
Google Scholar

Cochrane A., Daws M. I., Hay F. R. 2011. Seed-based approach for identifying flora at risk from climate warming. Austral. Ecol. 36: 923–935.
Google Scholar

Fasih M., Tavakkol Afshari R. 2018. The morphophysiological dormancy of Ferula ovina seeds is alleviated by low temperature and hydrogen peroxide. Seed Sci. Res. 28: 52 –62. doi:10.1017/S0960258517000356.
Google Scholar

Forbis T. A., Diggle P. K. 2001. Subnivean embryo development in the alpine herb Caltha leptosepala (Ranunculaceae). Can. J. Bot. 79: 635–642.
Google Scholar

Ghasemi A. R. 2015. Changes and trends in maximum, minimum and mean temperature series in Iran. Atmos. Sci. Lett. 16: 366–372.
Google Scholar

Giménez-Benavides L., Escudero A., Pérez-Garcia F. 2005. Seed germination of high mountain Mediterrane-an species: altitudinal, interpopulation and interannual variability. Ecol. Res. 20: 433–444.
Google Scholar

Golmohammadi F., Ghoreyshi S. E., Parvaneh H. 2016. Ferula assa-foetida as a main medical plant in east of Iran (harvesting, main characteristics and economical importance). Int. J. Farm. Alli. Sci. 5-6: 453-475.
Google Scholar

Haasis F. W., Thrupp A. C. 1931. Temperature relations of lodgepole pine seed germination. Ecology. 12: 728-744.
Google Scholar

Hennessy K., Fitzharris B., Bates B. C., Harvey N., Howden S. M., Hughes L., Salinger J., Warrick, R. 2007. Australia and New Zealand. In: M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, C. E. Hanson (Eds.) Climate change: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, (pp. 507–540). Cam-bridge: Cambridge University Press.
Google Scholar

Hoyle G. L., Daws M. I., Steadman K. J., Adkins S. W. 2008. Mimicking a semi-arid tropical environment achieves dormancy alleviation for seeds of Australian native Goodeniaceae and Asteraceae. Ann. Bot. 101: 701–708.
Google Scholar

Hughes L. 2003. Climate change and Australia: trends, projections and impacts. Aust. Ecol. 28: 423–443.
Google Scholar

Ivan A. R. 2007. Ferula assafoetida. Med. Plant World. 3: 223-234.
Google Scholar

Kaye T. N. 1997. Seed dormancy in high elevation plants: implications for ecology and restoration. In: T. N. Kaye, A. Liston, R. M. Love, D. L. Luoma, R. J. Meinke, M. V. W ilson (Eds.) Conservation and man-agement of native plants and fungi, (pp. 115–120). Eugene, OR: Native Plant Society of Oregon.
Google Scholar

Lauer E. 1953. Über die Keimtemperatur von Ackerun-kräutern und deren Einfluß auf die Zusammensetzung von Unkrautgesellschaften. Flora. 140: 551-595.
Google Scholar

Laurance W. F., Dell B., Turton S. M., Lawes M. J., Hutley L. B., McCallum H., Dale P., Bird M., Hardy G., Prideaux G., Gawne B., McMahon C. R., Yu R., Hero J. M., Schwarzkopf L., Krockenberger A., Doug-las M., Silvester E., Mahony M., Vella K., Saikia U., Wahren C. H., Xu Z., Smith B., Cocklin C. 2011. The 10 Australian ecosystems most vulnerable to tipping points. Biol. Conserv. 144: 1472–1480.
Google Scholar

Liu K., Baskin J. M., Baskin C. C., Bu H., Liu M., Liu W., Du G. 2011. Effect of storage conditions on germi-nation of seeds of 489 species from high elevation grasslands of the eastern Tibet Plateau and some implications for climate change. Amer. J. Bot. 98: 12–19.
Google Scholar

Mahmoudi J., Mahdavi S. Kh., Mansouri B. 2015. Examination of effect of topography (elevation and aspect) on distribution of medicinal plant Ferula gummosa case study: rangelands of Khombi and Saraii Germeh city in Khorasan Shomali Province. Bull. Environ. Pharmacol. Life Sci. 4: 108-113.
Google Scholar

Mazangi A., Ejtehadi H., Mirshamsi O., Ghassemzadeh F., Hosseinian Yousefkhani S. S. 2016. Effects of climate change on the distribution of endemic Ferula xylorhachis Rech.f. (Apiaceae: Scandiceae) in Iran: Predictions from ecological niche models. Russ. J. Ecol. 47: 349-354, doi:10.1134/s1067413616040123.
Google Scholar

McNaughton S. J. 1966. Ecotype functions in the Typha community-type. Ecol. Monographs. 36: 297–325.
Google Scholar

