Fuzarioza kłosów pszenicy. Część 1. Opis choroby i charakterystyka patogenów

Tomasz Góral

t.goral@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy (Poland)
https://orcid.org/0000-0001-9130-6109

Abstrakt

Fuzarioza kłosów jest chorobą powodowaną przez grzyby z rodzaju Fusarium. Choroba porażą wszystkie zboża uprawiane w Polsce. Największe szkody powoduje w uprawach pszenicy zwyczajnej. Szkodliwość fuzariozy kłosów wynika przede wszystkim z zanieczyszczania ziarna wtórnymi metabolitami Fusarium – mykotoksynami. Mają one szkodliwie działanie dla ludzi i zwierząt w przypadku spożycia żywności lub paszy je zawierającej. W pierwszej części pracy przedstawiono etiologię choroby. Scharakteryzowano gatunki Fusarium powodujące fuzariozę kłosów zbóż wraz w najnowszą systematyką tych gatunków. Opisano najważniejsze mykotoksyny wytwarzane przez Fusarium. Przedstawiono również główne metody ograniczania i zwalczania fuzariozy kłosów.


Słowa kluczowe:

Fusarium, fuzarioza kłosów, Triticum, mykotoksyny, zboża

Accensi, F., Pinton, P., Callu, P., Abella-Bourges, N., Guelfi, J.F., Grosjean, F., Oswald, I.P., 2006. Ingestion of low doses of deoxynivalenol does not affect hematological, biochemical, or immune responses of piglets. J. Anim. Sci. 84, 1935–1942. https://doi.org/10.2527/jas.2005-355
Google Scholar

Alassane-Kpembi, I., Puel, O., Pinton, P., Cossalter, A.M., Chou, T.C., Oswald, I.P., 2017. Co-exposure to low doses of the food contaminants deoxynivalenol and nivalenol has a synergistic inflammatory effect on intestinal explants. Arch. Toxicol. 91, 2677–2687. https://doi.org/10.1007/s00204-016-1902-9
Google Scholar

Alexander, N.J., McCormick, S.P., Waalwijk, C., van der Lee, T., Proctor, R.H., 2011. The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium. Fungal Genet. Biol. 48, 485–495. https://doi.org/10.1016/j.fgb.2011.01.003
Google Scholar

Amarasinghe, C., Sharanowski, B., Dilantha Fernando, W.G., 2019. Molecular phylogenetic relationships, trichothecene chemotype diversity and aggressiveness of strains in a global collection of Fusarium graminearum species. Toxins (Basel). 11, 263. https://doi.org/10.3390/toxins11050263
Google Scholar

Anderson, J.A., 2007. Marker-assisted selection for Fusarium head blight resistance in wheat. Int. J. Food Microbiol. 119, 51–3. https://doi.org/10.1016/j.ijfoodmicro.2007.07.025
Google Scholar

Argyris, J., Van Sanford, D., TeKrony, D., 2003. Fusarium graminearum infection during wheat seed development and its effect on seed quality. Crop Sci. 43, 1782–1788. https://doi.org/10.2135/cropsci2003.1782
Google Scholar

Backhouse, D., 2014. Global distribution of Fusarium graminearum, F. asiaticum and F. boothii from wheat in relation to climate. Eur. J. Plant Pathol. 139, 161–173. https://doi.org/10.1007/S10658-013-0374-5/FIGURES/3
Google Scholar

Bainotti, C.T., Lewis, S., Campos, P., Alberione, E., Salines, N., Gomez, D., Fraschina, J., Salines, J., Formica, M.B., Donaire, G., Vanzetti, L.S., Lombardo, L., Nisi, M.M., Cuniberti, M.B., Mir, L., Conde, M.B., Helguera, M., 2017. MS INTA 416: A new Argentinean wheat cultivar carrying Fhb1 and Lr47 resistance genes. Crop Breed. Appl. Biotechnol. 17, 274–280. https://doi.org/10.1590/1984-70332017v17n3c42
Google Scholar

Bakker, M.G., Brown, D.W., Kelly, A.C., Kim, H.S., Kurtzman, C.P., Mccormick, S.P., O’Donnell, K.L., Proctor, R.H., Vaughan, M.M., Ward, T.J., 2018. Fusarium mycotoxins: a trans-disciplinary overview. Can. J. Plant Pathol. 40, 161–171. https://doi.org/10.1080/07060661.2018.1433720
Google Scholar

Beccari, G., Arellano, C., Covarelli, L., Tini, F., Sulyok, M., Cowger, C., 2019. Effect of wheat infection timing on Fusarium head blight causal agents and secondary metabolites in grain. Int. J. Food Microbiol. 290, 214–225. https://doi.org/10.1016/j.ijfoodmicro.2018.10.014
Google Scholar

Bilska, K., Jurczak, S., Kulik, T., Ropelewska, E., Olszewski, J., Żelechowski, M., Zapotoczny, P., 2018. Species composition and trichothecene genotype profiling of Fusarium field isolates recovered from wheat in Poland. Toxins (Basel). 10, 325. https://doi.org/10.3390/toxins10080325
Google Scholar

