Genetic background of wheat and triticale grain hardness
Sebastian Gasparis
s.gasparis@ihar.edu.plZakład Genomiki Funkcjonalnej, Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików (Poland)
Anna Nadolska-Orczyk
Zakład Genomiki Funkcjonalnej, Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików (Poland)
Abstract
Grain hardness of hexaploid wheat T. aestivum is controlled by puroindoline genes Pina and Pinb. They encode puroindoline proteins PINA and PINB which are accumulated on starch granule surface in the endosperm. Genes Pina and Pinb are located in genome D of hexaploid wheat and in other genomes of diploid wheat species. Both genes are absent in tetraploid wheat with genome AABB. Orthologs of puroindoline genes were detected in other cereal species and showed above 90% similarity of coding sequences with Pin genes. Secaloindoline genes are orthologs of puroindolines in rye and hexaploid triticale and are located in genome R. In regard of its importance, wheat grain hardness has been studied from the second half of the last century. However, significant progress in this area started at the end of the last century when the advanced genetic engineering techniques were applied. As a result of this research the coding sequences of puroindoline genes and their promoters were determined as well as the allelic variation and the structure of puroindoline proteins.
Keywords:
grain hardness, puroindolines, secaloindolines, triticale, wheatReferences
Amoroso M. G., Longobardo L., Capprarelli R. 2004. Real time RT-PCR and flow cytometry to investigate wheat kernel hardness: role of puroindoline genes and proteins. Biotechnol. Lett 26: 1731 — 1737.
Google Scholar
Beecher B., Bettge A., Smidansky E., Giroux M. J. 2002. Expression of wild-type PinB sequence in transgenic wheat complements a hard phenotype. Theor. Appl. Genet. 105: 870 — 877.
Google Scholar
Bettge A. D., Morris C. F. 2000. Relationships among grain hardness, pentosan fractions and end-use quality of wheat. Cereal Chem. 77: 241 — 247.
Google Scholar
Bettge A. D., Morris C. F., Greenblatt G. A. 1995. Assessing genotypic softness in single wheat kernels using starch granule associated friabilin as a biochemical marker. Euphytica 86: 65 — 72.
Google Scholar
Bhave M., Morris C. F. 2008. Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol. Biol. 66: 205 — 219.
Google Scholar
Blochet J-E., Chevalier C., Forest E., Pebay-Peyroula E., Gautier M. F., Joudrier P., Pezolet M., Marion D. 1993. Complete amino acid sequence of puroindoline, a new basic and cysteine-rich protein with a unique tryptophan-rich domain, isolated from wheat endosperm by Triton X-114 phase partitioning. FEBS Lett. 329: 336 — 340.
Google Scholar
Budak H., Baenziger P. S., Beecher B. S., Graybosch R. A, Campbell B. T., Shipman M. J., Erayman M., Eskridge K. M. 2004. The effect of introgressions of wheat D-genome chromosomes into 'Presto' triticale. Euphytica 137: 261 — 270.
Google Scholar
Campbell J. B., Martin J. M, Crutcher FD, Meyer F, Clark DR and Giroux MJ. 2007. Effects on soft wheat (Triticum aestivum L.) quality of increased puroindoline dosage. Cereal Chem. 84: 80 — 87.
Google Scholar
Capparelli R., Amoroso M. G., Palumbo D., Iannaccone M., Faleri C., Cresti M. 2005. Two plant puroindolines colocalize in wheat seed and in vitro synergistically fight against pathogens. Plant Mol. Biol. 58: 857 — 867.
Google Scholar
Chantret N., Salse J., Sabot F., Rahman S., Bellec A., Laubin B., Dubois I., Dossat C., Sourdille P., Joudrier P., Gautier M.-F., Cattolico L., Beckert M., Aubourg S., Weissenbach J., Caboche M., Bernard M, Leroy P., Chalhoub B. 2005. Molecular basis of evolutionary events that shaped the Hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17: 1033 — 1045.
Google Scholar
Charnet P., Molle G., Marion D., Rousset M., Lullien-Pellerin V. 2003. Puroindolines form ion channels in biological membranes. Biophys J. 84: 2416 — 2426.
