A molecular map of wheat (Triticum aestivum L.)
Paweł Cz. Czembor
p.czembor@ihar.edu.plZakład Fitopatologii, Instytut Hodowli i Aklimatyzacji Roślin w Radzikowie (Poland)
Magdalena Radecka
Zakład Fitopatologii, Instytut Hodowli i Aklimatyzacji Roślin w Radzikowie (Poland)
Edward Arseniuk
Zakład Fitopatologii, Instytut Hodowli i Aklimatyzacji Roślin w Radzikowie (Poland)
Abstract
A preliminary molecular map of common wheat was established using doubled haploid population derived from a cross between cultivars Liwilla and Begra. Parental cultivars and offspring lines were genotyped with SSRs and DArT markers. Molecular analyses resulted in identification of 269 polymorphic DArT markers. Of the 328 SSRs analyzed only 137 were polymorphic and for 103 SSRs segregation data were generated. Linkage analysis assigned 235 markers to 18 linkage groups resulting in map of 1705cM length in total. Linkage groups for chromosomes 1A, 7B and 4D could not be established. For the first time map position of 137 DArT markers in wheat genome is presented. The A genome consisted of 105 markers, the B genome 78, and the D genome only 52. On the D genome many large sized gaps between markers on chromosomes were observed. The other chromosomes in most cases were covered by markers irregularly with tendency to form clusters.
Supporting Agencies
Keywords:
genetic linkage map, molecular markers, wheatReferences
Akbari M., Wenzl P., Caig V., Carling J., Xia L., Yang S., Uszynski G., Mohler V., Lehmensiek A., Kuchel H., Hayden M. J., Howes N., Sharp P., Vaughan P., Rathmell B., Huttner E., Kilian A. 2006. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor. Appl. Genet. 113: 1409 ― 1420.
Google Scholar
Arseniuk E., Czembor H. J., Sowa W., Krysiak H., Zimny J. 1995. Genotypic reaction of triticale, wheat and rye to inoculation with Stagonospora (=Septoria) nodorum under field conditions and S. nodorum and S. tritici under controlled environment. Biul. IHAR 195/196: 209 ― 246
Google Scholar
Botstein D., White R., Skolnick M., Davis R. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314 ― 331.
Google Scholar
Caldwell K. S., Dvorak J., Lagudah E. S., Akhunov E., Luo M. Ch., Wolters P., Powell W. 2004. Sequence Polymorphism in Polyploid Wheat and Their D-Genome Diploid Ancestor. Genetics 167: 941 ― 947.
Google Scholar
Chao S., Sharp P. J., Worland A. J., Warham E. J., Koebner R. M. D., Gale M. D. 1989. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor. Appl. Genet. 78: 495 ― 504.
Google Scholar
Chee M., Yang R., Hubbell E., Berno A., Huang X. C., Stern D., Winkler J., Lockhart D. J., Morris M. S., Fodor S. P. A. 1996. Accessing genetic information with high-density DNA arrays. Science 274: 610 ― 614.
Google Scholar
Czembor P. C., Arseniuk E., Czaplicki A., Song Q. J., Cregan P. B., Ueng P. P. 2003. QTL mapping of partial resistance in winter wheat to Stagonospora nodorum blotch. Genome 46(4): 546 ― 554.
Google Scholar
Gale M. D., Atkinson M. D., Chinoy C. N., Harcourt R. L., Jia J., Li Q. Y., Devos K. M. 1995. Genetic maps of hexaploid wheat. Proceedings of the 8th International Wheat Genetics Symposium. 20–25 July 1993, Beijing, China. Edited by Li Z. S. and Xin Z. Y. China Agricultural Scientech Press, vol. 1, pp. 29 ― 40.
Google Scholar
Góral T. 2006. Odporność odmian pszenicy ozimej na fuzariozę kłosów powodowaną przez Fusarium culmorum (W. G. Smith) Sacc. Biul. IHAR 242: 63 ― 78.
Google Scholar
Gupta P. K., Balyan H. S., Edwards K. J., Isaac P., Korzun V., Röder M., Gautier M. F., Joudier P., Schlatter A. R., Dubcovsky J., De la Pena R. C., Khairallah M., Penner G., Hayden M. J., Sharp P., Keller B., Wang R. C. C., Hardouin J. P., Jack P., Leroy P. 2002. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor. Appl. Genet. 105: 413 ― 422.
Google Scholar
Gupta P. K., Varshney R. K., Sharma P. C., Ramesh B. 1999. Molecular markers and their application in wheat breeding: a review. Plant Breeding 118: 369 ― 390.
Google Scholar
Jaccoud D., Peng K., Feinstein D., Kilian A. 2001. Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 29: e25.
Google Scholar
Kammholz S. J., Campbell A. W., Sutherland M. W., Hollamby G. J., Martin P. J., Eastwood R. F., Barclay I., Wilson R. E., Brennan P. S., Shepard J. A. 2001. Establishment and characterization of wheat genetic mapping populations. Aust. J. Agric. Res. 52: 1079 ― 1088.
Google Scholar
Liu Y. G., Tsunewaki K. 1991. Restriction fragment length polymorphism (RFLP) analysis in wheat. II. Linkage maps of the RFLP sites in common wheat. Jpn. J. Genet. 66: 617 ― 633.