Bottalico, A., 1998. Fusarium diseases of cereals: Species complex and related mycotoxin profiles, in Europe. J. Plant Pathol. 80, 85–103. https://doi.org/10.4454/jpp.v80i2.807
Google Scholar

Bottalico, A., Perrone, G., 2002. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur. J. Plant Pathol. 108, 611–624. https://doi.org/10.1023/A:1020635214971
Google Scholar

Buerstmayr, H., Lemmens, M., Hartl, L., Doldi, L., Steiner, B., Stierschneider, M., Ruckenbauer, P., 2002. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance). Theor. Appl. Genet. 104, 84–91. https://doi.org/10.1007/s001220200009
Google Scholar

Buerstmayr, M., Steiner, B., Buerstmayr, H., 2019. Breeding for Fusarium head blight resistance in wheat—Progress and challenges. Plant Breed. 1–26. https://doi.org/10.1007/978-94-017-3674-9_45
Google Scholar

Carter, J.P., Rezanoor, H.N., Holden, D., Desjardins, A.E., Plattner, R.D., Nicholson, P., 2002. Variation in pathogenicity associated with the genetic diversity of Fusarium graminearum. Eur. J. Plant Pathol. 108, 573–583. https://doi.org/10.1023/A:1019921203161
Google Scholar

Chen, Y., Zhou, M.-G., 2009. Characterization of Fusarium graminearum isolates resistant to both carbendazim and a new fungicide JS399-19. Phytopathology 99, 441–6. https://doi.org/10.1094/PHYTO-99-4-0441
Google Scholar

Cowger, C., Arrellano, C., 2010. Plump kernels with high deoxynivalenol linked to late Gibberella zeae infection and marginal disease conditions in winter wheat. Phytopathology 100, 719–28. https://doi.org/10.1094/PHYTO-100-7-0719
Google Scholar

Cowger, C., Patton-Ozkurt, J., Brown-Guedira, G., Perugini, L., 2009. Post-anthesis moisture increased Fusarium head blight and deoxynivalenol levels in North Carolina winter wheat. Phytopathology 99, 320–7. https://doi.org/10.1094/PHYTO-99-4-0320
Google Scholar

Del Ponte, E.M., Fernandes, J.M.C., Bergstrom, G.C., 2007. Influence of growth stage on Fusarium head blight and deoxynivalenol production in wheat. J. Phytopathol. 155, 577–581. https://doi.org/10.1111/j.1439-0434.2007.01281.x
Google Scholar

Del Ponte, E.M., Moreira, G.M., Ward, T.J., O’Donnell, K., Nicolli, C.P., Machado, F.J., Duffeck, M.R., Alves, K.S., Tessmann, D.J., Waalwijk, C., van der Lee, Theo, Zhang, H., Chulze, S.N., Stenglein, S.A., Pan, D., Vero, S., Vaillancourt, L.J., Schmale, D.G., Esker, P.D., Moretti, A., Logrieco, A.F., Kistler, H.C., Bergstrom, G.C., Viljoen, A., Rose, L.J., van Coller, G.J., Lee, Theresa, 2022. Fusarium graminearum species complex: a bibliographic analysis and web-accessible database for global mapping of species and trichothecene toxin chemotypes. Phytopathology 112. 741-751. https://doi.org/10.1094/PHYTO-06-21-0277-RVW
Google Scholar

Duan, Y., Tao, X., Zhao, H., Xiao, X., Li, M., Wang, J., Zhou, M., 2019. Activity of demethylation inhibitor fungicide metconazole on Chinese Fusarium graminearum species complex and its application in carbendazim-resistance management of fusarium head blight in wheat. Plant Dis. 103, 929–937. https://doi.org/10.1094/PDIS-09-18-1592-RE
Google Scholar

Dweba, C.C., Figlan, S., Shimelis, H.A., Motaung, T.E., Sydenham, S., Mwadzingeni, L., Tsilo, T.J., 2017. Fusarium head blight of wheat: Pathogenesis and control strategies. Crop Prot. 91, 114–122. https://doi.org/10.1016/j.cropro.2016.10.002
Google Scholar

Escrivá, L., Font, G., Manyes, L., 2015. In vivo toxicity studies of Fusarium mycotoxins in the last decade: A review. Food Chem. Toxicol. https://doi.org/10.1016/j.fct.2015.02.005
Google Scholar

Eudes, F., Comeau, A., Collin, S.R., 2000. Phytotoxicite de huit mycotoxines associees a la fusariose de l’epi chez le ble. Can. J. Plant Pathol. 22, 286–292. https://doi.org/10.1080/07060660009500477
Google Scholar

Foroud, N.A., McCormick, S.P., MacMillan, T., Badea, A., Kendra, D.F., Ellis, B.E., Eudes, F., 2012. Greenhouse studies reveal increased aggressiveness of emergent Canadian Fusarium graminearum chemotypes in wheat. Plant Dis. 96, 1271–1279. https://doi.org/10.1094/PDIS-10-11-0863-RE
Google Scholar

Freije, A.N., Wise, K.A., 2015. Impact of Fusarium graminearum inoculum availability and fungicide application timing on Fusarium head blight in wheat. Crop Prot. 77, 139–147. https://doi.org/10.1016/j.cropro.2015.07.016
Google Scholar

