Septorioza plew – choroba pszenicy i pszenżyta powodowana przez grzyb Parastagonospora nodorum

Lidia Kowalska


(Poland)
https://orcid.org/0000-0002-1285-1182

Tomasz Góral

t.goral@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy (Poland)
https://orcid.org/0000-0001-9130-6109

Abstrakt

Parastagonospora nodorum to nekrotroficzny patogen grzybowy o wąskim zasięgu żywiciela, który powoduje septoriozę plew zbóż, głównie pszenicy i pszenżyta. Infekcje wywołane przez P. nodorum powszechnie obserwowane są na siewkach, jednak mają największy wpływ na rośliny dorosłe. Patogen redukuje powierzchnię asymilacyjną zielonych organów roślin, tym samym ogranicza wzrost i plonowanie powodując 31%-50% strat plonów. Infekcje wywołane przez P. nodorum mogą występować również na kłosie, co bezpośrednio wpływa na jakość ziarna.

Doniesienia literaturowe o wysokim potencjale ewolucyjnym P. nodorum i jego odporności na fungicydy, stosowanie wysokich dawek azotu oraz uprawy uproszczonej, a także zmiany klimatu i środowiska rolniczego potwierdzają pilną potrzebę wprowadzenia odporności genetycznej roślin na septoriozę plew w wielu regionach uprawy pszenicy i pszenżyta.

W tym przeglądzie podsumowano aktualne informacje na temat struktury populacji P. nodorum oraz jego specjalizacji pasożytniczej. Następnie dokonano przeglądu postępów w genetyce odporności żywiciela na patogen oraz nekrotroficzne efektory białkowe, wytwarzane przez P. nodorum podczas infekcji. Przedstawiono również dostępne narzędzia w hodowli roślin, które przyczyniają się do ograniczenia septoriozy plew.


Słowa kluczowe:

septorioza plew, efektor białkowy, pszenica, pszenżyto, odporność

Abeysekara, N.S., Faris, J.D., Chao, S., McClean, P.E., Friesen, T.L., 2012. Whole-genome QTL analysis of Stagonospora nodorum blotch resistance and validation of the SnTox4–Snn4 interaction in hexaploid wheat. Phytopathology 102(1), 94-104. https://doi.org/10.1094/PHYTO-02-11-0040
Google Scholar

Abeysekara, N.S., Friesen, T.L., Keller, B., Faris, J.D. 2009. Identification and characterization of a novel host-toxin interaction in the wheat-Stagonospora nodorum pathosystem. Theor. Appl. Genet. 120, 117–126. https://doi.org/10.1007/s00122-009-1163-6
Google Scholar

Adhikari, T.B., Jackson, E.W., Gurung, S., Hansen, J.M., Bonman, J.M., 2011. Association mapping of quantitative resistance to Phaeosphaeria nodorum in spring wheat landraces from the USDA National Small Grains Collection. Phytopathology 101(11), 1301-1310. https://doi.org/10.1094/PHYTO-03-11-0076
Google Scholar

Aguilar, V., Stamp, P., Winzeler, M., Winzeler, H., Schachermayr, G., Keller, B., Zanette S., Messmer, M.M., 2005. Inheritance of field resistance to Stagonospora nodorum leaf and glume blotch and correlations with other morphological traits in hexaploid wheat (Triticum aestivum L.) Theor. Appl. Genet. 111, 325-336. https://doi.org/10.1007/s00122-005-2025-5
Google Scholar

Arseniuk, E., 2019. Recent developments in triticale breeding research and production-an overview. Ekin Journal of Crop Breeding and Genetics, 5(2), 68-73.
Google Scholar

Arseniuk, E., 2021. Toksyny białkowe Parastagonospora nodorum i ich związek z patogenicznością oraz odpornością pszenżyta i pszenicy na septoriozę liści i plew (SNB). Biul. IHAR 295, 55–62. https://doi.org/10.37317/biul-2021-00PB
Google Scholar

Arseniuk, E., Czembor, P.C., Czaplicki, A., Song, Q., Cregan, P.B., Hoffman, D.L., Ueng, P.P., 2004. QTL controlling partial resistance to Stagonospora nodorum leaf blotch in winter wheat cultivar Alba. Euphytica 137(2), 225-231. https://doi.org/10.1023/B:EUPH.0000041589.47544.de
Google Scholar

Arseniuk, E., Goral, T., Scharen, A.L., 1998. Seasonal patterns of spore dispersal of Phaeosphaeria spp. And Stagonospora spp. Plant Dis. 82, 187–194. https://doi.org/10.1094/PDIS.1998.82.2.187
Google Scholar

Arseniuk, E., Walczewski, J., 2014. Effect of dihaploid technology on resistance of winter wheat and winter triticale to Stagonospora nodorum blotch. W: Behl R.K., Arseniuk E. (red) Proceedings of the international conference on biotechnology and plant breeding perspectives towards food security and sustainability. IHAR-PIB Radzikow, Poland. Agrobios (International), New Delhi, pp 32-329
Google Scholar

Ballini. E., Tavaud. M., Ducasse. A., Sanchez. D., Paux. E., Kitt. J., Charmet. G., Audigeos. D., Roumet. P., David. J., Morel, J. B., 2020. Genome wide association mapping for resistance to multiple fungal pathogens in a panel issued from a broad composite cross-population of tetraploid wheat Triticum turgidum. Euphytica 216(6), 1-17. https://doi.org/10.1007/s10681-020-02631-9
Google Scholar

Bartosiak, S.F., Arseniuk, E., Szechyńska-Hebda, M., Bartosiak, E., 2021. Monitoring of natural occurrence and severity of leaf and glume blotch diseases of winter wheat and winter triticale incited by necrotrophic fungi Parastagonospora spp. and Zymoseptoria tritici. Agronomy 11, 967. https://doi.org/10.3390/agronomy11050967
Google Scholar

Bathgate, J.A., Loughman, R., 2001. Ascospores are a source of inoculum of Phaeosphaeria nodorum, P. avenaria f. sp. avenaria and Mycosphaerella graminicola in Western Australia. Australas. Plant Pathol. 30, 317–322. https://doi.org/10.1071/AP01043
Google Scholar

