Chromosome engineering in improvement of crop plants

Adam J. Lukaszewski

bpschair@ucr.edu
Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA (United States)

Abstract

Chromosome engineering is an activity aiming at the introduction into crop plants of chromatin fragments with a desirable genes or loci, or changes in chromosome structure that increase crops’ end value. New chromosome constructs must compensate the absence of original chromosomes; to minimize genetic drag, in introgressions from wild relatives the amounts of transferred chromatin should be kept at minimum. The available techniques include chromosome fragmentation followed by random fusion of fragments into chromosome structures, or induced recombination. The fragmentation approaches produce many translocations but a majority of them are non-compensating. Recombination offers a good measure of control of the location and size of the introgression but requires screening of large populations. The selection of the appropriate technique should be based on specific goals and the available resources.


Keywords:

crossing over, chromosome, fragmentation, introgression, recombination, translocation

Chetelat R. T., Meglic V. 2000. Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor. Appl. Genet. 100: 323 — 241. DOI: https://doi.org/10.1007/s001220050031
Google Scholar

Curtis C. A, Lukaszewski A. J., Chrzastek M. 1991. Metaphase I pairing of deficient chromosomes and genetic mapping of deficiency breakpoints in common wheat. Genome 34: 553 — 560. DOI: https://doi.org/10.1139/g91-085
Google Scholar

Devos K. M., Atkinson M. D., Chinoy C. N., Francis H. A., Harcourt R. L., Koebner R. M. D, Liu, C. J., Masojc P., Xie D. X., Gale M. D. 1993. Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 85: 673 — 680. DOI: https://doi.org/10.1007/BF00225004
Google Scholar

Dubcovsky J., Luo M. C., Dvorak J. 1995. Differentiation between homoeologous chromosomes 1A of wheat and 1Am of Triticum monococcum and its recognition by the Ph1 locus. Proc. Natl. Acad. Sci. USA 92: 6645 — 6649. DOI: https://doi.org/10.1073/pnas.92.14.6645
Google Scholar

Duvick D. N. 1990. The romance of plant breeding and other myths. In: Gene manipulation in plant improvement. J. P. Gustafson (ed.), Plenum Press, New York: 39 — 54. DOI: https://doi.org/10.1007/978-1-4684-7047-5_3
Google Scholar

Dvorak, J., McGuire P. E. 1981. Nonstructural chromosome differentiation among wheat cultivars, with special reference to differentiation of chromosomes in related species. Genetics 97: 391 — 414. DOI: https://doi.org/10.1093/genetics/97.2.391
Google Scholar

Friebe B., Jiang J., Raupp W. J., McIntosh R. A., Gill B. S. 1996. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91: 59 — 87. DOI: https://doi.org/10.1007/BF00035277
Google Scholar

Gale M. D., Atkinson M. D., Chinoy C. N., Harcourt R. L., Jia J., Li Q. Y., Devos K. M. 1993. Genetic maps of hexaploid wheat. Proc. 8th Int. Wheat Genet. Symp. Li Z.S., and Xin Z. Y., (eds.) Beijing, China: 29 — 40.
Google Scholar

Guzowska-Zimnoch E. 2001. Diploidalne mieszańce międzygatunkowe ziemniaka jako źródło odporności na mokrą zgniliznę bulw i czarną nóżkę w hodowli ziemniaka. Monografie i Rozprawy Naukowe IHAR, Radzików, 8/2001.
Google Scholar

Hagberg A., Hagberg P. 1991. Production and analysis of chromosome duplications in barley. In: Chromosome engineering in plants: genetics, breeding, evolution. Gupta, P. K., Tsuchiya T. (eds.) Elsevier, Amsterdam: 401 — 410. DOI: https://doi.org/10.1016/B978-0-444-88259-2.50023-0
Google Scholar

Jauhar P. P. 1993. Cytogenetics of the Festuca-Lolium complex. Relevance to breeding. SpringerVerlag, Berlin. DOI: https://doi.org/10.1007/978-3-642-84086-9
Google Scholar

Jena K. K., Kush G. S., Kochert G. 1992. RFLP analysis of rice (Oryza sativa L.) introgression lines. Theor. Appl. Genet. 84: 608 — 616. DOI: https://doi.org/10.1007/BF00224159
Google Scholar