Góral, T., 2005. Źródła odporności pszenicy na fuzariozę kłosa powodowaną przez Fusarium culmorum (W. G. Smith) Sacc. Biul. IHAR 235, 115–131.
Google Scholar

Góral, T., Ochodzki, P., 2017. Fusarium head blight resistance and mycotoxin profiles of four Triticum species genotypes. Phytopathol. Mediterr. 56, 175–186. https://doi.org/10.14601/phytopathol_mediterr-20288
Google Scholar

Góral, T., Ochodzki, P., Nielsen, L.K., Walentyn-Góral, D., 2021. Species of the genus Fusarium and Fusarium toxins in the grain of winter and spring wheat in Poland. Biul. Inst. Hod. i Aklim. Roślin 296, 25–42. https://doi.org/10.37317/biul-2021-0011
Google Scholar

Góral, T., Wiśniewska, H., Czembor, P., Ochodzki, P., Radecka-Janusik, M., Majka, M., Przetakiewicz, J., 2019. Poszukiwanie oraz wykorzystanie markerów fenotypowych, metabolicznych i molekularnych do badania typów odporności na fuzariozę kłosów u form pszenicy o zróżnicowanej podatności. Biul. IHAR 286, 13–20.
Google Scholar

Góral, T., Wiśniewska, H., Ochodzki, P., Walentyn-Góral, D., Grzeszczak, I., Belter, J., Majka, M., Bogacki, J., Drzazga, T., Ługowska, B., Matysik, P., Witkowski, E., Rubrycki, K., Woźna-Pawlak, U., 2018. Fuzarioza kłosów oraz akumulacja toksyn fuzaryjnych w ziarnie rodów hodowlanych pszenicy ozimej. Biul. Inst. Hod. i Aklim. Roślin 282, 17–39. https://doi.org/10.37317/biul-2017-0012
Google Scholar

Goswami, R.S., Kistler, H.C., 2005. Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice. Phytopathology 95, 1397–1404. https://doi.org/10.1094/PHYTO-95-1397
Google Scholar

Goswami, R.S., Kistler, H.C., 2004. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 5, 515–525. https://doi.org/10.1111/J.1364-3703.2004.00252.X
Google Scholar

Gromadzka, K., Lenc, L., Sadowski, C., Baturo-Ciesniewska, a., Chełkowski, J., Goliński, P., Bocianowski, J., 2012. Effects of fungicidal protection programs on the development of Fusarium head blight and the accumulation of mycotoxins in winter wheat. Cereal Res. Commun. 40, 518–531. https://doi.org/10.1556/CRC.2012.0019
Google Scholar

Gunupuru, L.R., Perochon, A., Doohan, F.M., 2017. Deoxynivalenol resistance as a component of FHB resistance. Trop. Plant Pathol. 42, 175–183. https://doi.org/10.1007/s40858-017-0147-3
Google Scholar

György, A., Tóth, B., Varga, M., Mesterhazy, A., 2020. Methodical considerations and resistance evaluation against Fusarium graminearum and F. culmorum head blight in wheat. part 3. Susceptibility window and resistance expression. Microorganisms 8, 627. https://doi.org/10.3390/microorganisms8050627
Google Scholar

Haidukowski, M., Pascale, M., Perrone, G., Pancaldi, D., Campagna, C., Visconti, A., 2005. Effect of fungicides on the development of Fusarium head blight, yield and deoxynivalenol accumulation in wheat inoculated under field conditions with Fusarium graminearum and Fusarium culmorum. J. Sci. Food Agric. 85, 191–198. https://doi.org/10.1002/jsfa.1965
Google Scholar

Haile, J.K., N’Diaye, A., Walkowiak, S., Nilsen, K.T., Clarke, J.M., Kutcher, H.R., Steiner, B., Buerstmayr, H., Pozniak, C.J., 2019. Fusarium head blight in durum wheat: recent status, breeding directions, and future research prospects. Phytopathology 109, 1664–1675. https://doi.org/10.1094/PHYTO-03-19-0095-RVW
Google Scholar

Hao, Y., Rasheed, A., Zhu, Z., Wulff, B.B.H., He, Z., 2020. Harnessing wheat Fhb1 for Fusarium resistance. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2019.10.006
Google Scholar

Holzapfel, J., Voss, H.-H., Miedaner, T., Korzun, V., Häberle, J., Schweizer, G., Mohler, V., Zimmermann, G., Hartl, L., 2008. Inheritance of resistance to Fusarium head blight in three European winter wheat populations. Theor. Appl. Genet. 117, 1119–28. https://doi.org/10.1007/s00122-008-0850-z
Google Scholar

Hu, W. jing, Fu, L. ping, GAO, D. rong, LI, D. sheng, LIAO, S., LU, C. bin, 2023. Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in the high-quality soft wheat cultivar Yangmai 15. J. Integr. Agric. 22, 360–370. https://doi.org/10.1016/j.jia.2022.08.057
Google Scholar

Ioos, R., Belhadj, a., Menez, M., Faure, a., 2005. The effects of fungicides on Fusarium spp. and Microdochium nivale and their associated trichothecene mycotoxins in French naturally-infected cereal grains. Crop Prot. 24, 894–902. https://doi.org/10.1016/j.cropro.2005.01.014
Google Scholar