Bergstrom, G.C., 2010. Stagonospora nodorum blotch and Stagonospora avenae blotch. Compendium of Wheat Diseases and Pests, 75-77.
Google Scholar

Bhathal, J.S., Loughman, R., Speijers J., 2003. Yield reduction in wheat in relation to leaf disease from yellow (tan) spot and Septoria nodorum blotch. Eur. J. Plant Pathol. 109, 435-443. https://doi.org/10.1023/A:1024277420773
Google Scholar

Blixt, E., Djurle, A., Yuen, J., Olson, Å., 2009. Fungicide sensitivity in Swedish isolates of Phaeosphaeria nodorum. Plant Pathol. 58, 655–664. https://doi.org/10.1111/j.1365-3059.2009.02041.x
Google Scholar

Bostwick, D.E., Ohm, H.W., Samer, G., 1993. Inheritance of Septoria glume blotch resistance in wheat. Crop Sci. 33, 439-443. https://doi.org/10.2135/cropsci1993.0011183X003300030005x
Google Scholar

Breen, S., Williams, S.J., Winterberg, B., Kobe, B., Solomon, P.S., 2016. Wheat PR-1 proteins are targeted by necrotrophic pathogen effector proteins. Plant J. 88, 13–25. https://doi.org/10.1111/tpj.13228
Google Scholar

Brennan, R. M., 1985. Dispersal of Septoria nodorum pycnidiospores by simulated raindrops in still air. J. Phytopath. 112, 281-290. https://doi.org/10.1111/j.1439-0434.1985.tb00805.x
Google Scholar

Brodal, G., 1993. Fungicide treatment of cereal seeds according to need in the Nordic countries. Proceedings Crop Protection in Northern Britain 1993, Dundee University, 23-25 marca 1993.The Association for Crop Protection in Northern Britain, ss. 7-16.
Google Scholar

Chooi, Y.-H., Krill, C., Barrow, R.A., Chen, S., Trengove, R., Oliver, R.P., Solomon, P.S., 2015a. An In planta-expressed polyketide synthase produces (R)-mellein in the wheat pathogen Parastagonospora nodorum. Appl. Environ. Microbiol. 81, 177–186. https://doi.org/10.1128/AEM.02745-14
Google Scholar

Chooi, Y.-H., Muria-Gonzalez, M.J., Mead, O.L., Solomon, P.S., 2015b. SnPKS19 encodes the polyketide synthase for alternariol mycotoxin biosynthesis in the wheat pathogen Parastagonospora nodorum. Appl. Environ. Microbiol. 81, 5309–5317. https://doi.org/10.1128/AEM.00278-15
Google Scholar

Chooi, Y.-H., Muria-Gonzalez, M.J., Solomon, P.S., 2014. A genome-wide survey of the secondary metabolite biosynthesis genes in the wheat pathogen Parastagonospora nodorum. Mycology 5, 192–206. https://doi.org/10.1080/21501203.2014.928386
Google Scholar

Chooi, Y.-H., Zhang, G., Hu, J., Muria-Gonzalez, M.J., Tran, P.N., Pettitt, A., i in., 2017. Functional genomics-guided discovery of a light-activated phytotoxin in the wheat pathogen Parastagonospora nodorum via pathway activation. Environ. Microbiol. 19, 1975–1986. https://doi.org/10.1111/1462-2920.13711
Google Scholar

Cockram, J., Scuderi, A., Barber, T., Furuki, E., Gardner, K.A., Gosman, N., Kowalczyk, R., Phan, H.P., Rose, G.A., Tan, K.-C., Oliver, R.P., Mackay, I.J., 2015. Fine-mapping the wheat Snn1 locus conferring sensitivity to the Parastagonospora nodorum necrotrophic effector SnTox1 using an eight founder multiparent advanced generation inter-cross population. G3: Genes, Genomes, Genetics 5(11), 2257-2266. https://doi.org/10.1534/g3.115.021584
Google Scholar

Cowger, C., Murphy, J.P., 2007. Artificial inoculation of wheat for selecting resistance to Stagonospora nodorum blotch. Plant Dis. 91, 539-545. https://doi.org/10.1094/PDIS-91-5-0539
Google Scholar

Cunfer, B.M., Ueng, P.P., 1999. Taxonomy and identification of Septoria and Stagonospora species on small-grain cereals. Annu. Rev. Phytopathol. 37, 267–284. https://doi.org/10.1146/annurev.phyto.37.1.267
Google Scholar

Czembor, P.C., Arseniuk, E., Czaplicki, A., Song, Q., Cregan, P.B., Ueng, P.P., 2003. QTL mapping of partial resistance in winter wheat to Stagonospora nodorum blotch. Genome 46(4), 546-554. https://doi.org/10.1139/g03-036
Google Scholar

Czembor, P., Arseniuk, E., Radecka-Janusik, M., Piechota, U., Słowacki, P., 2019. Quantitative trait loci analysis of adult plant resistance to Parastagonospora nodorum blotch in winter wheat cv. Liwilla (Triticum aestivum L.) Eur. J. Plant Path. 155, 1001–1016. https://doi.org/10.1007/s10658-019-01829-5
Google Scholar

Downie, R.C., Bouvet, L., Furuki, E., Gosman, N., Gardner, K.A., Mackay, I.J. i in., 2018. Assessing European wheat sensitivities to Parastagonospora nodorum necrotrophic effectors and fine-mapping the Snn3-B1 locus conferring sensitivity to the effector SnTox3. Front. Plant Sci. 9, 881. https://doi.org/10.3389/fpls.2018.00881
Google Scholar

Downie, R.C., Lin, M., Corsi, B., Ficke, A., Lillemo, M., Oliver, R.P., Phan, H.T.T., Tan, K.C., Cockram, J., 2021. Septoria nodorum blotch of wheat: Disease management and resistance breeding in the face of shifting disease dynamics and a changing environment. Phytopathology 111, 906–920. https://doi.org/10.1094/PHYTO-07-20-0280-RVW
Google Scholar

Du, C.G., Nelson, L.R., McDaniel, M.E., 1999. Diallel analysis of gene effects conditioning resistance to Stagonospora nodorum (Berk.) in wheat. Crop Sci. 39, 686–690. https://doi.org/10.2135/cropsci1999.0011183X003900020014x
Google Scholar

