Biosensors – novel analytical tools for the plant pathogen detection

Małgorzata Łabańska

m.labanska@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy Radzików, Oddział w Boninie (Poland)
http://orcid.org/0000-0002-1659-8129

Włodzimierz Przewodowski


Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy Radzików, Oddział w Boninie (Poland)
http://orcid.org/0000-0002-4456-4727

Abstract

Crop protecting plays a key role in increasing the efficiency of plant production. So far, a number of methods dedicated to the identification of plant pathogens have been developed. The most important of them are molecular methods employed polymerase chain reaction – PCR and immunological methods based on specific interactions of antibodies with antigens. However, current methodologies are time-consuming, expensive, require complex laboratory equipment, are being not suitable for in-vivo plant pathogen detection. Therefore there is a strong need to develop alternative, low-cost, rapid and with high specificity methods for the detection of plant pathogens which would enable diagnostics both in laboratory and environmental conditions. Over the years biosensors are gaining increasing attention due to their wide range of applications. High sensitivity and selectivity, the possibility of real-time measurements, and often small sizes make them extremely attractive analytical tools. In this work the conventional methods of the plant pathogens identification as well as the structure, principle of operation and a wide range of applications of biosensors are described. Special attention was paid to electrochemical and optical biosensors including as sensing elements antibodies – immunosensors or fragments of nucleic acids – DNA sensors designed for the detection of plant pathogens.

Supporting Agencies

Praca powstała w wyniku realizacji projektu badawczego MINIATURA 3 Nr DEC-2019/03/X/NZ9/01197 finansowanego ze środków Narodowego Centrum Nauki

Keywords:

biosensors, DNA-biosensors, immunosensors, plant pathogens detection

Boltovets, P.M., Boyko, V.R., Kostikov, I.Y., Dyachenko, N.S., Snopok, B.A., Shirshov, Y.M. (2002). Simple method for plant virus detection: effect of antibody immobilization technique J. Virol. Methods 105, 141–146.
Google Scholar

Brzózka, Z., Wróblewski, W. (1999) Sensory elektrochemiczne W: Z. Brzózka, W. Wróblewski (red), Sensory chemiczne (21‒74). Warszawa. Oficyna Wyd. Politechniki Warszawskiej,
Google Scholar

Cesarino, I., Moraes, F.C., Lanza, M.R.V., Machado, S.A.S. (2012). Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes. Food Chem. 135, 873–879
Google Scholar

Chambers, J.P., Arulanandam, B.P., Matta, L.L., Weis, A., Valdes, J.J. (2008). Biosensor Recognition Elements. Curr. Issues Mol. Biol. 10, 1–12.
Google Scholar

Charlermroj, R., Himananto, O., Seepiban, C., Kumpoosiri, M., Warin, N., Oplatowska,
Google Scholar

M., Gajanandana, O., Grant, I.R., Karoonuthaisiri, N., Elliott, C.T. (2013). Multiplex Detection of Plant Pathogens Using a Microsphere Immunoassay Technology PloS One 8, e62344.
Google Scholar

Cynk P., Gaweł E. (2012). Zastosowanie biosensorów w diagnostyce choroby nowotworowej. Prz. Med. Uniw. Rzesz. Inst. Leków 3, 373‒378
Google Scholar

Cunningham, J.C., Scida, K., Kogan, M.R., Wang, B., Ellington, A.D., Crooks, R.M. (2015). Paper diagnostic device for quantitative electrochemical detection of ricin at picomolar levels. Lab. Chip 15, 3707–3715
Google Scholar

Damborsky, P., Svitel, J., Katrlik, J. (2016). Optical biosensors, Essays. Biochem. 60, 91–100.
Google Scholar

Drygin, Y.F., Blintsov, A.N., Grigorenko, V.G., Andreeva, I.P., Osipov, A.P., Varitzev, Y.A.,
Google Scholar

Uskov, A.I., Kravchenko, D.V., Atabekov, J.G. (2012). Highly sensitive field test lateral flow immunodiagnostics of PVX infection Appl. Microbiol. Biotech. 93, 179–189.
Google Scholar

Eguilaz, M., Moreno-Guzman, M., Campuzano, S., González-Cortes, A., Yanez-Sedeno, P., Pingarron, J.M. (2010). An electrochemical immunosensor for testosterone using functionalized magnetic beads and screen-printed carbon electrodes. Biosen. Bioelectron. 26, 517–522
Google Scholar

Fang, Y., Ramasamy, R.P. (2015). Current and prospective methods for plant disease detection. Biosensors, 4, 537‒561.
Google Scholar

Farzin, L., Shamsipur, M., Samandari, L., Sheibani, S. (2020). HIV biosensors for early diagnosis of infection: The intertwine of nanotechnology with sensing strategies. Talanta. 206, 120201.
Google Scholar

Felix, F. B., Angnes, L. (2018). Electrochemical immunosensors – a powerful tool for analytical applications. Biosens. Bioelectron., 102, 470‒478
Google Scholar