Janssen, E.M., Liu, C., Van Der Fels-Klerx, H.J., 2018. Fusarium infection and trichothecenes in barley and its comparison with wheat. World Mycotoxin J. 11, 33–46. https://doi.org/10.3920/WMJ2017.2255
Google Scholar

Jennings, P., Coates, M.E., Turner, J.A., Chandler, E.A., Nicholson, P., 2004. Determination of deoxynivalenol and nivalenol chemotypes of Fusarium culmorum isolates from England and Wales by PCR assay. Plant Pathol. 53, 182–190. https://doi.org/10.1111/j.0032-0862.2004.00985.x
Google Scholar

Ji, F., He, D., Olaniran, A.O., Mokoena, M.P., Xu, J., Shi, J., 2019. Occurrence , toxicity , production and detection of Fusarium mycotoxin : a review. Food Prod. Process. Nutr. 1, 1–14. https://doi.org/10.1186/s43014-019-0007-2
Google Scholar

Jia, H., Zhou, J., Xue, S., Li, G., Yan, H., Ran, C., Zhang, Y., Shi, J., Jia, L., Wang, X., Luo, J., Ma, Z., 2018. A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. Crop J. 6, 48–59. https://doi.org/10.1016/j.cj.2017.09.006
Google Scholar

Jiang, G.L., Huang, D.C., Shen, Q.Q., Yang, Z.L., Lu, W., Shi, J., Zhu, H., Chen, Z., Ward, R., 2006. Registration of wheat germplasms CJ W14 and CJ 9306 highly resistant to Fusarium head blight. Crop Sci. 46, 2326–2328.
Google Scholar

Kang, Z., Buchenauer, H., 2000. Cytology and ultrastructure of the infection of wheat spikes by Fusarium culmorum. Mycol. Res. 104, 1083–1093.
Google Scholar

Kazan, K., Gardiner, D.M., 2018. Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: recent progress and future prospects. Mol. Plant Pathol. 19, 1547–1562. https://doi.org/10.1111/MPP.12639
Google Scholar

Kazan, K., Gardiner, D.M., Manners, J.M., 2012. On the trail of a cereal killer: Recent advances in Fusarium graminearum pathogenomics and host resistance. Mol. Plant Pathol. 13, 399–413. https://doi.org/10.1111/j.1364-3703.2011.00762.x
Google Scholar

Klem, K., Váňová, M., Hajšlová, J., Lancová, K., Sehnalová, M., 2007. A neural network model for prediction of deoxynivalenol content in wheat grain based on weather data and preceding crop. Plant, Soil Environ. 53, 421–429.
Google Scholar

Kubo, K., Kawada, N., Fujita, M., 2013. Evaluation of Fusarium head blight resistance in wheat and the development of a new variety by integrating type I and II resistance. Jircas.Affrc.Go.Jp 47, 9–19.
Google Scholar

Lacey, J., Bateman, G.L., Mirocha, C.J., 1999. Effects of infection time and moisture on development of ear blight and deoxynivalenol production by Fusarium spp. in wheat. Ann. Appl. Biol. 134, 277–283. https://doi.org/10.1111/J.1744-7348.1999.TB05265.X
Google Scholar

Langevin, F., Eudes, F., Comeau, A., 2004. Effect of trichothecenes produced by Fusarium graminearum during Fusarium head blight development in six cereal species. Eur. J. Plant Pathol. 110, 735–746. https://doi.org/10.1023/B:EJPP.0000041568.31778.ad
Google Scholar

Laraba, I., Busman, M., Geiser, D.M., O’Donnell, K., 2022. Phylogenetic diversity and mycotoxin potential of emergent phytopathogens within the Fusarium tricinctum species complex. Phytopathology 112, 1284–1298. https://doi.org/10.1094/PHYTO-09-21-0394-R
Google Scholar

Latham, R.L., Boyle, J.T., Barbano, A., Loveman, W.G., Brown, N.A., 2023. Diverse mycotoxin threats to safe food and feed cereals. Essays Biochem. https://doi.org/10.1042/EBC20220221
Google Scholar

Lemmens, M., Buerstmayr, H., Krska, R., Schuhmacher, R., Grausgruber, H., Ruckenbauer, P., 2004. The effect of inoculation treatment and long-term application of moisture on Fusarium head blight symptoms and deoxynivalenol contamination in wheat grains. Eur. J. Plant Pathol. 110, 299–308. https://doi.org/10.1023/B:EJPP.0000019801.89902.2a
Google Scholar

Lemmens, M., Koutnik, A., Steiner, B., Buerstmayr, H., Berthiller, F., Schuhmacher, R., Maier, F., Schäfer, W., 2008. Investigations on the ability of Fhb1 to protect wheat against nivalenol and deoxynivalenol. Cereal Res. Commun. 36, 429–435. https://doi.org/10.1556/CRC.36.2008.Suppl.B.36
Google Scholar