Eyal, Z., Scharen, A.L., Prescot, J.M., Van Ginkel, M., 1987. The Septoria diseases of wheat. Concepts and methods of disease management. CIMMYT, Mexico, 52 strony.
Google Scholar

Faris, J.D., Friesen, T.L., 2009. Reevaluation of a tetraploid wheat population indicates that the Tsn1–ToxA interaction is the only factor governing Stagonospora nodorum blotch susceptibility. Phytopathology 99(8), 906-912. https://doi.org/10.1094/PHYTO-99-8-0906
Google Scholar

Faris, J.D., Zhang, Z., Lu, H., Lu, S., Reddy, L., Cloutier, S., Fellers, J.P., Meinhardt, S.W., Rasmussen, J.B., Xu, S.S., Oliver, R.P., Simons, K.J., Friesen, T.L., 2010. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc. Natl. Acad. Sci. 107, 13544–13549. https://doi.org/10.1073/pnas.1004090107
Google Scholar

Ficke. A., Cowger. C., Bergstrom. G., Brodal. G., 2018. Understanding yield loss and pathogen biology to improve disease management: Septoria nodorum blotch – A case study in wheat. Plant Dis. 102, 696–707. https://doi.org/10.1094/PDIS-09-17-1375-FE
Google Scholar

Flor. H.H., 1956. The complementary genic system in flax and flax rust. Adv. Genet. 8, 29- 54.
Google Scholar

Francki. M.G., Shankar. M., Walker. E., Loughman. R., Golzar. H., Ohm. H., 2011. New quantitative trait loci in wheat for flag leaf resistance to Stagonospora nodorum blotch. Phytopathology 101(11), 1278-1284. https://doi.org/10.1094/PHYTO-02-11-0054
Google Scholar

Francki. M.G., Walker. E., McMullan. C.J., Morris. W.G., 2020. Multilocation evaluation of global wheat lines reveal multiple QTL for adult plant resistance to Septoria nodorum blotch (SNB) detected in specific environments and in response to different isolates. Front. Plant Sci. 11, 771. https://doi.org/10.3389/fpls.2020.00771
Google Scholar

Frecha. J.H., 1973. The inheritance of resistance to Septoria nodorum in wheat. Boletin Genetico 8, 29–30.
Google Scholar

Fried. P.M., Meister. E., 1987. Inheritance of leaf and head resistance of winter wheat to Septoria nodorum in a diallel cross. Phytopathology 77, 1371-1375.
Google Scholar

Friesen. T.L., Faris. J.D., 2012. Characterization of plant-fungal interactions involving necrotrophic effector-producing plant pathogens. Methods Mol. Biol. 835, 191–207. https://doi.org/10.1007/978-1-61779-501-5_12
Google Scholar

Friesen. T.L., Chu. C.G., Liu. Z.H., Xu. S.S., Halley. S., Faris. J.D., 2009. Host-selective toxins produced by Stagonospora nodorum confer disease susceptibility in adult wheat plants under field conditions. Theor. Appl. Genet. 118, 1489-1497. https://doi.org/10.1007/s00122-009-0997-2
Google Scholar

Friesen. T.L., Chu. C., Xu. S.S., Faris. J.D., 2012. SnTox5-Snn5: A novel Stagonospora nodorum effector-wheat gene interaction and its relationship with the SnToxA-Tsn1 and SnTox3-Snn3-B1 interactions. Mol. Plant Pathol. 13, 1101–1109. https://doi.org/10.1111/j.1364-3703.2012.00819.x
Google Scholar

Gao, Y., Faris, J.D., Liu, Z., Kim, Y.M., Syme, R.A., Oliver, R.P., i in., 2015. Identification and characterization of the SnTox6-Snn6 interaction in the Parastagonospora nodorum-wheat pathosystem. Mol. Plant-Microbe Interact. 28, 615–625. https://doi.org/10.1094/MPMI-12-14-0396-R
Google Scholar

Ghaderi, F., Sharifnabi, B., Javan-Nikkhah, M., Brunner, P.C., McDonald, B.A. 2020. SnToxA, SnTox1, and SnTox3 originated in Parastagonospora nodorum in the Fertile Crescent. Plant Pathol 69, 1482–1491. https://doi.org/10.1111/ppa.13233
Google Scholar

Gupta, P.K., Vasistha, N.K., Singh, S., Joshi, A.K. 2023. Genetics and breeding for resistance against four leaf spot diseases in wheat (Triticum aestivum L.). Front. Plant Sci. 14:1023824. https://doi.org/10.3389/fpls.2023.1023824
Google Scholar

Hafez, M., Gourlie, R., Despins, T., Turkington, T.K., Friesen, T.L., Aboukhaddour, R., 2020. Parastagonospora nodorum and related species in western Canada: genetic variability and effector genes. Phytopathology 110, 1946–1958. https://doi.org/10.1094/PHYTO-05-20-0207-R
Google Scholar

Halama, P., Lacoste, L., 1991. Déterminisme de la reproduction sexuée de Phaeosphaeria (Leptosphaeria) nodorum, agent de la septoriose du blé. I. Hétérothallisme et rôle des microspores. Can. J. Bot. 69, 95-99. https://doi.org/10.1139/b91-013
Google Scholar

Halder, J., Zhang, J., Ali, S., Sidhu, J.S., Gill, H.S., Talukder, S.K., Kleinjan, J., Turnipseed, B., Sehgal, S.K. 2019. Mining and genomic characterization of resistance to tan spot, Stagonospora nodorum blotch (SNB), and Fusarium head blight in Watkins core collection of wheat landraces. BMC Plant Biol. 19(1), 1-15. https://doi.org/10.1186/s12870-019-2093-3
Google Scholar

Hane, J.K., Paxman, J., Jones, D.A.B., Oliver, R.P., de Wit, P. 2020. “CATAStrophy,” a genom informed trophic classification of filamentous plant pathogens – how many different types of filamentous plant pathogens are there? Front Microbiol, 10, 3088. https://doi.org/10.3389/fmicb.2019.03088
Google Scholar

