Trawy wieloletnie z rodzaju Miscanthus — potencjalne źródło energii odnawialnej

Sandra Cichorz

s.cichorz@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Zakład Genetyki i Hodowli Roślin Korzeniowych, Bydgoszcz (Poland)

Maria Gośka


Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Zakład Genetyki i Hodowli Roślin Korzeniowych, Bydgoszcz (Poland)

Anna Litwiniec


Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Zakład Genetyki i Hodowli Roślin Korzeniowych, Bydgoszcz (Poland)

Abstrakt

Wyczerpywanie naturalnych pokładów paliw konwencjonalnych oraz wzrastająca emisja gazów cieplarnianych zmuszają do poszukiwania alternatywnych zasobów energetycznych. Zgodnie z założeniami Dyrektywy 2009/28/WE, Polska jako kraj członkowski Unii Europejskiej, zobligowana jest to zwiększenia udziału odnawialnych źródeł energii w finalnym jej zużyciu do 15% w 2020 r. Największy udział zarówno w europejskim, jak i polskim bilansie energii odnawialnej ma biomasa stała. Z powyższych względów coraz większego znaczenia nabierają uprawy roślin energetycznych. Wieloletnie trawy z rodzaju Miscanthus postrzegane są jako potencjalny surowiec do produkcji biomasy. W artykule przedstawione zostały zagadnienia związane z historią sprowadzenia miskanta olbrzymiego do Europy i Polski, charakterystyką dostępnej puli genetycznej, a także doświadczeniami z zakresu uprawy i hodowli wraz z cechami wymagającymi ulepszenia.


Słowa kluczowe:

biomasa, trawy energetyczne, Miscanthus

Ahonsi M. O., Agindotan B. O., Williams D. W., Arundale R., Gray M. E., Voigt T. B., Bradley C. A. 2010. First report of Pithomyces chartarum causing a leaf blight of Miscanthus × giganteus in Kentucky. Plant Disease 94: 480.
Google Scholar

Ahonsi M. O., Ames K. A., Gray M. E., Bradley C. A. 2013. Biomass reducing potential and prospective fungicide control of a new leaf blight of Miscanthus × giganteus caused by Leptosphaerulina chartarum. BioEnergy Research 6: 737 — 745.
Google Scholar

Beccari G., Covarelli L., Balmas V., Tosi L. 2010. First report of Miscanthus × giganteus rhizome rot caused by Fusarium avenaceum, Fusarium oxysporum, and Muhor hiemalis. Australasian Plant Disease Notes. Australasian Plant Pathology Society 5: 28 — 29.
Google Scholar

Bradshaw J. D., Prasifka J. R., Steffey K. L., Gray M. E. 2010. First report of field populations of two potential aphid pests of the bioenergy crop Miscanthus × giganteus. Florida Entomologist 93: 135 — 137.
Google Scholar

Celińska A. 2009. Charakterystyka różnych gatunków upraw energetycznych w aspekcie ich wykorzystania w energetyce zawodowej. Polityka Energetyczna t. 12, z. 2/1: 59 — 72.
Google Scholar

Christian D.G., Lamptey J. N. L., Forde S. M. D., Plumb R. T. 1994. First report of barley yellow dwarf luteovirus on Miscanthus in the United Kingdom. The European Journal of Plant Pathology 100: 167 — 170.
Google Scholar

Christian D. G., Yates N. E., Riche A. B. 2005. Establishing Miscanthus sinensis from seed using conventional sowing methods. Industrial Crops and Products 21: 109 — 111.
Google Scholar

Chung J. H., Kim D. S. 2012. Miscanthus as a Potential Bioenergy Crop in East Asia. Journal of Crop Science and Biotechnology 15: 65 — 77.
Google Scholar

Clifton-Brown J. C., Lewandowski I. 2000. Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytologist 148: 287 — 294.
Google Scholar

Clifton-Brown J. C., Lewandowski I., Andersson B., Basch G., Christian D. G., Bonderup-Kjeldsen J., Jørgensen U., Mortensen J. V., Riche A. B., Schwarz K. U., Tayebi K., Teixeira F. 2001. Performance of 15 Miscanthus Genotypes at Five Sites in Europe. Agronomy Journal 93: 1013 — 1019.
Google Scholar

Clifton-Brown J. C., Lewandowski I., Bangerth F., Jones M. B. 2002. Comparative responses to water stress in stay-green, rapid- and slow senescing genotypes of the biomass crop, Miscanthus. New Phytologist 154: 335 — 345.
Google Scholar