Liu, X., Han, Q., Xu, J., Wang, J., Shi, J., 2015. Acetohydroxyacid synthase FgIlv2 and FgIlv6 are involved in BCAA biosynthesis, mycelial and conidial morphogenesis, and full virulence in Fusarium graminearum OPEN. Nat. Publ. Gr. 5, 16315. https://doi.org/10.1038/srep16315
Google Scholar

Liu, Y.Y., Sun, H.Y., Li, W., Xia, Y.L., Deng, Y.Y., Zhang, A.X., Chen, H.G., 2017. Fitness of three chemotypes of Fusarium graminearum species complex in major winter wheat-producing areas of China. PLoS One 12. https://doi.org/10.1371/journal.pone.0174040
Google Scholar

Ma, L.-J., Geiser, D.M., Proctor, R.H., Rooney, A.P., O’Donnell, K., Trail, F., Gardiner, D.M., Manners, J.M., Kazan, K., 2013. Fusarium pathogenomics. Annu. Rev. Microbiol. 67, 399–416. https://doi.org/10.1146/annurev-micro-092412-155650
Google Scholar

Maier, F.J., Miedaner, T., Hadeler, B., Felk, A., Salomon, S., Lemmens, M., Kassner, H., Schäfer, W., 2006. Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Mol. Plant Pathol. 7, 449–461. https://doi.org/10.1111/j.1364-3703.2006.00351.x
Google Scholar

Maiorano, A., Blandino, M., Reyneri, A., Vanara, F., 2008. Effects of maize residues on the Fusarium spp. infection and deoxynivalenol (DON) contamination of wheat grain. Crop Prot. 27, 182–188. https://doi.org/10.1016/j.cropro.2007.05.004
Google Scholar

Marzec-Schmidt, K., Börjesson, T., Suproniene, S., Jędryczka, M., Janavičienė, S., Góral, T., Karlsson, I., Kochiieru, Y., Ochodzki, P., Mankevičienė, A., Piikki, K., 2021. Modelling the effects of weather conditions on cereal grain contamination with deoxynivalenol in the Baltic sea region. Toxins 13, 737. https://doi.org/10.3390/toxins13110737
Google Scholar

Mesterházy, Á., 2014. Breeding for Resistance to Fusarium head blight in wheat. w: Mycotoxin Reduction in Grain Chains: A Practical Guide, Leslie J.F., Logrieco A.F. (Red.), Wiley, Hoboken, NJ, ss. 189–208. https://doi.org/10.1002/9781118832790.CH13
Google Scholar

Mesterházy, Á., Bartók, T., Lamper, C., 2003. Influence of wheat cultivar, species of Fusarium, and isolate aggressiveness on the efficacy of fungicides for control of Fusarium head blight. Plant Dis. 87, 1107–1115. https://doi.org/10.1094/PDIS.2003.87.9.1107
Google Scholar

Mesterhazy, A., Bartok, T., Mirocha, C.G., Komoroczy, R., 1999. Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed. 118, 97–110. https://doi.org/10.1046/j.1439-0523.1999.118002097.x
Google Scholar

Mesterházy, Á., György, A., Lehoczki-Krsjak, S., Tóth, B., Varga, M., 2018. The role of adapted and non-adapted resistance sources in breeding resistance of winter wheat to Fusarium head blight and deoxynivalenol contamination . World Mycotoxin J. 11, 539–557. https://doi.org/10.3920/wmj2017.2297
Google Scholar

Mesterházy, Varga, M., Tóth, B., Kótai, C., Bartók, T., Véha, A., Ács, K., Vágvölgyi, C., Lehoczki-Krsjak, S., 2018. Reduction of deoxynivalenol (DON) contamination by improved fungicide use in wheat. Part 1. Dependence on epidemic severity and resistance level in small plot tests with artificial inoculation. Eur. J. Plant Pathol. 151, 39–55. https://doi.org/10.1007/s10658-017-1350-2
Google Scholar

Miller, J.D., Greenhalgh, R., Wang, Y., Lu, M., 1991. Trichothecene chemotypes of three Fusarium species. Mycologia 82, 121–130.
Google Scholar

Miller, S.S., Chabot, D.M.P., Ouellet, T., Harris, L.J., Fedak, G., 2004. Use of a Fusarium graminearum strain transformed with green fluorescent protein to study infection in wheat (Triticum aestivum). Can. J. Plant Pathol. 26, 453–463. https://doi.org/10.1080/07060660409507165
Google Scholar

Minervini, F., Dell’Aquila, M.E., Aquila, M.E.D., 2008. Zearalenone and reproductive function in farm animals. Int. J. Mol. Sci. 9, 2570–84. https://doi.org/10.3390/ijms9122570
Google Scholar

Munkvold, G.P., 2017. Fusarium Species and Their Associated Mycotoxins, w: Moretti, A., Susca, A. (Red.), Mycotoxigenic Fungi: Methods and Protocols, Methods in Molecular Biology. Humana Press, New York, NY, ss. 51–105. https://doi.org/10.1007/978-1-4939-6707-0
Google Scholar

Munkvold, G.P., 2003. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur. J. Plant Pathol. 109, 705–713. https://doi.org/10.1023/A:1026078324268/METRICS
Google Scholar

