Fenotypowanie roślin. Konferencja EPPN 2020 w Tartu/ Estonia

Krystyna Rybka

k.rybka@ihar.edu.pl
Zakład Biochemii i Fizjologii Roślin, Instytut Hodowli i Aklimatyzacji Roślin IHAR — PIB w Radzikowie (Poland)

Abstrakt

Utrzymanie tempa wzrostu produkcji żywności proporcjonalnego do wzrostu liczby ludzi na świecie jest wyzwaniem dla hodowli. Rozwój nowoczesnych metod i komputeryzacja przetwarzania danych umożliwiają zwiększenie przepustowości programów hodowlanych. Jednakże ponieważ to fenotyp, czyli determinowany przez środowisko genotyp, jest wyznacznikiem ostatecznej wartości użytkowej nowych odmian, ocena fenotypów w sposób przystający do numerycznego przetwarzania danych zaczyna determinować tempo prac. Dlatego też w ramach Programu Ramowego UE, HORIZON 2020, finansowany jest projekt EPPN 2020 (European Plant Phenotyping Network), w celu zapewnienia dostępu do najnowocześniejszych obiektów, technik i metod oraz do wiedzy na temat gromadzenia i przetwarzania danych. W artykule omówiono konferencję EPPN 2020, która odbyła się w Estonii w listopadzie 2017 oraz przedstawiono ośrodki należące do sieci EPPN, do których można aplikować w celu zrealizowania doświadczeń na własnym materiale, własnymi siłami, z pomocą miejscowych pracowników. Nabory będą odbywały się sześciokrotnie, co pół roku, począwszy od 11 grudnia 2017.

Instytucje finansujące

NCBiR nr PBS3/B8/19/2015

Słowa kluczowe:

szklarnia, zboża, pszenica, jęczmień, pszenżyto, żyto, Poaceae

Araus J. L., Cairns J. E. 2014. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 19: 52 — 61.
Google Scholar

Avramova V., Nagel K. A., Abdelgawad H., Bustos D., DuPlessis M., Fiorani F., Beemster G. T. S. 2016. Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage. J. Exp. Bot. 67: 2453 — 2466.
Google Scholar

Bénard C., Gibon Y. 2016. Measurement of enzyme activities and optimization of continuous and discontinuous assays, current protocols in plant biology. John Wiley & Sons, Inc.
Google Scholar

Cabrera-Bosquet L., Fournier C., Brichet N., Welcker C., Suard B., Tardieu F. 2016. High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. New Phytol. 212: 269 — 281.
Google Scholar

Caldeira C. F., Jeanguenin L., Chaumont F., Tardieu F. 2014. Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance. Nature Communications 5: 5365.
Google Scholar

Camargo A., Papadopoulou D., Spyropoulou Z., Vlachonasios K., Doonan J.H., Gay, A.P. 2014. Objective definition of rosette shape variation using a combined computer vision and data mining approach. PLoS ONE 9 (5): e96889.
Google Scholar

Clauw P., Coppens F., De Beuf K., Dhondt S., Van Daele T., Maleux, K., Storme, V., Clement L., Gonzalez N., Inze D. 2015. Leaf responses to mild drought stress in natural variants of Arabidopsis thaliana. Plant Physiology 167: 800 — 816.
Google Scholar

Cohu C. M., Muller O., Stewart J. J., Demmig-Adams, B., Adams W. W. 2013. Association between minor loading vein architecture and light- and CO(2)-saturated rates of photosynthetic oxygen evolution among Arabidopsis thaliana ecotypes from different latitudes. Frontiers in Plant Science 4: 264.
Google Scholar

Cointault F., Han S., Rabatel G., Jay S., Rousseau D., Billiot B., Simon J.-C., Salon C. 2017. 3D Imaging Systems for Agricultural Applications: Characterization of Crop and Root Phenotyping, in: Sergiyenko, O., Rodriguez-Quiñonez, J.C. (Eds.), Developing and Applying Optoelectronics in Machine Vision. IGI Global, Hershey, PA, USA: 236 — 272.
Google Scholar

Coupel-Ledru A., Lebon E., Christophe A., Gallo A., Gago P., Pantin F., Doligez A., Simonneau T. 2016. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proceedings of the National Academy of Sciences 113: 8963 — 8968.
Google Scholar

de Dorlodot S., Forster B., Pagès L., Price A., Tuberosa R., Draye X. 2007. Root system architecture: opportunities and constraints for genetic improvement of crops. Trends in Plant Science 12: 474 — 481.
Google Scholar

Dusschoten van D., Metzner R., Kochs J., Postma J., Pflugfelder D., Buhler J., Schurr U., Jahnke S. 2016. Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging. Plant Physiol. 170: 1176 — 1188., DOI 1110.1104/ 1115.01388. Epub 02016 Jan 01384.
Google Scholar

Fisher L. H. C., Han J., Corke F. M. K., Akinyemi A., Didion T., Nielsen K. K., Doonan J. H., Mur L. A. J., Bosch M. 2016. Linking dynamic phenotyping with metabolite analysis to study natural variation in drought responses of Brachypodium distachyon. Frontiers in Plant Science 7: 1751.
Google Scholar