Clifton-Brown J. C., Chiang Y. Ch., Hodkinson T. R. 2008. Miscanthus: genetic resources and breeding potential to enhance bioenergy production. In: Genetic improvement of bioenergy crops. W. Vermerris (ed.) Springer: 273 — 293.
Google Scholar

DEFRA (Department for Environment Food and Rural Affairs). 2013, Science and Research Projects, Molecular investigation of diversity in wild source germplasm to support Miscanthus breeding — NF0411(1), http://randd.defra.gov.uk (March, 2014).
Google Scholar

Deuter M., Jeżowski S. 1998. Szanse i problemy hodowli traw z rodzaju Miscanthus jako roślin alternatywnych. Hodowla Roślin i Nasiennictwo 2: 45 — 48.
Google Scholar

Dwiyanti M. S., Stewart J. R., Yamada T. 2013. Germplasm Resources of Miscanthus and Their Application in Breeding. In: Bioenergy Feedstocks: Breeding and Genetics. Saha M. C., Bhandhari H. S., Bouton J. H. (ed.). John Wiley & Sons, Inc.: 49 — 66.
Google Scholar

Dyrektywa 2009/28/WE. Dyrektywa Parlamentu Europejskiego i Rady 2009/28/WE z dnia 23 kwietnia 2009 r. w sprawie promowania stosowania energii ze źródeł odnawialnych zmieniająca i w następstwie uchylająca dyrektywy 2001/77/WE oraz 2003/30/WE. Dziennik Urzędowy Unii Europejskiej 140: 16 — 62.
Google Scholar

EEA (European Environment Agency). 2006. How much bioenergy can Europe produce without harming the environment? European Environment Agency. Report 7/2006.
Google Scholar

Farrell A. D., Clifton-Brown J. C., Lewandowski I., Jones M. B. 2006. Genotypic variation in cold tolerance influences the yield of Miscanthus. Annals of Applied Biology 149: 337 — 345.
Google Scholar

Fiedler P., Mendaluk J., Rösler, A. 1998. Miscanthus sinensis — biomasa i oczyszczanie ścieków. Hodowla Roślin i Nasiennictwo 2: 49 — 53.
Google Scholar

Gajewski R. 2011. Potencjał rynkowy biomasy z przeznaczeniem na cele energetyczne. Czysta Energia 1: 22 — 24.
Google Scholar

Gauder M., Graeff-Hönninger S., Lewandowski I., Claupein W. 2012. Long-term yield and performance of 15 different Miscanthus genotypes in southwest Germany. Annals of Applied Biology 160: 126 — 136.
Google Scholar

Gelfand I., Sahajpal R., Zhang X., Izaurralde R. C., Gross K. L., Robertson G. P. 2013. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493: 514 — 517.
Google Scholar

Ginalski Z. 2013. Odnawialne źródła energii szansą rozwoju obszarów wiejskich. Zagadnienia Doradztwa Rolniczego 2: 79 — 89.
Google Scholar

Głowacka K. 2011. A review of the genetic study of the energy crop Miscanthus. Biomass and Bioenergy 35: 2445 — 2454.
Google Scholar

Głowacka K., Jeżowski S. 2009. Genetic and nongenetic factors influencing callus induction in Miscanthus sinensis (Anderss.) anther cultures. Journal of Applied Genetics 50: 341 — 345.
Google Scholar

Głowacka K., Jeżowski S., Kaczmarek Z. 2010. In vitro induction of polyploidy by colchicine treatment of shoots and preliminary characterization of induced polyploids in two Miscanthus species. Industrial Crops and Products 32: 88 — 96.
Google Scholar

Greef J. M., Deuter M., Jung C., Schondelmaier J. 1997. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genetic Resources and Crop Evolution 44: 185 — 195.
Google Scholar

Halbert S. E. 2002. Pest alert; Asian Miscanthus aphid Melanaphiss orini. Triology 41, DPI/FDACS.
Google Scholar

Hastings A., Clifton-Brown J., Wattenbach M., Mitchell C. P., Stampfl P., Smith P. 2009. Future energy potential of Miscanthus in Europe. Global Change Biology Bioenergy 1: 180 — 196.
Google Scholar

Heaton E. A., Clifton-Brown J., Voigt T. B., Jones M. B., Long S. P. 2004 a. Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitigation and Adaptation Strategies for Global Change 9: 433 — 451.
Google Scholar