Muthomi, J., Schütze, A., Dehne, H.-W., Mutitu, E.W., Oerke, E.-C., 2000. Characterization of Fusarium culmorum isolates by mycotoxin production and aggressiveness to winter wheat. J. Plant Dis. Prot. 107, 113–123.
Google Scholar

Nakajima, T., 2010. Fungicides application against Fusarium head blight in wheat and barley for ensuring food safety, w: Carisse, O. (Red.), Fungicides. InTech Europe, Rijeka, Croatia, ss. 140–156. https://doi.org/10.5772/13680
Google Scholar

O’Donnell, K., Kistler, H.C., Tacke, B.K., Casper, H.H., 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. 97, 7905–7910. https://doi.org/10.1073/pnas.130193297
Google Scholar

O’Donnell, K., Rooney, A.P., Proctor, R.H., Brown, D.W., McCormick, S.P., Ward, T.J., Frandsen, R.J.N., Lysøe, E., Rehner, S.A., Aoki, T., Robert, V.A.R.G., Crous, P.W., Groenewald, J.Z., Kang, S., Geiser, D.M., 2013. Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet. Biol. 52, 20–31. https://doi.org/10.1016/j.fgb.2012.12.004
Google Scholar

Ochodzki, P., Twardawska, A., Wiśniewska, H., Góral, T., 2021. Resistance to Fusarium head blight, kernel damage, and concentrations of Fusarium mycotoxins in the grain of winter wheat lines. Agronomy 11, 1690. https://doi.org/10.3390/AGRONOMY11091690
Google Scholar

Oliver, R.E., Cai, X., Friesen, T.L., Halley, S., Stack, R.W., Xu, S.S., 2008. Evaluation of Fusarium head blight resistance in tetraploid wheat ( L.). Crop Sci. 48, 213. https://doi.org/10.2135/cropsci2007.03.0129
Google Scholar

Parikka, P., Hakala, K., Tiilikkala, K., 2012. Expected shifts in Fusarium species’ composition on cereal grain in Northern Europe due to climatic change. Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess. 29, 1543–55. https://doi.org/10.1080/19440049.2012.680613
Google Scholar

Placinta, C.M., D’Mello, J.P.F., MacDonald, A.M.C., 1999. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim. Feed Sci. Technol. 78, 21–37. https://doi.org/10.1016/S0377-8401(98)00278-8
Google Scholar

Prat, N., Buerstmayr, M., Steiner, B., Robert, O., Buerstmayr, H., 2014. Current knowledge on resistance to Fusarium head blight in tetraploid wheat. Mol. Breed. 34, 1689–1699. https://doi.org/10.1007/s11032-014-0184-2
Google Scholar

Proctor, R.H., Desjardins, a. E., McCormick, S.P., Plattner, R.D., Alexander, N.J., Brown, D.W., 2002. Genetic analysis of the role of trichothecene and fumonisin mycotoxins in the virulence of Fusarium. Eur. J. Plant Pathol. 108, 691–698. https://doi.org/10.1023/A:1020637832371
Google Scholar

Qu, B., Li, H.P., Zhang, J.B., Huang, T., Carter, J., Liao, Y.C., Nicholson, P., 2008. Comparison of genetic diversity and pathogenicity of Fusarium head blight pathogens from China and Europe by SSCP and seedling assays on wheat. Plant Pathol. 57, 642–651. https://doi.org/10.1111/j.1365-3059.2008.01824.x
Google Scholar

Quarta, A., Mita, G., Haidukowski, M., Santino, A., Mulè, G., Visconti, A., 2005. Assessment of trichothecene chemotypes of Fusarium culmorum occurring in Europe. Food Addit. Contam. 22, 309–315. https://doi.org/10.1080/02652030500058361
Google Scholar

Radecka-Janusik, M., Piechota, U., Piaskowska, D., Góral, T., Czembor, P., 2022. Evaluation of Fusarium head blight resistance effects by haplotype-based genome-wide association study in winter wheat lines derived by marker backcrossing approach. Int. J. Mol. Sci. 23, 14233. https://doi.org/10.3390/IJMS232214233
Google Scholar

Reis, E.M., Boareto, C., Danelli, A.L.D., Zoldan, S.M., 2016. Anthesis, the infectious process and disease progress curves for Fusarium head blight in wheat. Summa Phytopathol. 42, 134–139. https://doi.org/10.1590/0100-5405/2075
Google Scholar

Ribichich, K.F., Lopez, S.E., Vegetti, a C., 2000. Histopathological spikelet changes produced by Fusarium graminearum in susceptible and resistant wheat cultivars. Plant Dis. 84, 794–802. https://doi.org/10.1094/PDIS.2000.84.7.794
Google Scholar

Saharan, M.S., 2020. Current status of resistant source to Fusarium head blight disease of wheat: a review. Indian Phytopathol. 73, 3–9. https://doi.org/10.1007/s42360-019-00186-x
Google Scholar

Sallam, A.H., Haas, M., Huang, Y., Tandukar, Z., Muehlbauer, G., Smith, K., Steffenson, B.J., 2023. Meta-analysis of the genetics of resistance to FHB in barley and considerations for breeding. Crop Sci. in press. https://doi.org/10.1111/pbr.13121
Google Scholar