Kasha R. J., Burnham C. R. 1965. Location of interchange breakpoints in barley. II. Chromosome pairing and the intercross method. Can. J. Genet. Cytol. 7: 620 — 632. DOI: https://doi.org/10.1139/g65-082
Google Scholar

Künzel G., Gecheff K. I., Schubert I. 2001. Different chromosomal distribution patterns of radiation-induced interchange breakpoints in barley: first post-treatment mitosis versus viable offspring. Genome 44: 128 — 132. DOI: https://doi.org/10.1139/gen-44-1-128
Google Scholar

Lukaszewski A. J. 1995. Physical distribution of translocation breakpoints in homoeologous recombinants induced by the absence of the Ph1 gene in wheat and triticale. Theor. Appl. Genet. 90: 714 — 719. DOI: https://doi.org/10.1007/BF00222138
Google Scholar

Lukaszewski A. J. 1997. The development and meiotic behavior of asymmetrical isochromosomes in wheat. Genetics 145: 1155 — 1160. DOI: https://doi.org/10.1093/genetics/145.4.1155
Google Scholar

Lukaszewski A. J. 2000. Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci. 40: 216 — 225 DOI: https://doi.org/10.2135/cropsci2000.401216x
Google Scholar

Luo M.-C., Dubcovsky J., Dvorak J. 1996. Recognition of homoeology by the wheat Ph1 locus. Genetics. 144: 1195 — 1203. DOI: https://doi.org/10.1093/genetics/144.3.1195
Google Scholar

Masoud-Nejad, A., Nasuda S., McIntosh R. A., Endo T. R. 2002. Transfer of rye chromosome segments to wheat by a gametocidal system. Chromosome Res. 10: 349 — 357. DOI: https://doi.org/10.1023/A:1016845200960
Google Scholar

Naranjo T., Fernandez-Rueda P. 1996. Pairing and recombination between individual chromosomes of wheat and rye in hybrids carrying the ph1b mutation. Theor. Appl. Genet. 93: 242 — 248. DOI: https://doi.org/10.1007/s001220050272
Google Scholar

Nasuda S., Friebe B., Busch W., Kynast R. G., Gill B. S. 1998. Structural rearrangement in chromosome 2M of Aegilops comosa has prevented the utilization of the compare and related wheat-A. comosa translocations in wheat improvement. Theor. Appl. Genet. 96: 780785 DOI: https://doi.org/10.1007/s001220050802
Google Scholar

Riley R., Chapman V. 1958. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature (London) 182: 713 — 715. DOI: https://doi.org/10.1038/182713a0
Google Scholar

Sears E. R. 1956. The transfer of leaf rust resistance from Ae. umbellulata to wheat. Brookhaven Symp. Biol. 9: 1 — 22.
Google Scholar

Sears E. R. 1981. Transfer of alien genetic material to wheat. In: Wheat science: today and tomorrow. Evans, L. T., W. J. Peacock (Eds.), Cambridge Univ. Press, Cambridge: 75 — 89.
Google Scholar

Sears E. R., Okamoto M. 1958. Intergenomic chromosome relationships in hexaploid wheat. Proc. 10th Int. Congr. Genet.: 258 — 259.
Google Scholar

Shen P., Huang H. V. 1986. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112: 441 — 457. DOI: https://doi.org/10.1093/genetics/112.3.441
Google Scholar

Singh R. P., Huerta-Espino J., Rajaram S., Crossa J. 1998. Agronomic effects from chromosome translocations 7DL.7Ag and 1BL.1RS in spring wheat. Crop Sci. 38: 27 — 33. DOI: https://doi.org/10.2135/cropsci1998.0011183X003800010005x
Google Scholar

Zwierzykowski Z., Lukaszewski A. J., Naganowska B., Lesniewska A. 1999. The pattern of homoeologous recombination in triploid hybrids of Lolium multiflorum with Festuca pratensis. Genome 42: 720 — 726. DOI: https://doi.org/10.1139/g98-169
Google Scholar


Published
2003-12-31

Cited by

Lukaszewski, A. J. (2003) “Chromosome engineering in improvement of crop plants”, Bulletin of Plant Breeding and Acclimatization Institute, (230), pp. 5–14. doi: 10.37317/biul-2003-0001.

Authors

Adam J. Lukaszewski 
bpschair@ucr.edu
Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA United States

Statistics

Abstract views: 58
PDF downloads: 22


License

Copyright (c) 2003 Adam J. Lukaszewski

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.