Google Scholar
Chen M., Wilkinson M., Tosi P., He G., Shewry P. 2005. Novel puroindoline and grain softness protein alleles in Aegilops species with the C, D, S, M and U genomes. Theor. Appl. Genet. 111: 1159 — 1166.
Google Scholar
Digeon J.-F., Guiderdoni E., Alary R., Michaux-Ferrière N., Joudrier P., Gautier M-F. 1999. Cloning of a wheat puroindoline gene promoter by IPCR and analysis of promoter regions required for tissue-specific expression in transgenic rice seeds. Plant Mol. Biol. 39: 1101 — 1112.
Google Scholar
Douliez J.-P., Michon T., Elmorjani K., Marion D. 2000. Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J. Cereal Sci. 32: 1 — 20.
Google Scholar
Dubreil L., Compoint J. P., Marion D. 1997. Interaction of puroindoline with wheat flour polar lipids determines their foaming properties. J. Agric. Food Chem. 45: 108 — 116.
Google Scholar
Dubreil L., Meliande S., Chiron H., Compoint J-P., Quillien L., Branlard G., Marion D. 1998 a. Effect of puroindolines on the bread making properties of wheat flour. Cereal Chem.75: 222 — 229.
Google Scholar
Dubreil L., Gaborit T., Bouchet B., Gallant D. J, Broekaert W. F, Quillien L, Marion D. 1998 b. Spatial and temporal distribution of the major isoforms of puroindolines (puroindoline-a and puroindoline-b) and non-specific lipid transfer protein (ns-LTP1e1) of Triticum aestivum seeds. Relationships with their in vitro antifungal properties. Plant Sci. 138: 121 — 135.
Google Scholar
Evrard A., Meynard D., Guiderdoni E., Joudrier P., Gautier M-F. 2007. The promoter of the wheat puroindoline-a gene (PinA) exhibits a more complex pattern of activity than that of the PinB gene and is induced by wounding and pathogen attack in rice. Planta 255: 287 — 300.
Google Scholar
Feiz L., Wanjugi H. W., Melnyk C. W., Altossar I., Martin J. M., Giroux M. J. 2009. Puroindolines co-localize to the starch granule surface and increase seed bound polar lipid content. J. Cereal Sci. 50: 91 — 98.
Google Scholar
Gasparis S., Orczyk W., Zalewski W., Nadolska-Orczyk A. 2011. The RNA-mediated silencing of one of the Pin genes in allohexaploid wheat simultaneously decreases the expression of the other, and increases grain hardness. J. Exp. Bot. 62: 4025 — 4036. DOI:10.1093/jxb/err103.
Google Scholar
Gasparis S. 2012. Analiza genów Pina i Pinb determinujących twardość ziarna u heksaploidalnej pszenicy i ich ortologów u pszenżyta. Praca doktorska. IHAR — PIB Radzików.
Google Scholar
Gautier M.-F., Aleman M.-E., Guirao A., Marion D., Joudrier P. 1994. Triticum aestivum puroindolines, two basic cysteine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol. Biol. 25: 43 — 57.
Google Scholar
Gautier M.-F., Cosson P., Guirao A., Alary R., Joudrier P. 2000. Puroindoline genes are highly conserved in diploid ancestor wheats and related species but absent in tetraploid Triticum species. Plant Sci. 153: 81 — 91.
Google Scholar
Gazza L., Conti S., Taddei F., Pogna N. E. 2006. Molecular characterization of puroindolines and their encoding genes in Aegilops ventricosa. Mol. Breed. 17: 191 — 200.
Google Scholar
Gazza L., Nocente F., Ng P. K. W., Pogna N. E. 2005. Genetic and biochemical analysis of common wheat cultivars lacking puroindoline a. Theor. Appl. Genet. 110: 470 — 478.
Google Scholar
Giroux M. J., Morris C. F. 1997. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor. Appl. Genet. 95: 857 — 864.
Google Scholar
Giroux M. J., Morris C. F. 1998. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc. Natl. Acad. Sci. USA 95: 6262 — 6266.
Google Scholar
Glenn G. M., Saunders R. M. 1990. Physical and structural properties of wheat endosperm associated with grain texture. Cereal Chem. 67: 176 — 182.