Heaton E. A., Voigt T., Long S. P. 2004 b. A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass and Bioenergy 27: 21 — 30.
Google Scholar

Heaton E. A., Dohleman F. G, Miguez A. F., Juvik J. A., Lozovaya V., Widholm J., Zabotina O. A., Mcisaac G. F., Mark B. 2010. Miscanthus: a promising biomass crop. Advances in Botanical Research 56: 75 — 137.
Google Scholar

Hernández P., Dorado G., Laurie D. A., Martín A., Snape J. W. 2001. Microsatellites and RFLP probes from maize are efficient sources of molecular markers for the biomass energy crop Miscanthus. Theoretical and Applied Genetics 102: 616 — 622.
Google Scholar

Hodkinson T. R., Chase M. W., Renvoize S. A. 2002 a. Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Annals of Botany 89: 627 — 636.
Google Scholar

Hodkinson T. R., Chase M. W., Takahashi C., Leitch I. J., Bennett M. D., Renovoize S. A. 2002 b. The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). American Journal of Botany 89: 279 — 286.
Google Scholar

Hodkinson T. R., Chase M. W., Lledo M. D., Salamin N., Renvoize S. A. 2002 c. Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. Journal of Plant Research 115: 381 — 392.
Google Scholar

Huggett D. A. J., Leather S. R., Walters K. F. A. 1999. Suitability of the biomass crop Miscanthus sinensis as a host for the aphids Rhopalosiphum padi and Rhopalosiphum maidis, and its susceptibility to the plant luteovirus Barley Yellow Dwarf Virus. Agricultural and Forest Entomology 1: 143 — 149.
Google Scholar

James G. 2004. Sugarcane. Blackwell, Oxford.
Google Scholar

Jeżowski S. 1999. Miskant chiński (Miscanthus sinensis (Thunb.) Andersson) – źródło odnawialnych i ekologicznych surowców dla Polski. Zeszyty Problemowe Postępów Nauk Rolniczych 468: 159 — 166.
Google Scholar

Jeżowski S. 2008. Yield traits of six clones of Miscanthus in the first 3 years following planting in Poland. Industrial Crops and Products 27: 65 — 68.
Google Scholar

Jørgensen U. 1997. Genotypic variation in dry matter accumulation and content of N, K and Cl in Miscanthus in Denmark. Biomass and Bioenergy 12: 155 — 169.
Google Scholar

Jørgensen U. 2011. Benefits versus risks of growing biofuels crops: the case of Miscanthus. Current Opinion in Environmental Sustainability 3: 24 — 30.
Google Scholar

Kochanowska R., Gamrat R. 2007. Uprawa miskanta cukrowego (Miscanthus sacchariflorus (Maxim.) Hack.) — zagrożenia dla polskich pól i lasów. Łąkarstwo w Polsce 10: 223 — 228.
Google Scholar

Krasuska E., Rosenqvist H. 2012. Economics of energy crops in Poland today and in the future. Biomass and Bioenergy 38: 23 — 33.
Google Scholar

Lafferty J., Lelley T. 1994. Cytogenetic studies of different Miscanthus species with potential for agricultural use. Plant Breeding 113: 246 — 249.
Google Scholar

Lewandowski I., Kicherer A. 1997. Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus × giganteus. European Journal of Agronomy 6: 163 — 177.
Google Scholar

Lewandowski I., Clifton-Brown J. C., Scurlock J. M. O., Huisman W. 2000. Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy 19: 209 — 227.
Google Scholar

Linde-Laursen I. 1993. Cytogenetic analysis of Miscanthus ‘Giganteus’, an interspecific hybrid. Hereditas 119: 297 — 300.
Google Scholar

Majewska-Sawka A. 2009. Miskant olbrzymi — rozwój plantacji w Polsce i zagranicą. Czysta Energia 11: 34 — 35.
Google Scholar

Majtkowski W., Majtkowska G. 1998. Gatunki alternatywne traw i możliwości ich wykorzystania na terenach zdegradowanych i zdewastowanych. Archiwum Ochrony Środowiska 24: 111 — 121.
Google Scholar

Majtkowski W. 2004. Trawy z rodzaju Miscanthus Anders. — zróżnicowanie morfologiczne i fenologiczne. Zeszyty Problemowe Postępów Nauk Rolniczych 497: 431 — 439.
Google Scholar

