Multivariate analysis of data from preliminary trials with winter rye
Krzysztof Ukalski
krzysztof_ukalski@sggw.edu.plKatedra Ekonometrii i Statystyki, Zakład Biometrii, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie (Poland)
Tadeusz Śmiałowski
Instytut Hodowli i Aklimatyzacji Roślin — PIB, Zakład Roślin Zbożowych w Krakowie (Poland)
Abstract
The subjects of the study were 30 lines of winter rye examined in preliminary trials coordinated by the Plant Breeding and Acclimatization Institute, the Department of Cereals Crops in Cracow. The results presented in the paper concern objects examined in 6 locations in 2009. Ten traits were taken into account: grain yield, 1000 grains weight, plant height, lodging score, winter hardiness, no. of days to heading, no. of days to maturity, pollen fertility, powdery mildew score and brown rust score. The aim of the study was: firstly, the application of principal component analysis (PCA) on transformed values for traits formulated in valuation scale, secondly, detailed comparison of examined forms of winter rye using principal component regression (PCR). Principal component analysis PCA on values under transformation explained over 15% more total variation than PCA on non-transformed values for three first components. The results of PCR analysis are shown on graphs presenting diversity of examined forms of winter rye with consideration of particular traits. The population form HRSM 4 is similar, by its characteristics, to the hybrid lines.
Keywords:
grain yield, hybrid forms, population forms, principal component analysis, principal component regression, transformation, winter ryeReferences
Caliński T., Harabasz J. 1974. A dendrite method for cluster analysis. Comm. Stat. 3: 1 — 27.
Google Scholar
Crossa J., Franco J. 2004. Statistical methods for classifying genotypes. Euphytica 137: 19 — 37.
Google Scholar
Duda R. O., Hart P. E. 1973. Pattern classification and scene analysis. New York: John Wiley & Sons, Inc.
Google Scholar
Fisher R. A. 1938. Statistical methods for research workers. 7th Edition. Olivier and Boyd, Edinburgh.
Google Scholar
Fisher R. A., Mackenzie W. A. 1923. Studies in crop variation: II The manorial response of different potato varieties. Journal of Agricultural Science 13: 311 — 320.
Google Scholar
Hatcher, L. Stepanski, E. 1994. A step- by-step approach to using the SAS system for univariate and multivariate statistics. Cary, NC: SAS Institute Inc.
Google Scholar
Hooks T., Pedersen J.F., Marx D. B., Vogel K. P. 2006. Variation in the U.S. photoperiod insensitive sorghum collection for chemical and nutritional traits. Crop Sci. 46: 751 — 757.
Google Scholar
Hotelling H. 1933. Analysis of complex of statistical variables into principal components. Journal of Education Psychology 24: 417 — 441, 498 — 520.
Google Scholar
Hotelling H. 1936. Simplified computation of principal components. Psychometrika 1: 27 — 35.
Google Scholar
Jollife I. T. 1982. A note on the use of principal components in regression. Applied Statistics 31: 300 — 303.
Google Scholar
Jollife I. T. 1986. Principal component analysis. New York, Springer-Verlag.
Google Scholar
Kubicka H., Puchalski J., Niedzielski M., Łuczak W., Martyniszyn A. 2006. Gromadzenie i ocena zasobów genowych żyta. Biul. IHAR 240/241: 141 — 150.
Google Scholar
Khattree R., Naik D. N. 2000. Multivariate data reduction and discrimination with SAS software. SAS Institute Inc., Cary, NC. 558 pp.
Google Scholar
Kruskal J. B., Shepard, R. N. 1974. A nonmetric variety of linear factor analysis. Psychometrika 38: 123 — 157.
Google Scholar
Krzanowski W.J. 1988. Principles of multivariate analysis: a user’s perspective. Oxford University Press, Oxford.
Google Scholar
KWS LOCHOW POLSKA [dostęp 12 marca 2011]. http://www.kws-lochow.pl/odmiany/wszystkie-odmiany/zboze/zyto-ozime/odmiana/balistic.html.
Google Scholar
Mohammadi S.A., Prasanna B.M. 2003. Analysis of genetic diversity in crop plants-Salient statistical tools and considerations. Crop Sci. 43: 1235 — 1248.
Google Scholar
Pearson K. 1901. On lines planes of closest fit to a system of points in space. Philosophical Magazine 2: 557 — 572.
Google Scholar
Rao C. R. 1964. The use and interpretation of principal components in applied research. Sankhya A 26:329 — 358.
Google Scholar
SAATEN-UNION [dostęp 12 marca 2011]. Dostępny w internecie: http://www.saaten-union.pl/odmiany/ozime/index.php/minello/.
Google Scholar
SAS Institute Inc. 2008. SAS/STAT® 9.2 User’s Guide. Cary, NC: SAS Institute Inc.
Google Scholar
Searle S. R., Casella G., McCulloch C. E. 1992. Variance components. John Wiley & Sons, New York.
Google Scholar
Śmiałowski T., Węgrzyn S. 2001. Zmienność i współzależność niektórych cech struktury plonu u żyta. Biul. IHAR NR 218/219: 401 — 408.
Google Scholar
Śmiałowski T. 2007. Zmienność plonu i wybranych cech form mieszańcowych i populacyjnych żyta ozimego badanych w doświadczeniach wstępnych w latach 2003–2005. Zesz. Probl. Post. Nauk Rol. 517, cz. 2: 741 — 748.
Google Scholar
Ukalski K., Śmiałowski T. Ukalska J. 2009. Analiza plonowania i stabilności genotypów owsa za pomocą metody graficznej typu GGE. Żywność. Nauka. Techn. Jakość. Nr 3: 127 — 140.
Google Scholar
Ukalska J., Ukalski K., Kociuba W., Kramek A. 2010. Porównanie genotypów kolekcyjnych pszenżyta jarego Triticosecale Wittmack; cz. 1. Analiza zmienności fenotypowej. Zesz. Probl. Post. Nauk Rol. 555: 437 — 445.
Google Scholar
Ward J. H., jr. 1963. Hierarchical grouping to optimize an objective function. J. Am. Statist. Assoc. 58: 236 — 244.
Google Scholar
Węgrzyn S., Śmiałowski T., Grochowski L. 1996. Zmienność i współzależność cech oraz ocena zjawisk genetycznych w życie ozimym badanym w kolekcji 1977–1992. Biul. IHAR 200: 69 — 83.
Google Scholar
Winsberg S. Ramsay J. O. 1983. Monotone spline transformations for dimension reduction. Psychometrika 48: 575 — 595.
Google Scholar
Young F. W., Takane Y., de Leeuw J. 1978. The principal components of mixed measurement level multivariate data: An alternating least squares method with optimal scaling features. Psychometrika 43: 279 — 281.
Google Scholar
Authors
Krzysztof Ukalskikrzysztof_ukalski@sggw.edu.pl
Katedra Ekonometrii i Statystyki, Zakład Biometrii, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Poland
Authors
Tadeusz ŚmiałowskiInstytut Hodowli i Aklimatyzacji Roślin — PIB, Zakład Roślin Zbożowych w Krakowie Poland
Statistics
Abstract views: 167PDF downloads: 37
License
Copyright (c) 2011 Krzysztof Ukalski, Tadeusz Śmiałowski
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:
- Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
- Placing on the market, lending or renting the original or copies of the article.
- Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
- Including the article in a collective work.
- Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
- Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
- Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.
Authors by sending a request for publication:
- They consent to the publication of the article in the journal,
- They agree to give the publication a DOI (Digital Object Identifier),
- They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
- They agree to send article metadata to commercial and non-commercial journal indexing databases.