Hetman, A., Kowalczyk, S. 2018. Membrane receptors recognizing MAMP/PAMP and DAMP molecules that activate first line of defence in plant immune system (In Polish with English Abstract: Receptory błonowe wiążące cząsteczki typu MAMP/PAMP i DAMP aktywujące pierwszą linię obrony lokalnej układu odpornościowego roślin). Post Bioch, 64, 29-45.
Google Scholar

Hu. W., He. X., Dreisigacker. S., Sansaloni. C.P., Juliana. P., Singh. P.K., 2019. A wheat chromosome 5AL region confers seedling resistance to both tan spot and Septoria nodorum blotch in two mapping populations. Crop J. 7(6), 809-818. https://doi.org/10.1016/j.cj.2019.05.004
Google Scholar

John, E.; Lopez-Ruiz, F.; Rybak, K.; Mousley, C.J.; Oliver, R.P.; Tan, K.-C. 2016. Dissecting the role of histidine kinase and HOG1 mitogen-activated protein kinase signalling in stress tolerance and pathogenicity of Parastagonospora nodorum on wheat. Microbiology 162, 1023-1036, https://doi.org/10.1099/mic.0.000280
Google Scholar

Jørgensen, L.N., Clark, B., Marga, J., Antichi, G.D., Góral, T., Schepers, P.H., Lucas, P., Rolland, B., Gouache, D., Hornok, L. 2008., Using Cultivar Resistance to Reduce Fungicide Input in Wheat. ENDURE Wheat Case Study – Guide Number 1. [dostęp na stronie: http://www.endure-network.eu/endure_publications/endure_publications2].
Google Scholar

Kariyawasam, G.K., Richards, J.K., Wyatt, N.A., Running, K.L., Xu, S.S., Liu, Z., Borowicz, P., Faris, J.D., Friesen, T.L., 2022. The Parastagonospora nodorum necrotrophic effector SnTox5 targets the wheat gene Snn5 and facilitates entry into the leaf mesophyll. New Phytol. 233(1), 409-426. https://doi.org/10.1111/nph.17602
Google Scholar

Karjalainen, R., Lounatmaa, K., 1986. Ultrastructure of penetration and colonization of wheat leaves by Septoria nodorum. Physiol. Mol. Plant Pathol. 29, 263-270. https://doi.org/10.1016/S0048-4059(86)80026-1
Google Scholar

Katoch, S., Sharma, V., Sharma, D., Salwan, R., Rana, S.K., 2022. Biology and molecular interactions of Parastagonospora nodorum blotch of wheat. Planta, 255(1), 1-18. https://doi.org/10.1007/s00425-021-03796-w
Google Scholar

Kesselmeier, J., Staudt, M., 1999. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J. Atmos. Chem. 33, 23–88. https://doi.org/10.1023/A:1006127516791
Google Scholar

Korbas, M., Horoszkiewcz-Janka, J., Jajor, E., Głazek, M., 2011. Integrowana metoda ograniczenia sprawców chorób. W: Metodyka integrowanej ochrony pszenżyta ozimego i jarego. IOR — PIB Poznań: 111 — 159.
Google Scholar

Kourelis, J, van der Hoorn, R.A.L., 2018. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanism for R protein function. Plant Cell 30, 285-299. https://doi.org/10.1105/tpc.17.00579
Google Scholar

Kryczyński, S., 2002. Podstawy fitopatologii. Fundacja Rozwój SGGW. Warszawa. Wyd. II.
Google Scholar

Kuleung, C., Baenziger, P.S., Dweikat, I., 2004. Transferability of SSR markers among wheat, rye, and triticale. Theor. Appl. Genet. 108, 1147–- 1150. https://doi.org/10.1007/s00122-003-1532-5
Google Scholar

Lenz, H.D., Haller, E., Melzer, E., Kober, K., Wurster, K., Stahl, M., Bassham, D.C., Vierstra, R.D., Parker, J.E., Bautor, J., Molina, A., Escudero, V., Shindo, T., van der Hoorn, R.A.L., Gust, A.A., Nürnberger, T., 2011. Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant. J. 66, 818–830. https://doi.org/10.1111/j.1365-313X.2011.04546.x
Google Scholar

Lema-Rumińska, J., Kulus, D., 2012. Induction of somatic embryogenesis in Astrophytum asterias (Zucc.) Lem. In the aspect of light conditions and auxin 2,4-D concentrations. Acta Sci. Pol. – Hort. Cult. 11(4), 77-87.
Google Scholar

Li, H., Hu, J., Wei, H., Solomon, P.S., Vuong, D., Lacey, E., i in., 2018. Chemical ecogenomics-guided discovery of phytotoxic α-pyrones from the fungal wheat pathogen Parastagonospora nodorum. Org. Lett. 20, 6148–6152. https://doi.org/10.1021/acs.orglett.8b02617
Google Scholar

Lillemo, M., Dieseth, J. A., 2011. Wheat breeding in Norway. W: Angus W., Bonjean A.P., van Ginkel M. (red), The World Wheat Book: A history of wheat breeding, 2, ss. 45-79.
Google Scholar

Lin, M., Corsi, B., Ficke, A., Tan, K.C., Cockram, J., Lillemo, M., 2020a. Genetic mapping using a wheat multi-founder population reveals a locus on chromosome 2A controlling resistance to both leaf and glume blotch caused by the necrotrophic fungal pathogen Parastagonospora nodorum. Theor. Appl. Genet. 133(3), 785–808. https://doi.org/10.1007/s00122-019-03507-w
Google Scholar

Lin, M., Ficke, A., Cockram, J., Lillemo, M., 2020b. Genetic Structure of the Norwegian Parastagonospora nodorum Population. Front. Microbiol. 11, 1280. https://doi.org/10.3389/fmicb.2020.01280
Google Scholar

Lin, M., Stadlmeier, M., Mohler, V., Tan, K.C., Ficke, A., Cockram, J., Lillemo, M., 2021. Identification and cross-validation of genetic loci conferring resistance to Septoria nodorum blotch using a German multi-founder winter wheat population. Theor. Appl. Genet. 134(1), 125-142. https://doi.org/10.1007/s00122-020-03686-x
Google Scholar