Grieshaber, D., MacKenzie, R., Voros, J., Reimhult, E. (2008). Electrochemical Biosensors – sensor principles and architectures. Sensors 8, 1400‒1458
Google Scholar

Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C. (2010). Food Security: The challenge of feeding 9 billion people. Science, 327, 812‒818.
Google Scholar

Gumpu, M.B., Sethuraman, S., Krishnan, U.M., Rayappan, J.B.B. (2015). A review on detection of heavy metal ions in water – An electrochemical approach. Sens. Actuators B. Chem. 213, 515‒533
Google Scholar

Hao, R.Z., Wang, D.B., Zhang, X.E., Zuo, G.M., Wei, H.P., Yang, R.F., Zhang, Z.P., Cheng, Z.X., Guo, Y.C., Cui, Z.Q. (2009). Rapid detection of bacillus anthracis using monoclonal antibody functionalized QMC sensor. Biosens. Bioelectron., 24, 1330–1335
Google Scholar

Huang, X., Xu, J., Ji, H.F., Li, G., Chen, H., (2014). Quartz crystal microbalance based biosensor for rapid and sensitive detection of Maize Chlorotic Mottle Virus. Anal. Methods, 6, 4530–4536
Google Scholar

Jarocka, U., Radecka, H., Malinowski, T., Michalczuk, L., Radecki, J. (2013). Detection of Prunus Necrotic Ringspot Virus in plant extracts with impedimetric immunosensor based on glassy carbon electrode. Electroanalysis, 25, 433–438
Google Scholar

Jarocka, U., Wąsowicz, M., Radecka, H., Malinowski, T., Michalczuk, L., Radecki, J. (2011). Impedimetric Immunosensor for Detection of Plum Pox Virus in Plant Extracts. Electroanalysis, 23, 2197‒2204.
Google Scholar

Jiao K., Sun W., Zhang S-S. (2000). Sensitivie detection of plant virus by electrochemical enzyme-linked immunoassay. Fresenius J. Anal. Chem. 367, 667‒671.
Google Scholar

Khater, M., de la Escosura-Muniz, A., Merkoci, A. (2017). Biosensors for plant pathogen detection. Biosens. Bioelectron., 93, 72‒86.
Google Scholar

Kim, J., Campbell, A. S., Esteban-Fernández de Ávila, B., Wang, J. (2019). Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389‒406
Google Scholar

Kłos – Witkowska, A. (2014). Ewolucja i rozwój biosensorów – problemy i perspektywy. PAK, 60, 1178‒1180.
Google Scholar

Kłos – Witkowska, A. (2015). Biosensory. PAK, 19, 37‒40.
Google Scholar

Kokkinos, C., Economou, A., Prodromidis, M. I. (2016). Electrochemical immunosensors: Critical survey of different architectures and transduction strategies. Trends Anal. Chem. 79, 88‒105
Google Scholar

Kołwzan, B. (2009). Zastosowanie czujników biologicznych (biosensorów) do oceny jakości wody – Ochrona środowiska 4, 3‒14
Google Scholar

Lazcka, O., Del Campo, F. J., Munoz, F.X. (2007). Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron., 22, 1205‒1217
Google Scholar

Leonard, P., Hearty, S., Brennan, J., Dunne, L., Quinn, J., Chakraborty, T., O’Kennedy, R. (2003). Advances in biosensors for detection of pathogens in food and water. Enzyme Microb. Tech., 32, 3‒13.
Google Scholar

Lichtfouse, E., Navarrete, M., Debaeke, P., Souchere, V., Alberola, C., Menassieu, J. (2009). Agronomy for sustainable agriculture. A review. Agron. Sustain. Dev., 29, 1‒6.
Google Scholar

Lin, H.Y., Huang, C.H., Lu, S.H., Kuo, I.T., Chau, L.K., (2014). Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens. Bioelectron. 51, 371–378.
Google Scholar

Luna-Moreno, D., Sanchez-Alvarez, A., Islas-Flores, I., Canto-Canche, B., Carrillo-Pech, M., Villarreal-Chiu, J.F., Rodríguez-Delgado, M. (2019). Early detection of the Fungal Banana Black Sigatoka Pathogen Pseudocercospora fijiensis by an SPR Immunosensor Method. Sensors 19, 465‒477.
Google Scholar

Magner, E. (2013). Biosensory elektrochemiczne – możliwości i ograniczenia komercjalizacji. Chemik. 67, 11‒13.
Google Scholar

Malecka, K., Michalczuk, L., Radecka, H., Radecki, J., (2014). Ion-channel genosensor for the detection of specific DNA sequences derived from Plum Pox Virus in plant extracts. Sensors, 14, 18611–18624.
Google Scholar

Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L.R., Davis, C.E., Dandekar, A.M. (2015) Advanced methods of plant disease detection. A review. Agron. Sustain. Dev., 35, 1‒25.
Google Scholar

Mendes, R.K, Laschi, S, Stach-Machado, D.R., Kubota L.T., Marrazza G. (2012) A disposable voltammetric immunosensor based on magnetic beads for early diagnosis of soybean rust. Sens. Actuators B Chem 166–167, 135–140.
Google Scholar