Meyer S. E., Kitchen S. G., Carlson S. L. 1995. Seed germination timing patterns in intermountain Penstemon (Scrophulariaceae). Amer. J. Bot. 82: 377–389.
Google Scholar

Milbau A., Graae B. J., Shevtsova A., Nijs I. 2009. Effects of a warmer climate on seed germination in the subarctic. Ann. Bot. 104: 287–296.
Google Scholar

Mirzaei Mossivand A., Ghorbani A., Zare Chahoki M. A., Keivan Behjou F., Sefidi K. 2018. Compare the environment factors affecting the distribution of species Prangos ferulacea and Prangos pabularia in rangelands of Ardabil Province. Iran. J. Range Desert Res. 25: 200-210.
Google Scholar

Mondoni A., Probert R., Rossi G., Hay F., Bonomi C. 2008. Habitat-correlated seed germination behavior in populations of wood anemone (Anemone nemerosa L.) from northern Italy. Seed Sci. Res. 18: 213–222.
Google Scholar

Mondoni A., Probert R. J., Rossi G., Vegini E., Hay F. R. 2011. Seeds of alpine plants are short lived: impli-cations for long-term conservation. Ann. Bot. 107: 171–179.
Google Scholar

Mozaffarian V. 1996. A dictionary of Iranian plant names: Latin, English, Persian: Farhang Mo'aser, 505p.
Google Scholar

Nadjafi F., Bannayan M., Tabrizi L., Rastgoo M. 2006. Seed germination and dormancy breaking techniques for Ferula gummosa and Teucrium polium. J. Arid Environ. 64: 542–547.
Google Scholar

Nicholls N. 2005. Climate variability, climate change and the Australian snow season. Austral. Meteorol. Magazne. 54: 177–185.
Google Scholar

Noroozi J., Akhani H., Breckle S. W. 2013. Biodiversity and phytogeography of the alpine flora of Iran. Bio-divers. Conserv. doi:10.1007/s10531-007-9246-7.
Google Scholar

Noroozi J., Dietmar M., Franz E. 2015. Diversity, distribution, ecology and description rates of alpine endem-ic plant species from Iranian mountains. Alp. Bot. 126. doi:10.1007/s00035-015-0160-4.
Google Scholar

Nowruzian A., Masoumian M., Ebrahimi M., Bakhshi Khaniki G. 2016. Effect of Breaking Dormancy Treat-ments on Germination of Ferula assafoetida L. Iran. J. Seed Res. 3: 155-169, doi:10.29252/yujs.3.2.155.
Google Scholar

Ooi M. K. J., Auld T. D., Denham A. J. 2009. Climate change and bet-hedging: interactions between in-creased soil temperatures and seed bank persistence. Glob. Change Biol. 15: 2375–2386.
Google Scholar

Ooi M. K. J. 2012. Seed bank persistence and climate change. Seed Sci. Res. 22: S53–S60.
Google Scholar

Otroshi M., Zamani A., Khodambashi M., Ebrahimi M., Struik P. C. 2009. Effect of exogenous hormones and chilling on dormancy breaking of seeds of asafoetida (Ferula assafoetida L.). J. Seed Sci. 21: 9‒15.
Google Scholar

Phartyal S. S., Kondo T., Baskin J. M., Baskin C. C. 2009. Temperature requirements differ for the two stages of seed dormancy break in Aegopodium podagraria (Apiaceae), a species with deep complex morpho-physiological dormancy. Amer. J. Bot. 96: 1086–1095.
Google Scholar

Podrug A., Gadžo D., Muminović Š., Grahić J., Srebrović E., Đikić M. 2014. Dormancy and germination of johnsongrass seed (Sorghum halepense L.). Herbologia. 14(2):1-10, doi: 10.5644/Herb.14.2.01.
Google Scholar

Rohlf F. 2002. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System (2.1 Ed.), Department of Ecology and Evolution, State University of NY, Stony Brook.
Google Scholar

Rosenzweig C., Casassa G., Karoly D. J., Imeson A., Liu L., Menzel A., Rawlins S., Root T. L., Seguin B., Tryjanowski P. 2007. Assessment of observed changes and responses in natural and managed systems. In: M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, C. E. Hanson, (Eds.), Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. (pp. 79–131). Cambridge: Cam-bridge University Press,.
Google Scholar

Rouhi H. R., Rahmati H., Saman M., Shahbodaghloo A. R., Karimi F. A., Moosavi S. A., Rezaei M. E., Karimi F. 2012. The effects of different treatments on dormancy-breaking of Galbanum seeds (Ferula gummosa Boiss). Int. J. Agric. Sci. 27: 598–604.
Google Scholar