Liu, Z., El-Basyoni, I., Kariyawasam, G., Zhang, G., Fritz, A., Hansen, J., Marais, F., Friskop, A., Chao, S., Akhunov, E., Baenziger, P.S., 2015. Evaluation and association mapping of resistance to tan spot and Stagonospora nodorum blotch in adapted winter wheat germplasm. Plant Dis. 99(10), 1333-1341. https://doi.org/10.1094/PDIS-11-14-1131-RE
Google Scholar

Liu, Z., Faris, J.D., Oliver, R.P., Tan, K.-C., Solomon, P.S., McDonald, M.C., McDonald, B.A., Nunez, A., Lu, S., Rasmussen, J.B., Friesen, T.L., 2009. SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene. PloS Pathog. 5 (9), e1000581. https://doi.org/10.1371/journal.ppat.1000581
Google Scholar

Liu Z., Gao Y., Kim Y.M., Faris J.D., Shelver W.L., de Wit P.J., Xu S.S., Friesen T.L. 2016. SnTox1, a Parastagonospora nodorum necrotrophic effector, is a dual-function protein that facilitates infection while protecting from wheat-produced chitinases. New Phytol. 211(3), 1052-64. https://doi.org/10.1111/nph.13959
Google Scholar

Liu Z., Zhang Z., Faris J.D., Oliver R.P., Syme R., McDonald M.C., McDonald B.A., Solomon P.S., Lu S., Shelver W.L. 2012. The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1. PloS Pathog. 8: e1002467. https://doi.org/10.1371/journal.ppat.1002467
Google Scholar

Loughman R., Wilson R.E., Goss I.M., Foster D.T. Murphy N.E.A. 1999. Varieties and advances lines resistant to Septoria diseases of wheat in Western Australia. W: van Ginkel M., McNab A., Krupinsky J. (red.) Septoria and Stagonospora Diseases of Cereals: A Compilation of Global Research. Mexico, D.F.: CIMMYT, pp. 145–147.
Google Scholar

Lu S., Faris J.D., Sherwood R., Friesen T.L., Edwards, M.C. 2014. A dimeric PR-1-type pathogenesis-related protein interacts with ToxA and potentially mediates ToxA-induced necrosis in sensitive wheat. Mol. Plant Pathol. 15, 650–663. https://doi.org/10.1111/mpp.12122
Google Scholar

Lu Q., Lillemo M. 2014. Molecular mapping of adult plant resistance to Parastagonospora nodorum leaf blotch in bread wheat lines ‘Shanghai-3/Catbird’and ‘Naxos’. Theor. App. Genet. 127(12), 2635-2644. https://doi.org/10.1007/s00122-014-2404-x
Google Scholar

Luke H.H., Barnett R.D., Pfahler P.L. 1986. Development of Septoria nodorum blotch on wheat from infected and treated seed. Plant Dis. 70, 252-254. https://doi.org/10.1094/PD-70-252
Google Scholar

McDonald, M.C., Razavi, M., Friesen, T.L., Brunner, P.C., McDonald, B.A., 2012. Phylogenetic and population genetic analyses of Phaeosphaeria nodorum and its close relatives indicate cryptic species and an origin in the Fertile Crescent. Fungal Genet. Biol. 49, 882–895. https://doi.org/10.1016/J.FGB.2012.08.001
Google Scholar

McDonald M.C., Oliver R.P., Friesen T.L., Brunner P.C., McDonald B.A. 2013. Global diversity and distribution of three necrotrophic effectors in Phaeosphaeria nodorum and related species. New Phytol. 199, 241–251. https://doi.org/10.1111/nph.12257
Google Scholar

McDonald B.A., Stukenbrock E.H. 2016. Rapid emergence of pathogens in agroecosystems: global threats to agricultural sustainability and food security. Philos. Trans. R. Soc. Lond. B 371(1709), 20160026. https://doi.org/10.1098/rstb.2016.0026
Google Scholar

Mehra L., Adhikari U., Cowger C., Ojiambo P.S. 2018. Septoria nodorum blotch of wheat. PeerJ Preprints 6, e27039v2. https://doi.org/10.7287/peerj.preprints.27039v2
Google Scholar

Mehra L.K., Cowger C., Gross K., Ojiambo P.S. 2016. Predicting pre-planting risk of Stagonospora nodorum blotch in winter wheat using machine learning models. Front. Plant Sci. 7, 390. https://doi.org/10.3389/fpls.2016.00390
Google Scholar

Mehra L.K., Cowger C., Weisz R., Ojiambo P.S. 2015. Quantifying the effects of wheat residue on severity of Stagonospora nodorum blotch and yield in winter wheat. Phytopathology 105(11):1417–1426. https://doi.org/10.1094/PHYTO-03-15-0080-R
Google Scholar

Muria-Gonzalez M.J., Chooi Y.-H., Breen S., Solomon P.S. 2015. The past, present and future of secondary metabolite research in the Dothideomycetes. Mol. Plant Pathol. 16, 92–107. https://doi.org/10.1111/mpp.12162
Google Scholar

Muria-Gonzalez M.J., Yeng Y., Breen S., Mead O., Wang C., Chooi Y.-H., Barrow R.A., Solomon P.S. 2020. Volatile Molecules Secreted by the Wheat Pathogen Parastagonospora nodorum Are Involved in Development and Phytotoxicity. Front. Microbiol. 11, 466. https://doi.org/10.3389/fmicb.2020.00466
Google Scholar

Nelson L.R., Gates C.E. 1982. Genetics of host plant resistance of wheat to Septoria nodorum. Crop Sci. 22:771-773. https://doi.org/10.2135/cropsci1982.0011183X002200040017x
Google Scholar

Nelson L.R., Holmes M.R., Cunfer B.M. 1976. Multiple regression accounting for wheat yield reduction by Septoria nodorum and other pathogens. Phytopathology 66, 1375-1379.
Google Scholar

Oleksiak, T. 2013. Stosowanie kwalifikowanego materiału siewnego a plonowanie zbóż ozimych. Biul. IHAR 268, 87-99. https://doi.org/10.37317/biul-2013-0035
Google Scholar

