Hydrolysis of non-gelatinized potato starch by using amylolytic enzymes

Lucyna Słomińska

zk@ibprs.pl
Instytut Biotechnologii Przemysłu Rolno-Spożywczego, Oddział Koncentratów Spożywczych i Produktów Skrobiowych, Poznań (Poland)

Roman Zielonka


Instytut Biotechnologii Przemysłu Rolno-Spożywczego, Oddział Koncentratów Spożywczych i Produktów Skrobiowych, Poznań (Poland)

Leszek Jarosławski


Instytut Biotechnologii Przemysłu Rolno-Spożywczego, Oddział Koncentratów Spożywczych i Produktów Skrobiowych, Poznań (Poland)

Marek Buszka


Instytut Biotechnologii Przemysłu Rolno-Spożywczego, Oddział Koncentratów Spożywczych i Produktów Skrobiowych, Poznań (Poland)

Abstract

Study on the determination of the effect of liquefying and saccharifying enzyme preparations on the efficiency of the hydrolysis of potato starch at a temperature below the gelatinization temperature. Hydrolysis of starch was carried out using different concentrations of an aqueous suspension of starch, i.e. 5, 10, 20 and 30%, subjected to the enzyme preparations (Liquozyme Supra — liquefying enzyme or Maltogenase 4000 L and AMG 300 L — saccharifying enzymes) that were used individually or in combination during the 24 h of reaction at temperatures of 30, 35, 40 and 45°C. Mass and concentration of the extract, reducing sugars content and yield indicator of hydrolysate were determined in the samples. Studies have shown that raising the reaction temperature from 30 to 45°C during hydrolysis carried out with use of Liquozyme Supra caused almost six-fold increase in the yield indicator of soluble component, i.e. from 2.9 to 17.1%. The highest yields were obtained using a suspension of starch at a concentration of 20%. Taking into account all used combinations of enzymes the highest yield indicator was obtained during the hydrolysis carried out in combination of preparations Liquozyme Supra + AMG 300 L — 20.6%. The presented method of low-temperature hydrolysis of starch, using commercial preparations of amylolytic enzymes in typical industrial dosages can be successfully applied to obtain of various types of starch hydrolysates with sugar compositions typical for the applied enzymes.


Keywords:

amylolytic enzymes, hydrolysis, non-gelatinized potato starch

Al. Rabadi G. J. S., Gilbert R. G., Gidley M. J. 2009. Effect of particle size on kinetics of starch digestion in milled barley and sorghum grains by porcine alpha-amylase. Journal of Cereal Science 50: 198 — 204.
Google Scholar

Franco C. M. L., Preto S. J. R., Ciacco C. F. 1992. Factors that affect the enzymatic degradation of natural starch granules — effect of the size of the granules. Starch/Stärke 44: 422 — 426.
Google Scholar

Gerard C., Colonna P., Bulѐon A., Planchot V. 2001. Amylolysis of maize mutant starches. Journal o Science and Food Agriculture 81: 1281 — 1287.
Google Scholar

Guraya H.S., James C., Champagne E.T. 2001. Effect of cooling, and freezing on the digestibility of debranched rice starch and physical properties of the resulting material. Starch/Stärke, 53: 64 — 74
Google Scholar

Haska N., Ohta Y. 1992. Mechanism of hydrolysis of treated sago starch granules by starch digesting amylase from Penicillium brunneum. Starch/Stärke 44: 25 — 28.
Google Scholar

Heitmann T., Wenzig E., Mersmann A. 1997. Characterization of three different potato starches and kinetics of their enzymatic hydrolysis by an alpha -amylases. Enzyme and Microbial Technology 20: 259 — 267.
Google Scholar

Juszczak L., Fortuna T., Krok F. 2003 Non - contact atomic force microscopy of starch granules surface: Part I. Potato and tapioca starches. Starch/Stärke 55: 1 — 7.
Google Scholar

Kong B. W., Kim J. I., Kim M. J., Kim J. C. 2003. Porcine pancreatic α-amylase hydrolysis of native starch granules as function of granule surface area. Biotechnol. Prog 19:1162 — 1166.
Google Scholar

Kim J.C., Kong B.W., Kim M.J., Lee S.H. 2008. Amylolitic hydrolysis of native starch granules by granule surface area. Journal of Food Science 73, 9: 621 — 624.
Google Scholar

Liakopoulou — Kyriakides M., Karakatsanis A., Stamatoudes M. ,Psomas S. 2001. Synergistic hydrolysis of crude corn starch by α -amylases and glucoamylases of various origins. Cereal Chemistry 78, 5: 603 — 607.
Google Scholar