Safaian N. and Shokri M. 1993. Botanical and ecological study of species of the genus Ferula (Medicinal Plants) in Mazandaran province. Acta Hort. 333: 159-167.
Google Scholar

SAS Institute. 2001. SAS InstituteSAS⁄Stat user's guide, Version 9.1 SAS Institute, Cary, NC, USA.
Google Scholar

Scholten M., Donahue J., Shaw N. L., Serpe M. D. 2009. Environmental regulation of dormancy loss in seeds of Lomatium dissectum (Apiaceae). Ann. Bot. 103: 1091–1101.
Google Scholar

Shimono Y., Kudo G. 2005. Comparisons of germination traits of alpine plants between fellfield and snowbed habitats. Ecol. Res. 20: 189–197.
Google Scholar

Shirvani A., Moradi-Choghamarani F., Zand-Parsa S., Moosavi A. A. 2018. Analysis of long-term trends in air and soil temperature in a semi-arid region in Iran. Environ Earth Sci. 77: 173-177.
Google Scholar

Skordilis A., Thanos C. 1995. Seed stratification and germination strategy in the Mediterranean pines Pinus brutia and P. halepensis. Seed Sci. Res. 5: 151–160.
Google Scholar

Sommerville K. D., Martyn A. J., Offord C. A. 2013. Can seed characteristics or species distribution be used to predict the stratification requirements of herbs in the Australian Alps? Bot. J. Linn. Soc. 172: 187–204.
Google Scholar

Tabari H., Talaee P. H. 2011. Analysis of trends in temperature data in arid and semi-arid regions of Iran. Glob. Planet Change. 79: 1–10.
Google Scholar

Vandelook F., Bolle N., Van Assche J. A. 2008. Seasonal dormancy cycles in the biennial Torilis japonica (Apiaceae), a species with morphophysiological dormancy. Seed Sci. Res. 18: 161–171.
Google Scholar

Vandelook F., Bolle N., Van Assche J. A. 2009. Morphological and physiological dormancy in seeds of Ae-gopodium podagraria (Apiaceae) broken successively during cold stratification. Seed Sci. Res. 19: 115–123.
Google Scholar

Venn S. E. 2007. Plant recruitment across alpine summits in south-eastern Australia. DPhil Thesis, LaTrobe University.
Google Scholar

Walck J. L., Hidayati S. N., Dixon K. W., Thompson K., Poschlod P. 2011. Climate change and plant regener-ation from seed. Glob. Change Biol. 17: 2145–2161.
Google Scholar

Walck J. L., Hidayati S. N., Okagami N. 2002. Seed germination ecophysiology of the Asian species Osmo-rhiza aristata (Apiaceae): comparison with its North American congeners and implications for evolution of types of dormancy. Amer. J. Bot. 89: 829–835.
Google Scholar

Walck J. L., Hidayati S. N. 2004. Germination ecophysiology of the western North American species Osmo-rhiza depauperata (Apiaceae): implications of preadaptation and phylogenetic niche conservatism in seed dormancy evolution. Seed Sci. Res. 14: 387–394.
Google Scholar

Wardlaw I. F., Moncur M. W., Totterdell C. J. 1989. The growth and development of Caltha introloba F. Muell. II. The regulation of germination, growth and photosynthesis by temperature. Austral. J. Bot. 37: 291–303.
Google Scholar

Yaqoob U., Nawchoo I. A. 2015. Conservation and cultivation of Ferula jaeschkeana Vatke: a species with deep complex morphophysiological dormancy. Proceedings of the National Academy of Sciences, India Section B: Biological, 1–11.
Google Scholar


Opublikowane
2020-11-27

Cited By / Share

Shanjani, P. S. ., Mousavi, A., & Farsad, F. R. (2020). SEED GERMINATION PLASTICITY OF TWO ENDANGERED SPECIES OF FERULA IN THE CONTEXT OF CLIMATE CHANGE. Plant Breeding and Seed Science, 80, 13–33. https://doi.org/10.37317/pbss-2019-0009

Autorzy

Parvin Salehi Shanjani 
psalehi1@gmail.com
Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization, P.O. Box 13185-116, Tehran, Iran Iran, Islamic Republic of

Autorzy

Amir Mousavi 

National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran Iran, Islamic Republic of

Autorzy

Faeze Rasoulzadeh Farsad 

Islamic Azad Universities, Tehran, Iran Iran, Islamic Republic of

Statystyki

Abstract views: 264
PDF downloads: 112


Licencja

Wszystkie artykuły publikowane w formie elektronicznej na mocy licencji CC BY-SA 4.0, w otwartym dostępie (open access), pełna treść licencji jest dostępna pod adresem: https://creativecommons.org/licenses/by-sa/4.0/legalcode.pl .