Oliver R.P., Friesen T.L., Faris J.D., Solomon P.S. 2012. Stagonospora nodorum: from pathology to genomics and host resistance. Annual Review of Phytopathology 50, 23-43. https://doi.org/10.1146/annurev-phyto-081211-173019
Google Scholar

Oliver R.P., Lichtenzveig J., Tan K.C., Waters O., Rybak K., Lawrence J., Friesen T., Burgess P. 2014. Absence of detectable yield penalty associated with insensitivity to Pleosporales necrotrophic effectors in wheat grown in the West Australian wheat belt. Plant Pathol. 63, 1027–1032. https://doi.org/10.1111/ppa.12191
Google Scholar

Pereira D.A., McDonald B.A., Brunner P.C. 2017. Mutations in the CYP51 gene reduce DMI sensitivity in Parastagonospora nodorum populations in Europe and China. Pest Manag. Sci. 73, 1503–1510. https://doi.org/10.1002/ps.4486
Google Scholar

Peever T.L., Brants A., Bergstrom G.C., Milgroom M.G. 1994. Selection for decreased sensitivity to propiconazole in experimental field populations of Stagonospora nodorum (syn. Septoria nodorum). Canadian Journal of Plant Pathology 16, 109–17. https://doi.org/10.1080/07060669409500767
Google Scholar

Peters Haugrud A.R., Zhang Z., Friesen T.L., Faris J.D. 2022. Genetics of resistance to tagonosa nodorum blotch in wheat. Theoretical and Applied Genetics 135, 3685-3707. https://doi.org/10.1007/s00122-022-04036-9
Google Scholar

Phan H.T., Rybak K., Bertazzoni S., Furuki E., Dinglasan E., Hickey L.T., Oliver R.P., Tan, K.C. 2018. Novel sources of resistance to Septoria nodorum blotch in the Vavilov wheat collection identified by genome-wide association studies. Theoretical and Applied Genetics, 131(6), 1223-1238. https://doi.org/10.1007/s00122-018-3073-y
Google Scholar

Phan H.T., Rybak K., Furuki E., Breen S., Solomon P.S., Oliver R.P., I in. 2016. Differential effector gene expression underpins epistasis in a plant fungal disease. The Plant Journal. 87, 343–54. https://doi.org/10.1111/tpj.13203
Google Scholar

Poland J.A., Balint-Kurti P.J., Wisser R.J., Pratt R.C., Nelson R.J. 2009. Shades of gray: the world of quantitative disease resistance. Trends in plant science, 14(1), 21-29. https://doi.org/10.1016/j.tplants.2008.10.006
Google Scholar

Quaedvlieg, W., Verkley, G.J.M., Shin, H.D., Barreto, R.W., Alfenas, A.C., Swart, W.J., Groenewald, J.Z., Crous, P.W., 2013. Sizing up Septoria. Stud. Mycol. 75, 307–390. https://doi.org/10.3114/SIM0017
Google Scholar

Reddy L., Friesen T.L., Meinhardt S.W., Chao S., Faris J.D. 2008. Genomic analysis of the Snn1 locus on wheat chromosome arm 1bs and the identification of candidate genes. Plant Genome 1, 55–66. https://doi.org/10.3835/plantgenome2008.03.0181
Google Scholar

Reszka E., Song Q., Arseniuk E., Cregan P.B., Ueng P.P. 2007. The QTL controlling partial resistance to Stagonospora nodorum blotch disease in winter triticale Bogo. Plant Pathology Bulletin, 16(3), 161-167.
Google Scholar

Richards J.K., Kariyawasam G., Seneviratne S., Wyatt N.A., Xu S.S., Liu Z., i in. 2021. A triple threat: the Parastagonospora nodorum SnTox267 effector exploits three distinct host genetic factors to cause disease in wheat. New Phytol. 233(1), 427-442. https://doi.org/10.1111/nph.17601
Google Scholar

Richards J.K., Stukenbrock E.H., Carpenter J., Liu Z., Cowger C. i. in. 2019. Local adaptation drives the diversification of effectors in the fungal wheat pathogen Parastagonospora nodorum in the United States. PloS Genet. 15(10):e1008223. https://doi.org/10.1371/journal.pgen.1008223
Google Scholar

Rosielle A.A., Brown A.G.P. 1980. Selection for resistance to Septoria nodorum in wheat. Euphytica, 29, 337–346. https://doi.org/10.1007/BF00025132
Google Scholar

Ruud A.K., Dieseth J.A., Ficke A., Furuki E., Phan H.T.T., Oliver R.P., Tan K.C. 2019. Genome-wide association mapping of resistance to Septoria nodorum leaf blotch in a Nordic spring wheat collection. The Plant Genome 12, 3. https://doi.org/10.3835/plantgenome2018.12.0105
Google Scholar

Ruud A.K., Dieseth J.A., Lillemo M. 2018. Effects of three Parastagonospora nodorum necrotrophic effectors on spring wheat under Norwegian field conditions. Crop Sci. 58, 159–168. https://doi.org/10.2135/cropsci2017.05.0281
Google Scholar

Ruud A.K., Lillemo M. 2018. Diseases affecting wheat: Septoria nodorum blotch. In: Integrated disease management of wheat and barley. Oliver, R. (Ed.). Burleigh Dodds Science Publishing, Cambridge, UK, 109–144. https://doi.org/10.1201/9780429201219
Google Scholar

Ruud, A.K., Windju, S., Belova, T., Friesen, T.L., Lillemo M., 2017. Mapping of SnTox3–Snn3 as a major determinant of field susceptibility to Septoria nodorum leaf blotch in the SHA3/CBRD × Naxos population. Theor. Appl. Genet. 130, 1361-1374. https://doi.org/10.1007/s00122-017-2893-5
Google Scholar

Shah D.A., Bergstrom G.C. 2000. Temperature dependent seed transmission of Stagonospora nodorum in wheat. Eur. J. Plant Pathol. 106, 837-842. https://doi.org/10.1023/A:1008723823196
Google Scholar

Shah D.A., Bergstrom G.C., Ueng, P.P. 1995. Initiation of Septoria nodorum blotch epidemics in winter wheat by seedborne Stagonospora nodorum. Phytopathology 85, 452-457. https://doi.org/10.1094/Phyto-85-452
Google Scholar

