Zastosowania modelu AMMI do analizy reakcji odmian na środowiska
Jakub Paderewski
jakub_paderewski@sggw.edu.plKatedra Doświadczalnictwa i Bioinformatyki, SGGW, Warszawa (Poland)
Wiesław Mądry
Katedra Doświadczalnictwa i Bioinformatyki, SGGW, Warszawa (Poland)
Abstrakt
W doświadczalnictwie rolniczym kluczową kwestią są serie doświadczeń odmianowych, stanowiące szczególny przypadek doświadczeń dwuczynnikowych, w których jednym czynnikiem są odmiany, a drugim miejscowości. Do opisu charakteru interakcji dwóch czynników, a więc w powyżej opisanym przypadku, mogą być stosowane wielowymiarowe modele statystyczne takie jak model AMMI, GGE czy JREG. Praca ta ma przybliżyć możliwości zastosowania wybranych modeli statystycznych ze szczególnym uwzględnieniem modelu AMMI. Oprócz analizy AMMI przedstawiono uzupełniającą analizę skupień. Opisane metody statystyczne są celowe w analizie reakcji odmian roślin rolniczych na warunki środowiskowe, czyli agroekosystemy, na podstawie danych z serii doświadczeń.
Instytucje finansujące
Słowa kluczowe:
analiza AMMI, analiza GGE, interakcja genotypowo-środowiskowa, modele multiplikatywne, ocena adaptacjiBibliografia
Abamu F.J., Akinsola E.A., Alluri K. 1998. Applying the AMMI models to understand genotype-by-environment (G E) interactions in rice reaction to blast disease in Africa. Internat. J. Pest Manag. 44: 239 — 245.
Google Scholar
Abdelmulla AA., Linke W., Von Kittlitz E., Stelling D. 1999. Heterosis and inheritance of drought tolerance in faba bean Vicia faba L. Plant Breeding 118: 485 — 490.
Google Scholar
Adugna W., Labuschagne M.T. 2002. Genotype-environment interactions and phenotypic stability analyses of linseed in Ethiopia. Plant Breeding 121: 66 — 71.
Google Scholar
Alagarswamy G., Chandra S. 1998. Pattern analysis of international sorghum multi-environment trials for grain-yield adaptation. Theor. Appl. Genet. 96: 397 — 405.
Google Scholar
Annicchiarico P. 1997 a. Additive main effects and multiplicative interaction (AMMI) analysis of genotype location interaction in variety trials repeated over years. Theor. Appl. Genet. 94: 1072 — 1077.
Google Scholar
Annicchiarico P. 1997 b. Joint regression vs AMMI analysis of genotype-environment interactions for cereals in Italy. Euphytica 94: 53 — 62.
Google Scholar
Annicchiarico P. 2002 a. Defining adaptation strategies and yield stability targets in breeding programmers. 165–183. W Kang M.S. (Ed.) Quantitative genetics, genomics and plant breeding. CABI, Wallingford, UK.
Google Scholar
Annicchiarico P. 2002 b. Genotype-environment interactions: challenges and opportunities for plant breeding and cultivar recommendations. FAO Plant Production and Protection Paper No. 174. Food and Agriculture Organization, Rome.
Google Scholar
Annicchiarico P., Perenzin M. 1994. Adaptation patterns and definition of macro-environments for selection and recommendation of common-wheat genotypes in Italy. Plant Breeding 113: 197 — 205.
Google Scholar
Annicchiarico P., Piano E. 2005. Use of artificial environments to reproduce and exploit genotype × location interaction for lucerne in northern Italy. Theor. Appl. Genet. 110: 219 — 227.
Google Scholar
Annicchiarico P., Bellah F., Chiari T. 2005. Defining subregions and estimating benefits for a specific-adaptation strategy by breeding programs: A case study. Crop Sci. 45: 1741 — 749.
Google Scholar
Annicchiarico P., Bellah F., Chiari T. 2006a. Repeatable genotype×location interaction and its exploitation by conventional and GIS-based cultivar recommendation for durum wheat in Algeria. Europ. J. Agronomy 24: 70 — 81.
Google Scholar
Annicchiarico P., Russi L., Piano E., Veronesi F. 2006 b. Cultivar adaptation across Italian locations in four turfgrass species. Crop Sci. 46: 264 — 272.
Google Scholar
Atlin G. N., McRae K.B., Lu X. 2000 a. Genotype region interaction for two row barley yield in Canada. Crop Sci. 40: 1 — 6.
