A choice of the mathematical model for the relationship between heterosis effect of F1 hybrids and genetic distance of rye and triticale parental lines

Agnieszka Tomkowiak

agnieszka.tomkowiak@up.poznan.pl
Katedra Genetyki i Hodowli Roślin, Uniwersytetu Przyrodniczego w Poznaniu (Poland)

Zbigniew Broda


Katedra Genetyki i Hodowli Roślin, Uniwersytetu Przyrodniczego w Poznaniu (Poland)

Krzysztof Moliński


Katedra Metod Matematycznych i Statystycznych, Uniwersytetu Przyrodniczego w Poznaniu (Poland)

Abstract

The object at the work were rye and triticale hybrids and their parental components. The main goal of the research was to determine, using mathematical models, the relationship between the heterosis effect of F1 rye and triticale hybrids and genetic distance parental lines. Both for RAPD and AFLP markers, the best function to describes\ the relationship between the heterosis effect and genetic distance were: cubic polynomial y = a + bx + cx^2 + dx^3 and a linear function y = a + bx. In the last decade, may did affords to conclude on the heterosis effect by examining the genetic distance between the parental lines. Selection on the basis of molecular indicators was developed in order to avoid problems related to the traditional farming, and to allow the change from phenotype selection to direct selection of genes. Molecular indicators are detectable in all phases of the plant life and these are not affected by the environment and conditions of plant growth. The usefulness of a certain indicator depends on its ability to reveal polymorphisms in the nucleotide sequence, which makes possible to distinguish between allelic forms. Successful utilization of the molecular indicators depends on: availability of the genetic map containing molecular indicators coupled with genes, close relationships between indicators and genes and their common separation and grouping, appropriate recombination between indicators of a certain feature and the rest of the genome, possibility of analysis of a large number of organisms and consideration of time and cost of the whole project.


Keywords:

heterosis, genetic distance, mathematical models, rye, triticale

Adamczyk J., 2004. Genetyczne podstawy hodowli kukurydzy. Zarys Genetyki Zbóż. Tom 2. Pszenżyto, kukurydza i owies (pr. zbior., red. A. G. Górny), wyd. IGR PAN Poznań: 279 — 310.
Google Scholar

Ajmone Marsan P., Castiglioni P., Fusari F., Kuiper M., Motto M. 1998. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor. Appl. Genet. 96: 61 — 64.
Google Scholar

Boppenmaier J. A., Melchinger G., Seitz H. H. 1993 Genetic diversity for RFLPs in European maize inbreeds; III. Performance of crosses within versus between heterotic groups for grain traits. Plant Breeding 111: 217 — 226.
Google Scholar

Charcosset A., Essioux L. 1994. The effect of population structure on the relationship between heterosis and heterozygosity at marker loci. Theor. Appl. Genet. 89: 336 — 343.
Google Scholar

Demeke T., Adams R.P., Chibbar R. 1992. Potential taxonomic use of random amplified polymorphic DNA (RAPD): a case study in Brassica. Theor. Appl. Genet. 84: 990 — 994.
Google Scholar

dos Santos J.B., Nienhuis J., Skroch P., Tivang J., Slocum M. K. 1994. Comparison of RAPD and RFLP genetic markers in determining genetic similarity among Brassica oleracea L. genotypes. Theor. Appl. Genet. 87: 909 — 915.
Google Scholar

Dubas A. 1999. Kukurydza (8). Praca zbiorowa: „Szczegółowa uprawa roślin”, pod redakcją Z. Jasińskiej i A. Koteckiego. Tom 1. Wyd. AR Wrocław: 263 — 289.
Google Scholar

Dubreuil P., Dufour E., Krejci M., Cause D. 1996. Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups. Crop Sci. 36: 790 — 799.
Google Scholar

Echt C. S., Erdahl L. A., McCoy T. J. 1992. Genetic segregation of random amplified polymorphic DNA in diploid cultivated alfalfa. Genome. 35: 84 — 87.
Google Scholar

Fabrizius M. A., Busch R. H., Khan K., Huckle L. 1998. Genetic diversity and heterosis of spring wheat crosses. Crop Sci. 38: 1108 — 1112.
Google Scholar

Grzebelus D., Barański R. 1996. Zastosowanie metod biotechnologicznych w hodowli roślin.” Praca zbiorowa pod redakcją Barbary Michalik: 35 — 47.
Google Scholar

Herseg J. 1986. Szczegółowa uprawa roślin. PWN, Warszawa: 81 — 97.
Google Scholar

Karp A., Isaac P. G., Ingram D. S. 1998. Molecular tools for screening biodiversity: plants and animals. Chapman and Hall, London.
Google Scholar

Liersch A., Broda I. 1996. Polimorfizm różnych linii dihaploidalnych rzepaku ozimego określony metodą PCR – RAPD. Rośliny Oleiste,Oilseed Crops. Tom XVII: 53 — 60.
Google Scholar

Nei M., and Li W. H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269 — 5273.
Google Scholar

Song K., Osborn T. C., Williams P. H. 1990. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLP). Theor. Appl. Genet. 79: 497 — 506.
Google Scholar

Srivastava H. K., Arunchalam V. 1977. Heterosis as a function of genetic divergence in triticale. Zeit. Pflanzenzüchtung 78: 269 — 275.
Google Scholar

Tams S. H., Melchinger A. E., Oettler G., Bauer E. 2002. Assessment of genetic diversity in European winter triticale using molecular markers and pedigree date. Proc. 5th Int. Triticale Symp., IHAR Radzików, Poland, 30 June-5 July 2002, I: 95 — 103.
Google Scholar

Thompson D., Henry R. 1995. Single step protocol for preparation of plant tissue for analysis by PCR. Biotechniques, 19: 394 — 400.
Google Scholar

Thorman C. E., Ferreira M. E., Camargo L. E. A., Tivang J. G., Osborn T. C. 1994. Comparison of RAPD and RFLP markers for estimating genetic relationship within and among cruciferous species. Theor. Appl. Get. 88: 973 — 980.
Google Scholar

Węgrzyn S. 1996. Teoretyczne oszacowanie komponentów wariancji genetycznych w czynnikowym modelu krzyżowania. Biul. IHAR 200: 7 — 13.
Google Scholar

Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. 1990. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleid Acids Res 18 (22): 6531 — 6535.
Google Scholar


Published
2008-12-31

Cited by

Tomkowiak, A., Broda, Z. and Moliński, K. (2008) “A choice of the mathematical model for the relationship between heterosis effect of F1 hybrids and genetic distance of rye and triticale parental lines”, Bulletin of Plant Breeding and Acclimatization Institute, (250), pp. 161–176. doi: 10.37317/biul-2008-0014.

Authors

Agnieszka Tomkowiak 
agnieszka.tomkowiak@up.poznan.pl
Katedra Genetyki i Hodowli Roślin, Uniwersytetu Przyrodniczego w Poznaniu Poland

Authors

Zbigniew Broda 

Katedra Genetyki i Hodowli Roślin, Uniwersytetu Przyrodniczego w Poznaniu Poland

Authors

Krzysztof Moliński 

Katedra Metod Matematycznych i Statystycznych, Uniwersytetu Przyrodniczego w Poznaniu Poland

Statistics

Abstract views: 27
PDF downloads: 15


License

Copyright (c) 2008 Agnieszka Tomkowiak, Zbigniew Broda, Krzysztof Moliński

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)