Flood P. J., Kruijer W., Schnabel S. K., van der Schoor R., Jalink H., Snel J .F., Harbinson J., Aarts M. G. 2016. Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods 12: 16 — 113.
Google Scholar

Gioia T., Nagel K. A., Beleggia R., Fragasso M., Ficco D. B. M., Pieruschka R., De Vita P., Fiorani F., Papa R. 2015. Impact of domestication on the phenotypic architecture of durum wheat under contrasting nitrogen fertilization. Journal of Experimental Botany 66: 5519 — 5530.
Google Scholar

Granier C., Aguirrezabal L., Chenu K., Cookson S. J., Dauzat, M., Hamard P., Thioux J. J., Rolland G., Bouchier-Combaud S., Lebaudy A., Muller B., Simonneau T., Tardieu F. 2006. Phenopsis, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol 169: 623 — 635.
Google Scholar

Huang X. Y., Salt D. E. 2016. Plant Ionomics: from elemental profiling to environmental adaptation. Mol Plant 9: 787 — 797.
Google Scholar

Junker A., Muraya M. M., Weigelt-Fischer K., Arana-Ceballos F., Klukas C., Melchinger A. E., Meyer R. C., Riewe D., Altmann T. 2015. Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems. Frontiers in Plant Science 5.
Google Scholar

Kjaer K., Ottosen C.-O. 2015. 3D Laser triangulation for plant phenotyping in challenging environments. Sensors 15: 13533.
Google Scholar

Lobet G., Pound M. P., Diener J., Pradal C., Draye X., Godin C., Javaux M., Leitner D., Meunier F., Nacry P., Pridmore T. P., Schnepf A. 2015. Root system markup language: toward a unified root architecture description language. Plant Physiology 167: 617 — 627.
Google Scholar

Luedemann, G., Matyssek, R., Winkler, J.B., Grams, T.E.E., 2009. Contrasting ozone × pathogen interaction as mediated through competition between juvenile European beech (Fagus sylvatica) and Norway spruce (Picea abies). Plant and Soil 323: 47 — 60.
Google Scholar

Mairhofer S., Zappala S., Tracy S. R., Sturrock C., Bennett M., Mooney S. J., Pridmore T. 2012. RooTrak: automated recovery of three-dimensional plant root architecture in soil from x-ray microcomputed tomography images using visual tracking. Plant Physiology 158: 561 — 569.
Google Scholar

Meunier, F., Couvreur, V., Draye, X., Vanderborght, J., Javaux, M. 2017. Towards quantitative root hydraulic phenotyping: novel mathematical functions to calculate plant-scale hydraulic parameters from root system functional and structural traits. J. Math. Biol. 2: 017 — 1111.
Google Scholar

Neumann K., Klukas C., Friedel S., Rischbeck P., Chen D., Entzian A., Stein N., Graner A., Kilian B. 2015. Dissecting spatiotemporal biomass accumulation in barley under different water regimes using high-throughput image analysis. Plant, Cell & Environment 38: 1980 — 1996.
Google Scholar

Parent B., Tardieu F. 2012. Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytol. 194: 760 — 774.
Google Scholar

Paul K., Pauk J., Deak Z., Sass L., Vass I. 2016. Contrasting response of biomass and grain yield to severe drought in Cappelle Desprez and plainsman V wheat cultivars. Peerj 18.
Google Scholar

Pavicic M., Mouhu K., Wang F., Bilicka M., Chovanček E., Himanen K. 2017. Genomic and phenomic screens for flower related ring type ubiquitin e3 ligases in Arabidopsis. Frontiers in Plant Science 8.
Google Scholar

Petrozza A., Santaniello A., Summerer S., Di Tommaso G., Di Tommaso D., Paparelli E., Piaggesi A., Perata P., Cellini F. 2014. Physiological responses to Megafol® treatments in tomato plants under drought stress: A phenomic and molecular approach. Scientia Horticulturae 174: 185 — 192.
Google Scholar

Riewe D., Wiebach J., Altmann T. 2017. Structure annotation and quantification of wheat seed oxidized lipids by high-resolution LC-MS/MS. Plant Physiol 175: 600 — 618.
Google Scholar

Rooijen van R., Aarts M. G., Harbinson J. 2015. Natural genetic variation for acclimation of photosynthetic light use efficiency to growth irradiance in Arabidopsis. Plant Physiol 167: 1412 — 1429.
Google Scholar

Rossato L., MacDuff J. H., Laine P., Le Deunff E., Ourry A. 2002. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: effects of methyl jasmonate on nitrate uptake, senescence, growth, and VSP accumulation. Journal of Experimental Botany 53: 1131 — 1141.
Google Scholar

Rousseau C., Belin E., Bove E., Rousseau D., Fabre F., Berruyer R., Guillaumès J., Manceau C., Jacques M.-A., Boureau T. 2013. High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. Plant Methods 9: 17 — 17.
Google Scholar