Shankar M., Reeves K., Bradley J., Varischetti R., Loughman R. 2021. Effect of varietal resistance on the yield loss function of wheat to nodorum blotch. Plant Pathol 70, 745–759. https://doi.org/10.1111/ppa.13317
Google Scholar

Shankar M., Walker E., Golzar H., Loughman R., Wilson R.E., Francki M.G. 2008. Quantitative trait loci for seedling and adult plant resistance to Stagonospora nodorum in wheat. Phytopathology 98(8), 886–893. https://doi.org/10.1094/PHYTO-98-8-0886
Google Scholar

Sharma J. S., Running K. L., Xu S. S., Zhang Q., Peters Haugrud A. R., Sharma S., McClean P.E., Faris, J. D. 2019., Genetic analysis of threshability and other spike traits in the evolution of cultivated emmer to fully domesticated durum wheat. Molec. Genet. Genomics 294(3), 757-771. https://doi.org/10.1007/s00438-019-01544-0
Google Scholar

Shi G., Friesen T.L., Saini J., Xu S.S., Rasmussen J.B., Faris J.D. 2015. The Wheat Snn7 Gene Confers Susceptibility on Recognition of the Parastagonospora nodorum Necrotrophic Effector SnTox7. Plant Genome 8 plantgenome2015.02.0007. https://doi.org/10.3835/plantgenome2015.02.0007
Google Scholar

Shi G., Zhang Z., Friesen T.L., Bansal U., Cloutier S., Wicker T., Rasmussen J.B., Faris J.D. 2016a. Marker development, saturation mapping, and high-resolution mapping of the Septoria nodorum blotch susceptibility gene Snn3-B1 in wheat. Molec. Genet. Genomics 291(1), 107-119. https://doi.org/10.1007/s00438-015-1091-x
Google Scholar

Shi G., Zhang Z., Friesen T.L., Raats D., Fahima T., Brueggeman, R.S., Lu S., Trick H.N., Liu Z., Chao W.s 2016b. The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Sci. Adv. 2, e1600822. https://doi.org/10.1126/sciadv.1600822
Google Scholar

Singh B., Mehta S., Aggarwal S.K., Tiwari M., Bhuyan S.I., Bhatia S., Islam M.A.s 2019. Barley, disease resistance and molecular breeding approaches. W: Wani S.H. (red.) Disease resistance in crop plants. Springer Nature, Switzerland. ss. 261-299.
Google Scholar

Solomon P.S., Lowe R.G.T., Tan K.C., Waters O.D.C., Oliver R.P., 2006. Stagonospora nodorum: cause of Stagonospora nodorum blotch of wheat. Molec, Plant Pathol, 7 (3), 147-156. https://doi.org/10.1111/j.1364-3703.2006.00326.x
Google Scholar

Sommerhalder, R.J., McDonald, B.A., Mascher, F., Zhan, J., 2010. Sexual recombinants make a significant contribution to epidemics caused by the wheat pathogen Phaeosphaeria nodorum.
Google Scholar

https://doi.org/10.1094/PHYTO-100-9-0855
Google Scholar

Śnieżko R., 1991. Pylniki i pyłek w hodowli in vitro. Wiadomości Botaniczne, 35(1).
Google Scholar

Tan K.-C., Oliver R.P., 2017. Regulation of proteinaceous effector expression in phytopathogenic fungi. PloS Pathog. 13(4), e1006241. https://doi.org/10.1371/journal.ppat.1006241
Google Scholar

Tan K.-C., Phan,H.T.T., Rybak K., John E., Chooi Y.H., Solomon P.S., i in., 2015. Functional redundancy of necrotrophic effectors – consequences for exploitation for breeding. Front. Plant Sci. 6, 501. https://doi.org/10.3389/fpls.2015.00501
Google Scholar

Tan K.-C., Waters O., Rybak K., Antoni E., Furuki E., Oliver R., 2014. Sensitivity to three Parastagonospora nodorum necrotrophic effectors in current Australian wheat cultivars and the presence of further fungal effectors. Crop Pasture Sci. 65 (2), 150-158. https://doi.org/10.1071/CP13443
Google Scholar

Tanaka S. 1933. Studies on black spot disease of the Japanese pear (Pirus serotine Rehd.). Memoirs of the College of Agriculture, Kyoto Imperial University 28, 1-31.
Google Scholar

Tratwal A., Strażyński P., Mrówczyński M., 2017. Poradnik Sygnalizatora Ochrony Zbóż; Instytut Ochrony Roślin—PIB: Poznań, Polska.
Google Scholar

Vleeshouwers V.G.A.A., Oliver R.P., 2014. Effectors as tools in disease resistance breeding against Biotrophic, hemibiotrophic and necrotrophic plant pathogens. Mol. Plant-Microbe Interact. 27, 196–206. https://doi.org/10.1094/MPMI-10-13-0313-IA
Google Scholar

Vereet J.A., Hoffman G.M., 1990. A biologically oriented threshold decision model for control of epidemics of Septoria nodorum in wheat. Plant Dis. 74, 731-738. https://doi.org/10.1094/PD-74-0731
Google Scholar

Veselova S.V., Nuzhnaya T.V., Burkhanova G.F., Rumyantsev S.D., Khusnutdinova E.K., Maksimov I.V. 2021. Ethylene-cytokinin interaction determines early defense response of wheat against Stagonospora nodorum Berk. Biomolecules 11(2), 174. https://doi.org/10.3390/biom11020174
Google Scholar

Walczewski J., 2020. Prosta metoda selekcji materiałów hodowlanych pszenicy i pszenżyta z wykorzystaniem nieoczyszczonego filtratu zawierającego efektor Tox3. Biul. Inst. Hod. i Aklim. Roślin 290, 9-14. https://doi.org/10.37317/biul-2020-0012
Google Scholar

Wang, Z.; Ma, Y.; Chen, M.; Da, L.; Su, Z.; Zhang, Z.; Liu, X. 2023. Comparative genomics analysis of WAK/WAKL family in Rosaceae identify candidate WAKs involved in the resistance to Botrytis cinerea. BMC Genomics 24, https://doi.org/10.1186/s12864-023-09371-9.
Google Scholar