Perumal, V., Hashim, U. (2014). Advances in biosensors: principle, architecture and applications, J. Appl. Bio-med. 12, 1‒15.
Google Scholar

Przewodowski, W., Barnyk, A. (2009). Szybki test do identyfikacji bakterii Clavibacter michi-ganensis ssp. sepedonicus. Post. Ochr. Rośl. 49, 696‒700.
Google Scholar

Pultar, J. (2009). Aptamer–antibody on-chip sandwich immunoassay for detection of CRP in spiked serum – Biosens. Bioelectron., 24, 1456–1461
Google Scholar

Pundira, C.S., Malik, A., Pretty, M. (2019) Bio-sensing of organophosphorus pesticides: A review Biosens. Bioelectron. 140, 11134
Google Scholar

Radecki, J., Radecka, H., Cieśla, J. (2006). Sensory i biosensory w kontroli żywności modyfikowanej genetycznie, Biotechnol. 3, 67‒78
Google Scholar

Salamońska, K., Stochła, W., Przewodowski, W. (2016). Nowoczesne metody diagnostyczne w identyfikacji molekularnej bakterii kwarantannowych ziemniaka. Ziemn. Pol., 4, 41‒45.
Google Scholar

Savary, S., Ficke, A., Aubertot, J-N., Hollier C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Sec., 4, 519‒537
Google Scholar

Sankiewicz, A., Puzan, B., Gorodkiewicz E. (2014). Bioczujniki SPRI – narzędzia diagnostyczne przyszłości. Chemik 68, 528‒535
Google Scholar

Schwenkbier, L., Pollok, S., König, S., Urban, M., Werres, S., Cialla-May, D., Weber, K., Popp, J., (2015). Towards on-site testing of Phytophthora species. Anal. Methods 7, 211–217
Google Scholar

Shi, J.Y., Guo, J.B., Bai, G.X., Chan, C.Y., Liu, X., Ye, W.W., Hao, J.H., Chen, S., Yang, M. A. (2015). Graphene oxide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of botulinum neurotoxin a (BoNT/A) enzymatic activity. Biosens. Bioelectron. 65, 238–244
Google Scholar

Skottrup, P., Nicolaisen, M., Justesen, A.F., (2007). Rapid determination of Phytophthora infestans sporangia using a surface plasmon resonance immunosensor. J. Microbiol. Methods 68, 507–515
Google Scholar

Stochła W., Przewodowski, W., Przewodowska, A., Salamońska, K. (2017). Immunodiagnostyczne metody wykrywania i identyfikacji bakteryjnych patogenów ziemniaka – Ziemn. Pol., 1, 14‒21.
Google Scholar

Thevenot, D.R., Toth, K., Durst, R.A., Wilson, G.S. (2001). Electrochemical biosensors: recommended definitions and classification – Biosens. Bioelectron. 16, 121‒131
Google Scholar

Tilman, D., Balzer C., Hill, J., Befort, B.L. (2011). Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 108, 20260‒20264.
Google Scholar

Wang, J. (2008). Electrochemical glucose biosensors. Chem. Rev. 108, 814‒825
Google Scholar

Zezza, F., Pascale, M., Mulè, G., Visconti, A., (2006). Detection of Fusarium culmorum in wheat by a surface plasmon resonance-based DNA sensor. J. Microb. Methods 66 (3), 529–537
Google Scholar

Zhao, Y., Liu, L., Kong, D., Kuang, H., Wang, L., Xu, C. (2014). Dual amplified electrochemical immunosensor for highly sensitive detection of Pantoea stewartii sbusp. stewartii ACS Appl. Mater. Interfaces, 6, 21178–21183.
Google Scholar

Zhao, W., Lu, J., Ma, W., Xu, C., Kuang, H., Zhu, S., (2011). Rapid on-site detection of Acidovorax avenae subsp. citrulli by gold-labeled DNA strip sensor. Biosens. Bioelectron. 26, 4241–4244
Google Scholar

Zhou, J., Qi Q., Wang, C., Qian, Y., Liu, G., Wang, Y., Fu, L. (2019). Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices – Biosens. Bioelectron. 142, 111449
Google Scholar


Published
2021-01-14

Cited by

Łabańska, M. . and Przewodowski , W. . (2021) “Biosensors – novel analytical tools for the plant pathogen detection ”, Bulletin of Plant Breeding and Acclimatization Institute, (290), pp. 33–42. doi: 10.37317/biul-2020-0009.

Authors

Małgorzata Łabańska 
m.labanska@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy Radzików, Oddział w Boninie Poland
http://orcid.org/0000-0002-1659-8129

Authors

Włodzimierz Przewodowski  

Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy Radzików, Oddział w Boninie Poland
http://orcid.org/0000-0002-4456-4727

Statistics

Abstract views: 631
PDF downloads: 519


License

Copyright (c) 2020 Małgorzata Łabańska, Włodzimierz Przewodowski

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)

Similar Articles

<< < 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 > >> 

You may also start an advanced similarity search for this article.