MacGregor A.W., Balance D. L. 1980. Hydrolysis of large and small starch granules from normal and waxy barley cultivars by alpha- amylase from barley malt. Cereal Chemistry 57: 397 — 402.
Google Scholar

Noda T., Takigawa S., Matsuura-Edo C., Kim S. J., Hashimoto N., Takeda Y. 2005. Physicochemical properties and amylopectin structures of large, small and extremely small potato starch granules. Carbohydrate Polymers 60: 245 — 252.
Google Scholar

Nowotny F. 1972. Technologia Przetwórstwa Ziemniaczanego. Wydawnictwo Naukowo-Techniczne. Warszawa.
Google Scholar

O’Brien S., Wang Y. J. 2008. Susceptibility of annealed starches to hydrolysis by α-amylase and glucoamylase. Carbohydrate Polymers 72: 597 — 607.
Google Scholar

Puspasari F., Nurachman Z., Noer A., S., Radjasa O.K., van der Maarel M. J. E. C, Dessy N. 2011. Characteristics of raw starch degrading α-amylase from Bacillus aquimaris MKSC 6.2 associated with soft coral Sinularia sp. Starch/Stärke 63, 8: 461 — 467.
Google Scholar

Shariff Y. N., Karim A. A., Fazilah A., ZaidulI S. M. 2009. Enzymatic hydrolysis of granular native and mildly heat — treated tapioca and sweet potato starches at sub- gelatinization temperature. Food Hydrocolloids 23: 434 — 440.
Google Scholar

Sarykaya E., Higasa T., Adachi M., Mikami B. 2000. Comparison of degradability abilities of α- and β -amylases on starch granules. Process Biochemistry 35: 711 — 715.
Google Scholar

Sarian F. D., van der Kaaij R. M., Kralj S., Wijbenga D. J., Binnema D. J., van der Maarel M. J. E. C., Dijkhuizen L. 2012. Enzymatic degradation of granular potato starch by Microbacterium aurum strain B8.A. Appl. Microbiol. Bitechnol. 93: 645 — 654.
Google Scholar

Sarbatly R. 2007. The simultaneous enzymatic hydrolysis of tapioca starch for instant formation of glucose. Journal of Applied Sciences 7, 15: 2057 — 206.
Google Scholar

Tawil G., Vikso-Nielsen A., Rolland-Sabate A., Colonna P., Buleon A. 2012. Hydrolysis of concentrated raw starch: A new very efficient α-amylase from Anoxybacillus flavothermus. Carbohydrate Polymers. 87: 46 — 52.
Google Scholar

Tester R. F., Karkalas J., Qi X. 2004. Starch structure and digestibility enzyme — substrate relationship. World’s Poultry Science Journal 60: 186 — 195.
Google Scholar

Vikso-Nielsen A., Andersen C., Hoff T., Petersen S. 2006. Development of new α-amylases for raw starch hydrolysis. Biocatalysis and Biotransformation. 24, 1/ 2: 121 — 127.
Google Scholar

Vidal Jr. B. C., Rausch K. D., Tumbleson M. E., Singh V. 2009. Kinetics of granular starch hydrolysis in corn dry grind process. Starch/Stärke 61: 448 — 456.
Google Scholar

Zielonka R., Jarosławski L., Słomińska L. 2010. Opracowanie i porównanie metod oznaczania wydajności hydrolizy skrobi. Zeszyty Problemowe Postępów Nauk Rolniczych 557: 423 — 433.
Google Scholar


Published
2012-12-31

Cited by

Słomińska, L. (2012) “Hydrolysis of non-gelatinized potato starch by using amylolytic enzymes”, Bulletin of Plant Breeding and Acclimatization Institute, (266), pp. 151–161. doi: 10.37317/biul-2012-0015.

Authors

Lucyna Słomińska 
zk@ibprs.pl
Instytut Biotechnologii Przemysłu Rolno-Spożywczego, Oddział Koncentratów Spożywczych i Produktów Skrobiowych, Poznań Poland

Authors

Roman Zielonka 

Instytut Biotechnologii Przemysłu Rolno-Spożywczego, Oddział Koncentratów Spożywczych i Produktów Skrobiowych, Poznań Poland

Authors

Leszek Jarosławski 

Instytut Biotechnologii Przemysłu Rolno-Spożywczego, Oddział Koncentratów Spożywczych i Produktów Skrobiowych, Poznań Poland

Authors

Marek Buszka 

Instytut Biotechnologii Przemysłu Rolno-Spożywczego, Oddział Koncentratów Spożywczych i Produktów Skrobiowych, Poznań Poland

Statistics

Abstract views: 40
PDF downloads: 67


License

Copyright (c) 2012 Lucyna Słomińska, Roman Zielonka, Leszek Jarosławski, Marek Buszka

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.