Waters O.D.C., Lichtenzveig J., Rybak K., Friesen T.L., Oliver R.P., 2011. Prevalence and importance of sensitivity to the Stagonospora nodorum necrotrophic effector SnTox3 in current Western Australian wheat cultivars. Crop Pasture Sci. 62, 556-562. https://doi.org/10.1071/CP11004
Google Scholar

Wicki W., Winzeler M., Schmid J.E., Stamp P., Messmer M. 1999. Inheritance of resistance to leaf and glume blotch caused By Septoria nodorum Berk. in winter wheat. Theor. Appl. Genet. 99, 1265-1272. https://doi.org/10.1007/s001220051332
Google Scholar

Wiese M.V. 1978. Compendium of wheat diseases. Soil Science 126(3), 190.
Google Scholar

Winterberg B., Du Fall L.A., Song X., Pascovici D., Care N., Molloy M., Ohms S., Solomon P.S. 2014. The necrotrophic effector protein SnTox3 re-programs metabolism and elicits a strong defence response in susceptible wheat leaves. BMC Plant Biol. 14, 215. https://doi.org/10.1186/s12870-014-0215-5
Google Scholar

Wolpert T.J., Dunkle L.D., Ciuffetti L.M. 2002. Host-selective toxins and avirulence determinants: what's in a name? Annu. Rev. Phytopathol. 40(1), 251-285. https://doi.org/10.1146/annurev.phyto.40.011402.114210
Google Scholar

Woś H., Strzembicka A. 2011. Znaczenie hodowli odpornościowej w integrowanej ochronie pszenżyta. W: Metodyka integrowanej ochrony pszenżyta ozimego i jarego. IOR — PIB Poznań: 27 — 49.
Google Scholar

Zhang Z., Friesen T.L., Simons K.J., Xu S.S., Fari, J.D. 2009. Development, identification, and validation of markers for marker-assisted selection against the Stagonospora nodorum toxin sensitivity genes Tsn1 and Snn2 in wheat. Mol. Breeding 23(1), 35-49. https://doi.org/10.1007/s11032-008-9211-5
Google Scholar

Zhang Z., Friesen T.L., Xu S.S., Shi G., Liu Z., Rasmussen J.B., Faris J.D. 2011. Two putatively homoeologous wheat genes mediate recognition of SnTox3 to confer effector-triggered susceptibility to Stagonospora nodorum. Plant J. 65, 27–38. https://doi.org/10.1111/j.1365-313X.2010.04407.x
Google Scholar

Zhang Y., Nan Z. 2018. First report of leaf blotch caused by Parastagonospora nodorum on Leymus chinensis (Chinese Rye Grass) in China. Plant Dis. 102.12, 2661. https://doi.org/10.1094/PDIS-06-18-0926-PDN
Google Scholar

Zhang Z., Running K.L., Seneviratne S., Peters Haugrud A. R., Szabo‐Hever A., Shi G., Brueggeman R., Xu S.S., Friesen T.L., Faris J. D. 2021. A protein kinase–major sperm protein gene hijacked by a necrotrophic fungal pathogen triggers disease susceptibility in wheat. Plant J. 106(3), 720-732. https://doi.org/10.1111/tpj.15194
Google Scholar

Pobierz


Opublikowane
06/30/2023

Cited By / Share

Kowalska, L. i Góral, T. (2023) „Septorioza plew – choroba pszenicy i pszenżyta powodowana przez grzyb Parastagonospora nodorum”, Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, (299), s. 39–53. doi: 10.37317/biul-2023-0005.

Autorzy

Lidia Kowalska 

Poland
https://orcid.org/0000-0002-1285-1182

Autorzy

Tomasz Góral 
t.goral@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy Poland
https://orcid.org/0000-0001-9130-6109

Statystyki

Abstract views: 119
PDF downloads: 121


Licencja

Prawa autorskie (c) 2023 Lidia Kowalska, Tomasz Góral

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.

Z chwilą przekazania artykułu, Autorzy udzielają Wydawcy niewyłącznej i nieodpłatnej licencji na korzystanie z artykułu przez czas nieokreślony na terytorium całego świata na następujących polach eksploatacji:

  1. Wytwarzanie i zwielokrotnianie określoną techniką egzemplarzy artykułu, w tym techniką drukarską oraz techniką cyfrową.
  2. Wprowadzanie do obrotu, użyczenie lub najem oryginału albo egzemplarzy artykułu.
  3. Publiczne wykonanie, wystawienie, wyświetlenie, odtworzenie oraz nadawanie i reemitowanie, a także publiczne udostępnianie artykułu w taki sposób, aby każdy mógł mieć do niego dostęp w miejscu i w czasie przez siebie wybranym.
  4. Włączenie artykułu w skład utworu zbiorowego.
  5. Wprowadzanie artykułu w postaci elektronicznej na platformy elektroniczne lub inne wprowadzanie artykułu w postaci elektronicznej do Internetu, lub innej sieci.
  6. Rozpowszechnianie artykułu w postaci elektronicznej w internecie lub innej sieci, w pracy zbiorowej jak również samodzielnie.
  7. Udostępnianie artykułu w wersji elektronicznej w taki sposób, by każdy mógł mieć do niego dostęp w miejscu i czasie przez siebie wybranym, w szczególności za pośrednictwem Internetu.

Autorzy poprzez przesłanie wniosku o publikację:

  1. Wyrażają zgodę na publikację artykułu w czasopiśmie,
  2. Wyrażają zgodę na nadanie publikacji DOI (Digital Object Identifier),
  3. Zobowiązują się do przestrzegania kodeksu etycznego wydawnictwa zgodnego z wytycznymi Komitetu do spraw Etyki Publikacyjnej COPE (ang. Committee on Publication Ethics), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. Wyrażają zgodę na udostępniane artykułu w formie elektronicznej na mocy licencji CC BY-SA 4.0, w otwartym dostępie (open access),
  5. Wyrażają zgodę na wysyłanie metadanych artykułu do komercyjnych i niekomercyjnych baz danych indeksujących czasopisma.

Inne teksty tego samego autora

1 2 3 > >> 

Podobne artykuły

<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.