Sarver, B.A.J., Ward, T.J., Gale, L.R., Broz, K., Corby Kistler, H., Aoki, T., Nicholson, P., Carter, J., O’Donnell, K., 2011. Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet. Biol. 48, 1096–1107. https://doi.org/10.1016/J.FGB.2011.09.002
Google Scholar

Savary, S., Ficke, A., Aubertot, J.N., Hollier, C., 2012. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. 4, 519–537. https://doi.org/10.1007/s12571-012-0200-5
Google Scholar

Schiwek, S., Alhussein, M., Rodemann, C., Budragchaa, T., Beule, L., von Tiedemann, A., Karlovsky, P., 2022. Fusarium culmorum produces NX-2 toxin simultaneously with deoxynivalenol and 3-acetyl-deoxynivalenol or nivalenol. Toxins 14. https://doi.org/10.3390/toxins14070456
Google Scholar

Shen, X., Ittu, M., Ohm, H.W., 2003. Quantitative trait loci conditioning resistance to Fusarium head blight in wheat line F201R. Crop Sci. 43, 850–857. https://doi.org/10.2135/cropsci2003.0850
Google Scholar

Skinnes, H., Semagn, K., Tarkegne, Y., Marøy, a. G., Bjørnstad, Å., 2010. The inheritance of anther extrusion in hexaploid wheat and its relationship to Fusarium head blight resistance and deoxynivalenol content. Plant Breed. 129, 149–155. https://doi.org/10.1111/j.1439-0523.2009.01731.x
Google Scholar

Snijders, C.H.A., 1990a. Genetic variation for resistance to Fusarium head blight in bread wheat. Euphytica 50, 171–179. https://doi.org/10.1007/BF00023642
Google Scholar

Snijders, C.H.A., 1990b. Diallel analysis of resistance to head blight caused by Fusarium culmorum in winter wheat. Euphytica 50, 1–9. https://doi.org/10.1007/BF00023154
Google Scholar

Spolti, P., Del Ponte, E.M., Dong, Y., Cummings, J.A., Bergstrom, G.C., 2014. Triazole sensitivity in a contemporary population of Fusarium graminearum from New York wheat and competitiveness of a tebuconazole-resistant isolate. Plant Dis. 98, 607–613. https://doi.org/10.1094/PDIS-10-13-1051-RE
Google Scholar

Starkey, D.E., Ward, T.J., Aoki, T., Gale, L.R., Kistler, H.C., Geiser, D.M., Suga, H., Tóth, B., Varga, J., O’Donnell, K., 2007. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet. Biol. 44, 1191–204. https://doi.org/10.1016/j.fgb.2007.03.001
Google Scholar

Steiner, B., Buerstmayr, M., Michel, S., Schweiger, W., Lemmens, M., Buerstmayr, H., 2017. Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Trop. Plant Pathol. 42, 165–174. https://doi.org/10.1007/s40858-017-0127-7
Google Scholar

Strange, R.N., Smith, H., 1971. A fungal growth stimulant in anthers which predisposes wheat to attack by Fusarium graminearum. Physiol. Plant Pathol. 1, 141–150. https://doi.org/10.1016/0048-4059(71)90023-3
Google Scholar

Talas, F., Parzies, H.K., Miedaner, T., 2011. Diversity in genetic structure and chemotype composition of Fusarium graminearum sensu stricto populations causing wheat head blight in individual fields in Germany. Eur. J. Plant Pathol. 131, 39–48. https://doi.org/10.1007/s10658-011-9785-3
Google Scholar

Tekle, S., Dill-Macky, R., Skinnes, H., Tronsmo, A.M., Bjørnstad, Å., 2011. Infection process of Fusarium graminearum in oats (Avena sativa L.). Eur. J. Plant Pathol. 132, 431–442. https://doi.org/10.1007/s10658-011-9888-x
Google Scholar

Tini, F., Beccari, G., Onofri, A., Ciavatta, E., Gardiner, D.M., Covarelli, L., 2020. Fungicides may have differential efficacies towards the main causal agents of Fusarium head blight of wheat. Pest Manag. Sci. 76, 3738-3748. https://doi.org/10.1002/ps.5923
Google Scholar

Tóth, B., Mesterházy, Á., Nicholson, P., Téren, J., Varga, J., 2004. mycotoxin production and molecular variability of European and American isolates of Fusarium culmorum. Eur. J. Plant Pathol. 110, 587–599. https://doi.org/10.1023/B:EJPP.0000032398.74570.ab
Google Scholar

Varga, E., Wiesenberger, G., Hametner, C., Ward, T.J., Dong, Y., Schöfbeck, D., Mccormick, S., Broz, K., Stückler, R., Schuhmacher, R., Krska, R., Kistler, H.C., Berthiller, F., Adam, G., 2015. New tricks of an old enemy: Isolates of Fusarium graminearum produce a type A trichothecene mycotoxin. Environ. Microbiol. 17, 2588–2600. https://doi.org/10.1111/1462-2920.12718
Google Scholar

Vaughan, M., Backhouse, D., Del Ponte, E.M., 2016. Climate change impacts on the ecology of Fusarium graminearum species complex and susceptibility of wheat to Fusarium head blight: A review. World Mycotoxin J. 9, 685–700. https://doi.org/10.3920/WMJ2016.2053
Google Scholar