Google Scholar
Greenblatt G. A., Bettge A. D., Morris C. F. 1995. The relationship among endosperm texture, friabilin occurrence, and bound polar lipids on wheat starch. Cereal Chem. 72: 172 — 176.
Google Scholar
Greenwell P., Schofield J. D. 1986. A starch granule protein associated with endosperm softness in wheat. Cereal Chem. 63: 379 — 380.
Google Scholar
Hogg A. C., Sripo T., Beecher B., Martin J. M., Giroux M. J. 2004. Wheat puroindolines interact to form friabilin and control wheat grain hardness. Theor. Appl. Genet. 108: 1089 — 1097.
Google Scholar
Hogg A. C., Beecher B., Martin J. M., Meyer F. D., Talbert L. E., Lanning S., Giroux M. J. 2005. Hard wheat milling and bread baking traits affected by the seed-specific overexpression of puroindolines. Crop Sci. 45: 871 — 878.
Google Scholar
Igrejas G., Gaborit T., Oury F-X., Chiron H., Marion D., Branlard G. 2001. Genetic and environmental effects on puroindoline-a and puroindoline-b content and their relationship to technological properties in French bread wheats. J. Cereal Sci. 34: 37 — 47.
Google Scholar
Ikeda TM, Ohnishi N, Nagamine T, Oda S, Hisatomi T, Yano H. 2005. Identification of new puroindoline genotypes and their relationship to flour texture among wheat cultivars. J. Cereal Sci. 41: 1 — 6.
Google Scholar
Jing W., Demcoe A. R, Vogel H. J. 2003. Conformation of a bactericidal domain of puroindoline a: structure and mechanism of action of a 13-residue antimicrobial peptide. J Bacteriol 185: 4938 — 4947.
Google Scholar
Jolly C. J, Rahman S., Kortt A. A., Higgins T. J. V. 1993. Characterization of the wheat Mr 15000 “grain-softness protein” and analysis of the relationship between its accumulation in the whole seed and grain softness. Theor. Appl. Genet. 86: 589 — 597.
Google Scholar
Kooijman M., Orsel R., Hessing M., Hamer J. R, Bekkers A. C. A. P. A. 1997. Spectroscopic characterisation of the lipid-binding properties of wheat puroindolines. J. Cereal Sci. 26: 145 — 159.
Google Scholar
Krishnamurthy K., Giroux M. J. 2001. Expression of wheat puroindoline genes in transgenic rice enhances grain softness. Nat. Biotechnol. 19: 162 — 166.
Google Scholar
Krishnamurthy K., Balconi C., Sherwood J. E, Giroux M. J. 2001. Wheat Puroindolines Enhance Fungal Disease Resistance in Transgenic Rice. Mol. Plant Microbe Interact. 14: 1255 — 1260.
Google Scholar
Law C. N., Young C. F., Brown J. W. S., Snape J. W., Worland J. W. 1978. The study of grain protein control in wheat using whole chromosome substitution lines. In: Seed Protein Improvement by Nuclear Techniques, International Atomic Energy Agency, Vienna, Austria: 483 — 502.
Google Scholar
Le Bihan T., Blochet J. E., Desormeaux A., Marion D., Pezolet M. 1996. Determination of the secondary structure and conformation of puroindolines by infrared and Raman spectroscopy. Biochemistry 35: 12712 — 12722.
Google Scholar
Li G., He Z., Pena R J., Xia X., Lillemo M., Qixin S. 2006. Identification of novel secaloindoline-a and secaloindoline-b alleles in CIMMYT hexaploid triticale lines. J. Cereal Sci. 43: 378 — 386.
Google Scholar
Li W., Li H., Gill B. S. 2008. Recurrent deletions of puroindoline genes at the grain hardness locus in four independent lineages of polyploid wheat. Plant Physiol. 146: 200 — 212.
Google Scholar
Lillemo M., Morris C. F. 2000. A leucine to proline mutation in puroindoline b is frequently present in hard wheats from Northern Europe. Theor. Appl. Genet. 100: 1100 — 1107.