Matumura M, Hasegawa T, Saijoh Y. 1985. Ecological aspects of Miscanthus sinensis var. condensatus, M. sacchariflorus, and their 3x-, 4x-hybrids, 1: Process of vegetative spread. Research Bulletin of the Faculty of Agriculture 50: 423 — 433.
Google Scholar

MG (Ministerstwo Gospodarki). 2009. Polityka energetyczna Polski do 2030 roku. Załącznik do uchwały nr 202/2009 Rady Ministrów z dnia 10 listopada 2009 r.
Google Scholar

MG (Ministerstwo Gospodarki). 2013. Rozporządzeniem Ministra Gospodarki z dnia 13 listopada 2013 r. zmieniające rozporządzenie w sprawie szczegółowego zakresu obowiązków uzyskania i przedstawienia do umorzenia świadectw pochodzenia, uiszczenia opłaty zastępczej, zakupu energii elektrycznej i ciepła wytworzonych w odnawialnych źródłach energii oraz obowiązku potwierdzania danych dotyczących ilości energii elektrycznej wytworzonej w odnawialnym źródle energii. Dz. U. z 2013r. poz. 1362.
Google Scholar

Nishiwaki A., Mizuguti A., Kuwabara S., Toma Y., Ishigaki G., Miyashita T., Yamada T., Matuura H., Yamaguchi S., Rayburn A. L., Akashi R., Stewart J. R. 2011. Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. American Journal of Botany 98: 154 — 159.
Google Scholar

O'Neill N. R., Farr D. F. 1996. Miscanthus blight, a new foliar disease of ornamental grasses and sugarcane incited by Leptosphaeria sp., and its anamorphic state Stagonospora sp. Plant Disease 80: 980 — 987.
Google Scholar

Płażek A., Dubert F., Żur I., Waligórski P. 2007. In vitro culture of Miscanthus × giganteus. Zeszyty Problemowe Postępów Nauk Rolniczych 523: 175 — 184.
Google Scholar

Płażek A., Dubert F., Marzec K. 2009. Cell membrane permeability and antioxidant activities in the rootstocks of Miscanthus × giganteus as an effect of cold and frost treatment. Journal of Applied Botany and Food Quality 82: 158 — 162.
Google Scholar

Płażek A., Dubert F. 2010. Improvement of medium for Miscanthus × giganteus callus induction and plant regeneration. Acta Biologica Cracoviensia Series Botanica 52: 105 — 110.
Google Scholar

Płażek A., Dubert F., Janowiak F., Krepski T., Tatrzanska M. 2011. Plant age and in vitro or in vivo propagation considerably affect cold tolerance of Miscanthus × giganteus. The European Journal of Agronomy 34: 163 — 171.
Google Scholar

Pude R., Franken H., Diepenbrock W., Greef J. M. 1997. Ursachen der Auswinterung von einjährigen Miscanthus-Beständen. Pflanzenbauwissenchaften 1: 171 — 176.
Google Scholar

Quinn L. D., Matlaga D. P., Stewart J. R., Davis A. S. 2011. Empirical evidence of long-distance display in Miscanthus sinensis and Miscanthus × giganteus. Invasive Plant Science and Management 4: 142 — 150.
Google Scholar

Sacks E. J., Juvik J. A., Lin Q., Stewart J. R., Yamada T. 2013. The gene pool of Miscanthus species and its improvement. In: Genomics of the Saccharinae, Plant Genetics and Genomics: Crops and Models. Paterson A. H. (ed). New York: Springer Science + Business Media 11: 73 — 100.
Google Scholar

Sang T., Zhu W. 2011. China’s bioenergy potential. Global Change Biology Bioenergy 3: 79 — 90.
Google Scholar

Scurlock J. M. O. 1999. Miscanthus: a review of European experience with a novel energy crop. ORNL Technical Memorandum TM-13732. Oak Ridge National Laboratory. Oak Ridge. Tennessee: 18 pp.
Google Scholar

Smeets E. M. W., Lewandowski I. M., Faaij A. P. C. 2009. The economical and environmental performance of Miscanthus and switchgrass production and supply chains in a European setting. Renewable and Sustainable Energy Reviews 13: 1230 — 1245.
Google Scholar

Stampfl P. F., Clifton-Brown J. C., Jones M. B. 2007. European-wide GIS-based modelling system for quantifying the feedstock from Miscanthus and the potential contribution to renewable energy targets. Global Change Biology Bioenergy 13: 2283 — 2295.
Google Scholar