Google Scholar
McIntosh R. A., Hart G. E., Devos K. M., Gale M. D., Rogers W. J. 1998. Catalogue of gene symbols for wheat. Vol. 5. Proceedings of the 9th International Wheat Genetic Symposium, Saskatoon, Sask., Canada, 2–7 August 1998. University Extension Press, University of Saskatchewan, Saskatoon, Sask.: 77 ― 83.
Google Scholar
Messmer M. M., Keller M., Zanetti S., Keller B. 1999. Genetic linkage map of a wheat × spelt cross. Theor. Appl. Genet. 98: 1163 ― 1170.
Google Scholar
Paillard S., Schnurbusch T., Winzeler M. , Messmer M., Sourdille P., Abderhalden O., Keller B., Schachermayr G. 2003. An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor. Appl. Genet. 107: 1235 ― 1242.
Google Scholar
Pestsova E., Ganal M. W., Röder M. S. 2000. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43: 689 ― 697.
Google Scholar
Röder M. S., Korzun V., Wendehake K., Plaschke J., Tixier M. H., Leroy P., Ganal M. W. 1998. A microsatellite map of wheat. Genetics 149: 2007 ― 2023.
Google Scholar
Semagn K., Bjørnstad Å., Skinnes H., Marøy A. G., Tarkegne Y., William M. 2006. Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49: 545 ― 555.
Google Scholar
Somers D. J., Isaac P., Edwards K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109: 1105 ― 1114.
Google Scholar
Song Q. J., Shi J. R., Singh S., Fickus E. W., Costa J. M., Lewis J., Gill B. S., Ward R., Cregan P. B. 2005. Development and mapping of microsatellite (SSR) markers in wheat. Theor. Appl. Genet. 110: 550 ― 560.
Google Scholar
Sourdille K., Cadalen T., Guyomarc’h H., Snape J. W., Perretant M. R., Charmet G., Boeuf C., Bernard S., Bernard M. 2003. An update of the Courtot × Chinese Spring intervarital molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor. Appl. Genet. 106: 530 ― 538.
Google Scholar
Van Ooijen J. W. 2006. JoinMap 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B. V., Wageningen, Netherlands.
Google Scholar
Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Fritjers A., Pot J., Peleman J., Kuiper M., Zabeau M. 1995. AFLP: a new technique for DNA Fingerprinting. Nucleic Acids Res. 23: 4407 ― 4414.
Google Scholar
Weber J., May P. 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44: 388 ― 396.
Google Scholar
Wenzl P., Carling J., Kudrna D., Jaccoud D., Huttner E., Kleinhofs A., Kilian A. 2004. Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc. Natl. Acad. Sci. USA 101: 9915 ― 9920.
Google Scholar
Williams J., Kubelik A., Livak K., Rafalski J., Tingey S. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531 ― 6535.
Google Scholar
Authors
Paweł Cz. Czemborp.czembor@ihar.edu.pl
Zakład Fitopatologii, Instytut Hodowli i Aklimatyzacji Roślin w Radzikowie Poland
Authors
Magdalena RadeckaZakład Fitopatologii, Instytut Hodowli i Aklimatyzacji Roślin w Radzikowie Poland
Authors
Edward ArseniukZakład Fitopatologii, Instytut Hodowli i Aklimatyzacji Roślin w Radzikowie Poland
Statistics
Abstract views: 45PDF downloads: 34
License
Copyright (c) 2007 Paweł Cz. Czembor, Magdalena Radecka, Edward Arseniuk
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:
- Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
- Placing on the market, lending or renting the original or copies of the article.
- Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
- Including the article in a collective work.
- Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
- Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
- Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.
Authors by sending a request for publication:
- They consent to the publication of the article in the journal,
- They agree to give the publication a DOI (Digital Object Identifier),
- They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
- They agree to send article metadata to commercial and non-commercial journal indexing databases.
Most read articles by the same author(s)
- Wiesław Golka, Edward Arseniuk, Adrian Golka, Tomasz Góral, Artificial neural networks and remote sensing in the assessment of spring wheat infection by Fusarium head blight , Bulletin of Plant Breeding and Acclimatization Institute: No. 288 (2020): Regular issue
- Paweł Cz. Czembor, Dariusz Mańkowski, Piotr Słowacki, Dominika Piaskowska, Association mapping for resistance genes to leaf rust (Puccinia triticina) and Septoria tritici blotch (Septoria tritici) in wheat , Bulletin of Plant Breeding and Acclimatization Institute: No. 286 (2019): Special issue
- Edward Arseniuk, Lidia Kowalska, Development and use of biotechnological methods for shortening the breeding cycle and improving the effectiveness of genotypes selection of winter wheat and winter triticale with increased resistance and tolerance to septoria leaf and glume [agent: Parast , Bulletin of Plant Breeding and Acclimatization Institute: No. 286 (2019): Special issue
- Edward Arseniuk, Jakub Walczewski, Piotr Ochodzki, Parastagonospora nodorum proteinaceous toxins and their connection with wheat and triticale susceptibility and resistance on stagonospora nodorum blotch , Bulletin of Plant Breeding and Acclimatization Institute: No. 286 (2019): Special issue
- Aleksandra Pietrusińska, Paweł Cz. Czembor, Evaluation of selected DNA isolation methods for wheat breeding purposes , Bulletin of Plant Breeding and Acclimatization Institute: No. 244 (2007): Regular issue
- Paweł Cz. Czembor, Magdalena Radecka, Edward Arseniuk, Mapping of resistance loci to septoria tritici blotch caused by fungus Mycosphaerella graminicola in wheat , Bulletin of Plant Breeding and Acclimatization Institute: No. 243 (2007): Regular issue