Rousseau C., Hunault G., Gaillard S., Bourbeillon J., Montiel G., Simier P., Campion C., Jacques M.-A., Belin E., Boureau T. 2015. Phenoplant: a web resource for the exploration of large chlorophyll fluorescence image datasets. Plant Methods 11: 24.
Google Scholar

Rybka K. 2009. TILLING i FOX-hunting: nowe metody analizy funkcjonalnej genów Postępy Biologii Komórki 36: 539 — 554., DOI: 110.2478/v10052-10011-10001-10056.
Google Scholar

Rybka K., Nita Z. 2014. Nowoczesne fenotypy zbóż do uprawy na obszarach zagrożonych suszą. Biul. IHAR 273: 55 — 72.
Google Scholar

Sadeghi-Tehran P., Sabermanesh K., Virlet N., Hawkesford M. J. 2017. Automated method to determine two critical growth stages of wheat: heading and flowering. Frontiers in Plant Science 8.
Google Scholar

Skirycz A., Vandenbroucke K., Clauw P., Maleux K., De Meyer B., Dhondt S., Pucci A., Gonzalez N., Hoeberichts F., Tognetti V. B., Galbiati M., Tonelli C., Van Breusegem F., Vuylsteke M., Inze D. 2011. Survival and growth of Arabidopsis plants given limited water are not equal. Nature Biotechnology 29: 212 — 214.
Google Scholar

Tardieu F., Cabrera-Bosquet L., Pridmore T., Bennett M 2018. Plant phenomics, from sensors to knowledge. Current Biology 27: R770 — R783.
Google Scholar

Thiel S., Döhring T., Köfferlein M., Kosak A., Martin P., Seidlitz H. K. 1996. A phytotron for plant stress research: How far can artificial lighting compare to natural sunlight? Journal of Plant Physiology 148: 456 — 463.
Google Scholar

Turc O., Bouteillé M., Fuad-Hassan A., Welcker C., Tardieu F. 2016. The growth of vegetative and reproductive structures (leaves and silks) respond similarly to hydraulic cues in maize. New Phytologist 212: 377 — 388.
Google Scholar

Virlet N., Sabermanesh K., Sadeghi-Tehran P., Hawkesford M. J. 2017. Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biology 44: 143 — 153.
Google Scholar

Pobierz


Opublikowane
08/29/2018

Cited By / Share

Rybka, K. (2018) „Fenotypowanie roślin. Konferencja EPPN 2020 w Tartu/ Estonia”, Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, (282), s. 161–174. doi: 10.37317/biul-2017-0022.

Autorzy

Krystyna Rybka 
k.rybka@ihar.edu.pl
Zakład Biochemii i Fizjologii Roślin, Instytut Hodowli i Aklimatyzacji Roślin IHAR — PIB w Radzikowie Poland

Statystyki

Abstract views: 149
PDF downloads: 104


Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.

Z chwilą przekazania artykułu, Autorzy udzielają Wydawcy niewyłącznej i nieodpłatnej licencji na korzystanie z artykułu przez czas nieokreślony na terytorium całego świata na następujących polach eksploatacji:

  1. Wytwarzanie i zwielokrotnianie określoną techniką egzemplarzy artykułu, w tym techniką drukarską oraz techniką cyfrową.
  2. Wprowadzanie do obrotu, użyczenie lub najem oryginału albo egzemplarzy artykułu.
  3. Publiczne wykonanie, wystawienie, wyświetlenie, odtworzenie oraz nadawanie i reemitowanie, a także publiczne udostępnianie artykułu w taki sposób, aby każdy mógł mieć do niego dostęp w miejscu i w czasie przez siebie wybranym.
  4. Włączenie artykułu w skład utworu zbiorowego.
  5. Wprowadzanie artykułu w postaci elektronicznej na platformy elektroniczne lub inne wprowadzanie artykułu w postaci elektronicznej do Internetu, lub innej sieci.
  6. Rozpowszechnianie artykułu w postaci elektronicznej w internecie lub innej sieci, w pracy zbiorowej jak również samodzielnie.
  7. Udostępnianie artykułu w wersji elektronicznej w taki sposób, by każdy mógł mieć do niego dostęp w miejscu i czasie przez siebie wybranym, w szczególności za pośrednictwem Internetu.

Autorzy poprzez przesłanie wniosku o publikację:

  1. Wyrażają zgodę na publikację artykułu w czasopiśmie,
  2. Wyrażają zgodę na nadanie publikacji DOI (Digital Object Identifier),
  3. Zobowiązują się do przestrzegania kodeksu etycznego wydawnictwa zgodnego z wytycznymi Komitetu do spraw Etyki Publikacyjnej COPE (ang. Committee on Publication Ethics), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. Wyrażają zgodę na udostępniane artykułu w formie elektronicznej na mocy licencji CC BY-SA 4.0, w otwartym dostępie (open access),
  5. Wyrażają zgodę na wysyłanie metadanych artykułu do komercyjnych i niekomercyjnych baz danych indeksujących czasopisma.

Inne teksty tego samego autora