Google Scholar
Lillemo M., Simeone M. C., Morris C. F. 2002. Analysis of puroindoline a and b sequences from Triticum aestivum cv. “Penawawa” and related diploid taxa. Euphytica 126: 321 — 331.
Google Scholar
Luo L., Zhang J., Yang G., Li Y., Kexiu L., He G. 2008. Expression of puroindoline a enhances leaf rust resistance in transgenic tetraploid wheat. Mol. Biol. Rep. 35: 195 — 200.
Google Scholar
Martin J., Meyer F., Smidansky E., Wanjugi H., Blechl A., Giroux M. J. 2006. Complementation of the Pina (null) allele with the wild type Pina sequence restores a soft phenotype in transgenic wheat. Theor. Appl. Genet. 113: 1563 — 1570.
Google Scholar
Massa AN, Morris CF. 2006. Molecular evolution of the puroindoline-a, puroindoline-b, and grain softness protein-1 genes in the tribe Triticeae. J. Mol. Evol. 63: 526 — 536.
Google Scholar
McIntosh R. A, Devos K. M., Dubcovsky J., Rogers W. J., Morris C. F., Appels R., Anderson O. D. 2005. Catalogue of gene symbols for wheat: 2005 supplement. http://wheat.pw.usda.gov/ ggpages/wgc/2005upd.html.
Google Scholar
Morris C.F. 1992. Impact of blending hard and soft white wheats on milling and baking quality. Cereal Foods World 37: 643 — 648.
Google Scholar
Morris C. F. 2002. Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol. Biol. 48: 633 — 647.
Google Scholar
Morris C.F., Greenblatt G. A, Bettge A. D., Malkawi H. I. 1994. Isolation and characterization of multiple forms of friabilin. J. Cereal Sci. 21: 167 — 174.
Google Scholar
Nadolska-Orczyk A, Gasparis S, Orczyk W. 2009. The determinants of grain texture in cereals. J. Appl. Genet 50: 185 — 197.
Google Scholar
Oda S., Komae K., Yasui T. 1992. Relation between starch granule protein and endosperm softness in Japanese wheat (Triticum aestivum L.) cultivars. Jpn J. Breed. 42: 161 — 165.
Google Scholar
Oda S., Schofield J. D., 1997. Characterization of friabilin polypeptides. J. Cereal Sci. 26: 29 — 36.
Google Scholar
Palumbo D, Iannaccone M, Porta A, Capparelli R. 2010. Experimental antibacterial therapy with puroindolines, lactoferrin and lysozyme in Listeria monocytogenes-infected mice. Microbes Infect. 12: 538 — 545.
Google Scholar
Rahman S., Jolly C. J., Skerritt J. H., Wallosheck A. 1994. Cloning of a wheat 15 kDa grain softness protein (GSP). GSP is a mixture of puroindoline-like polypeptides. Eur. J. Biochem. 223: 917 — 925.
Google Scholar
Ramirez A., Perez G.T., Ribotta P. D., Leon A. E. 2003. The occurrence of friabilins in triticale and their relationship with grain hardness and baking quality. J. Agric. Food Chem. 51: 7176 — 7181.
Google Scholar
Simeone M. C., Lafiandra D. 2005. Isolation and characterization of friabilin genes in rye. J. Cereal Sci. 41: 115 — 122.
Google Scholar
Symes K. J. 1965. The inheritance of grain hardness in wheat as measured by particle size index. Aust. J. Agric. Res. 16: 113 — 123.
Google Scholar
Tranquilli G, Heaton J, Chicaiza O, Dubcovsky J. 2002. Substitutions and deletions of genes related to grain hardness in wheat and their effect on grain texture. Crop Sci. 42: 1812 — 1817.
Google Scholar
Turnbull K. M., Gaborit T., Marion D., Rahman S. 2000. Variation in puroindoline polypeptides in Australian wheat cultivars in relation to grain hardness. Aust. J. Plant Physiol. 27: 153 — 158.
Google Scholar
Turnbull K. M., Marion D., Gaborit T., Appels R., Rahman S. 2003. Early expression of grain hardness in the developing wheat endosperm. Planta 216: 699 — 706.