Ward, T.J., Clear, R.M., Rooney, A.P., O’Donnell, K., Gaba, D., Patrick, S., Starkey, D.E., Gilbert, J., Geiser, D.M., Nowicki, T.W., 2008. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 45, 473–84. https://doi.org/10.1016/j.fgb.2007.10.003
Google Scholar

West, J.S., Holdgate, S., Townsend, J.A., Edwards, S.G., Jennings, P., Fitt, B.D.L., 2012. Impacts of changing climate and agronomic factors on Fusarium ear blight of wheat in the UK. Fungal Ecol. 5, 53–61. https://doi.org/10.1016/j.funeco.2011.03.003
Google Scholar

Wong, L.S.L., Tekauz, A., Leisle, D., Abramson, D., McKenzie, R.I.H., 1992. Prevalence, distribution, and importance of Fusarium head blight in wheat in Manitoba. Can. J. Plant Pathol. 14, 233–238.
Google Scholar

Xu, X.M., Parry, D.W., Nicholson, P., Thomsett, M. a., Simpson, D., Edwards, S.G., Cooke, B.M., Doohan, F.M., Brennan, J.M., Moretti, a., Tocco, G., Mule, G., Hornok, L., Giczey, G., Tatnell, J., 2005. Predominance and association of pathogenic fungi causing Fusarium ear blight in wheat in four European countries. Eur. J. Plant Pathol. 112, 143–154. https://doi.org/10.1007/s10658-005-2446-7
Google Scholar

Yang, Z., Gilbert, J., Procunier, J.D., 2006. Genetic diversity of resistance genes controlling Fusarium head blight with simple sequence repeat markers in thirty-six wheat accessions from east Asian origin. Euphytica 148, 345–352. https://doi.org/10.1007/s10681-005-9047-6
Google Scholar

Zhu, Z., Hao, Y., Mergoum, M., Bai, G., Humphreys, G., Cloutier, S., Xia, X., He, Z., 2019. Breeding wheat for resistance to Fusarium head blight in the Global North: China, USA, and Canada. Crop J. https://doi.org/10.1016/j.cj.2019.06.003
Google Scholar

Pobierz


Opublikowane
12/20/2023

Cited By / Share

Góral, T. (2023) „Fuzarioza kłosów pszenicy. Część 1. Opis choroby i charakterystyka patogenów ”, Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, (300), s. 33–45. doi: 10.37317/biul-2023-0010.

Autorzy

Tomasz Góral 
t.goral@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin - Państwowy Instytut Badawczy Poland
https://orcid.org/0000-0001-9130-6109

Statystyki

Abstract views: 105
PDF downloads: 66


Licencja

Prawa autorskie (c) 2023 Tomasz Góral

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.

Z chwilą przekazania artykułu, Autorzy udzielają Wydawcy niewyłącznej i nieodpłatnej licencji na korzystanie z artykułu przez czas nieokreślony na terytorium całego świata na następujących polach eksploatacji:

  1. Wytwarzanie i zwielokrotnianie określoną techniką egzemplarzy artykułu, w tym techniką drukarską oraz techniką cyfrową.
  2. Wprowadzanie do obrotu, użyczenie lub najem oryginału albo egzemplarzy artykułu.
  3. Publiczne wykonanie, wystawienie, wyświetlenie, odtworzenie oraz nadawanie i reemitowanie, a także publiczne udostępnianie artykułu w taki sposób, aby każdy mógł mieć do niego dostęp w miejscu i w czasie przez siebie wybranym.
  4. Włączenie artykułu w skład utworu zbiorowego.
  5. Wprowadzanie artykułu w postaci elektronicznej na platformy elektroniczne lub inne wprowadzanie artykułu w postaci elektronicznej do Internetu, lub innej sieci.
  6. Rozpowszechnianie artykułu w postaci elektronicznej w internecie lub innej sieci, w pracy zbiorowej jak również samodzielnie.
  7. Udostępnianie artykułu w wersji elektronicznej w taki sposób, by każdy mógł mieć do niego dostęp w miejscu i czasie przez siebie wybranym, w szczególności za pośrednictwem Internetu.

Autorzy poprzez przesłanie wniosku o publikację:

  1. Wyrażają zgodę na publikację artykułu w czasopiśmie,
  2. Wyrażają zgodę na nadanie publikacji DOI (Digital Object Identifier),
  3. Zobowiązują się do przestrzegania kodeksu etycznego wydawnictwa zgodnego z wytycznymi Komitetu do spraw Etyki Publikacyjnej COPE (ang. Committee on Publication Ethics), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. Wyrażają zgodę na udostępniane artykułu w formie elektronicznej na mocy licencji CC BY-SA 4.0, w otwartym dostępie (open access),
  5. Wyrażają zgodę na wysyłanie metadanych artykułu do komercyjnych i niekomercyjnych baz danych indeksujących czasopisma.

Inne teksty tego samego autora

1 2 3 > >> 

Podobne artykuły

<< < 1 2 3 4 5 6 7 8 9 10 11 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.