Thinggaard K. 1997. Study of the role of Fusarium in the field establishment problem of Miscanthus. Acta Agriculturae Scandinavica 47: 238 — 241.
Google Scholar

US Senate 2007. Renewable Fuels, Consumer Protection, and Energy Efficiency Act of 2007 (S. 1419). Washington, DC: US Senate. June 21.
Google Scholar

Zamora D. S., Wyatt G. J., Apostol K. G., Tschirner U. 2013. Biomass yield, energy values, and chemical composition of hybrid poplars in short rotation woody crop production and native perennial grasses in Minnesota, USA. Biomass and Bioenergy 49: 222 — 230.
Google Scholar

Ziegenhagen B., Junge R., Muhs H. J. 1995. Effects of frost temperatures on early growth of Miscanthus ‘Giganteus’. In: Chartier P., Beenackers A. A. C. M., Grassi G., (ed.) Biomass for Energy, Environment, Agriculture and Industry. Elsevier, Oxford, 565 — 574.
Google Scholar

Zub H. W., Brancourt-Hulmel M. 2010. Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. Agronomy for Sustainable Development 30: 201 — 214.
Google Scholar

Pobierz


Opublikowane
12/31/2014

Cited By / Share

Cichorz, S., Gośka, M. i Litwiniec, A. (2014) „Trawy wieloletnie z rodzaju Miscanthus — potencjalne źródło energii odnawialnej”, Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, (274), s. 133–151. doi: 10.37317/biul-2014-0013.

Autorzy

Sandra Cichorz 
s.cichorz@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Zakład Genetyki i Hodowli Roślin Korzeniowych, Bydgoszcz Poland

Autorzy

Maria Gośka 

Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Zakład Genetyki i Hodowli Roślin Korzeniowych, Bydgoszcz Poland

Autorzy

Anna Litwiniec 

Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Zakład Genetyki i Hodowli Roślin Korzeniowych, Bydgoszcz Poland

Statystyki

Abstract views: 101
PDF downloads: 65


Licencja

Prawa autorskie (c) 2014 Sandra Cichorz, Maria Gośka, Anna Litwiniec

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.

Z chwilą przekazania artykułu, Autorzy udzielają Wydawcy niewyłącznej i nieodpłatnej licencji na korzystanie z artykułu przez czas nieokreślony na terytorium całego świata na następujących polach eksploatacji:

  1. Wytwarzanie i zwielokrotnianie określoną techniką egzemplarzy artykułu, w tym techniką drukarską oraz techniką cyfrową.
  2. Wprowadzanie do obrotu, użyczenie lub najem oryginału albo egzemplarzy artykułu.
  3. Publiczne wykonanie, wystawienie, wyświetlenie, odtworzenie oraz nadawanie i reemitowanie, a także publiczne udostępnianie artykułu w taki sposób, aby każdy mógł mieć do niego dostęp w miejscu i w czasie przez siebie wybranym.
  4. Włączenie artykułu w skład utworu zbiorowego.
  5. Wprowadzanie artykułu w postaci elektronicznej na platformy elektroniczne lub inne wprowadzanie artykułu w postaci elektronicznej do Internetu, lub innej sieci.
  6. Rozpowszechnianie artykułu w postaci elektronicznej w internecie lub innej sieci, w pracy zbiorowej jak również samodzielnie.
  7. Udostępnianie artykułu w wersji elektronicznej w taki sposób, by każdy mógł mieć do niego dostęp w miejscu i czasie przez siebie wybranym, w szczególności za pośrednictwem Internetu.

Autorzy poprzez przesłanie wniosku o publikację:

  1. Wyrażają zgodę na publikację artykułu w czasopiśmie,
  2. Wyrażają zgodę na nadanie publikacji DOI (Digital Object Identifier),
  3. Zobowiązują się do przestrzegania kodeksu etycznego wydawnictwa zgodnego z wytycznymi Komitetu do spraw Etyki Publikacyjnej COPE (ang. Committee on Publication Ethics), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. Wyrażają zgodę na udostępniane artykułu w formie elektronicznej na mocy licencji CC BY-SA 4.0, w otwartym dostępie (open access),
  5. Wyrażają zgodę na wysyłanie metadanych artykułu do komercyjnych i niekomercyjnych baz danych indeksujących czasopisma.