Google Scholar
Wall M. L., Wheeler H. L., Huebsch M. P., Smith J. C., Figeys D., Altossar I. 2010. The tryptophan-rich domain of puroindoline is directly associated with the starch granule surface as judged by tryptic shaving and mass spectrometry. J. Cereal Sci. 52: 115 — 120.
Google Scholar
Wanjugi H. W., Hogg A. C., Martin J. M., Giroux M. J. 2007. The role of puroindoline a and b individually and in combination on grain hardness and starch association. Crop Sci. 47: 67 — 76.
Google Scholar
Wiley P. R., Tosi P., Evrard A., Lovergrove A., Jones H. D., Shewry P. R. 2007. Promoter analysis and immunolocalisation show that puroindoline genes are exclusively expressed in starchy endosperm cells of wheat grain. Plant Mol. Biol. 64: 125 — 136.
Google Scholar
Williams P. C., Sobering D. C. 1986. Attempts at standardization of hardness testing of wheat. I. The grinding/sieving (particle size index) method. Cereal Foods World 31: 359: 362 — 364.
Google Scholar
Yau W.M., Wimley W. C., Gawrisch K., White S. H. 1998. The preference of tryptophan for membrane interfaces. Biochemistry 37: 14713 — 14718.
Google Scholar
Authors
Sebastian Gaspariss.gasparis@ihar.edu.pl
Zakład Genomiki Funkcjonalnej, Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików Poland
Authors
Anna Nadolska-OrczykZakład Genomiki Funkcjonalnej, Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików Poland
Statistics
Abstract views: 75PDF downloads: 38
License
Copyright (c) 2013 Sebastian Gasparis, Anna Nadolska-Orczyk
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:
- Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
- Placing on the market, lending or renting the original or copies of the article.
- Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
- Including the article in a collective work.
- Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
- Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
- Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.
Authors by sending a request for publication:
- They consent to the publication of the article in the journal,
- They agree to give the publication a DOI (Digital Object Identifier),
- They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
- They agree to send article metadata to commercial and non-commercial journal indexing databases.
Most read articles by the same author(s)
- Anna Nadolska-Orczyk, Karolina Barchacka, Sebastian Gasparis, Hanna Ogonowska, Maciej Kała, Identification of genetic variation of wheat correlating with grain yield and development of root system , Bulletin of Plant Breeding and Acclimatization Institute: No. 286 (2019): Special issue
- Przemysław Werecki, Marta Dmochowska-Boguta, Anna Nadolska-Orczyk, Wacław Orczyk, Markers of wheat resistance types on Puccinia triticina , Bulletin of Plant Breeding and Acclimatization Institute: No. 287 (2019): Special issue
- Mateusz Przyborowski, Sebastian Gasparis, Wacław Orczyk, Anna Nadolska-Orczyk, Optimization of mutation detection methods in the NUD gene induced by CRISPR / CAS9 technology in barley (Hordeum vulgare L.) , Bulletin of Plant Breeding and Acclimatization Institute: No. 287 (2019): Special issue
- Maciej Kała, Mateusz Przyborowski, Bogusława Ługowska, Sebastian Gasparis, Anna Nadolska-Orczyk, Characteristics of gluten proteins in breeding lines of wheat , Bulletin of Plant Breeding and Acclimatization Institute: No. 282 (2017): Regular issue
- Joanna Bocian, Anna Nadolska-Orczyk, Contribution of cytokinin biosynthesis genes in determining wheat grain yield , Bulletin of Plant Breeding and Acclimatization Institute: No. 300 (2023): Regular issue
- Maciej Kała, Mateusz Przyborowski, Sebastian Gasparis, Wacław Orczyk, Anna Nadolska-Orczyk, Classification of glutenin subunits using machine learning methods , Bulletin of Plant Breeding and Acclimatization Institute: No. 283 (2018): Special issue
- Mateusz Przyborowski, Sebastian Gasparis, Maciej Kała, Wacław Orczyk, Anna Nadolska-Orczyk, Frequency of puroindoline alleles in landraces of common wheat (Triticum aestivum L.) from National Centre for Plant Genetic Resources: Polish Genebank , Bulletin of Plant Breeding and Acclimatization Institute: No. 283 (2018): Special issue