Google Scholar
Basford K. E., Cooper M. 1997. Genotype×environment interactions and some considerations of their implications for wheat breeding in Australia. Austr. J. Agric. Res. 49:153 — 174.
Google Scholar
Becker H. C., Leon J. 1988. Stability analysis in plant breeding. Plant Breeding 101:1 — 23.
Google Scholar
Blanche S. B., Myers G. O. 2006. Identifying Discriminating Locations for Cultivar Selection in Louisiana. Crop Sci. 46:946–949.
Google Scholar
Bradu D. Gabriel K.R. 1978. The biplot as a diagnostic tool for model of two-way tables. Technometrics 1978: 47 — 63.
Google Scholar
Brancourt-Hulmel M., Lecomte C. 2003. Effect of environmental varieties on genotype x environment interaction of winter wheat: a comparison of biadditive factorial regression to AMMI. Crop Sci. 43: 608 — 617.
Google Scholar
Brancourt-Hulmel M., Denis J.B., Biarnes-Dumoulin V. 1997. Comparison of Joint Regression, AMMI model and Factorial regression for efficiency and parsimony in plant breeding. Materiały konferencyjne EUCARPIA sekcja biometrics in Plant Breeding (ed. Krajewski P., Kaczmarek Z.) Poznań 1997: 81 — 86.
Google Scholar
Bujak H., Dopierała A., Dopierała P., Nowosad K. 2006. Analiza interakcji genotypowo-środowiskowej plonu odmian żyta ozimego. Biul. IHAR. 240/241: 151 — 160.
Google Scholar
Burgueño, J., Crossa, J., Vargas, M., 2001. SAS programs for graphing GE and GGE biplots. Biometrics and Statistics Unit, CIMMYT, Int. México.
Google Scholar
Caliński T., Czajka S., Kaczmarek Z. 1979. Analiza interakcji genotypowo-środowiskowej. Zastosowanie analizy regresji oraz analizy składowych głównych. IX Coll. Metodol. z Agrobiom. 5 — 28 .
Google Scholar
Caliński T., Czajka S., Kaczmarek Z. 1980. Analiza jednorocznej serii ortogonalnej doświadczeń odmianowych ze szczególnym uwzględnieniem interakcji odmianowo-środowiskowej. 1. Analiza ogólna. Biul. Oceny Odmian 12: 67 — 81.
Google Scholar
Caliński T., Czajka S., Kaczmarek Z. 1983. Analiza jednorocznej serii ortogonalnej doświadczeń odmianowych ze szczególnym uwzględnieniem interakcji odmianowo-środowiskowej. 1. Analiza szczegółowa. Biul. Oceny Odmian 15: 39 — 60.
Google Scholar
Caliński T., Czajka S., Kaczmarek Z. 1987 a. A model for the analysis of a series of experiments repeated at several places over a period of years. I. Theory. Biul. Oceny Odmian 17 — 18:7 — 33.
Google Scholar
Caliński T., Czajka S., Kaczmarek Z. 1987b. A model for the analysis of a series of experiments repeated at several places over a period of years. II. Example. Biul. Oceny Odmian 17 — 18:35 — 71.
Google Scholar
Caliński T., Czajka S., Kaczmarek Z., Krajewski P., Siatkowski I. 1995. SERGEN-a computer program for the analysis of series of variety trials. Biuletyn Oceny Odmian 26/27: 39 — 41.
Google Scholar
Caliński T., Czajka S., Kaczmarek Z. 1997. A multivariate approach to analysing genotype-environment interactions. W: Krajewski P., Kaczmarek Z (Ed), Advances in Biometrical Genetics, 3 — 14, Poznań.
Google Scholar
Cassida K. A., Muir J. P., Hussey M. A. Read J.C., Venuto B. C., Ocumpaugh W. R. 2005. Biofuel component concentrations and yields of switchgrass in South Central U.S. environments. Crop Sci. 45: 692.
Google Scholar
Ceccarelli S. 1989. Wide adaptation: How wide? Euphytica 40: 197 — 205.
Google Scholar
Ceccarelli S. 1994. Specific adaptation and breeding for marginal conditions. Euphytica 77: 205 — 219.
Google Scholar
Ceccarelli S. 1996. Adaptation to low/high input cultivation. Euphytica 92: 203 — 214.
Google Scholar
Chapman S.C., de la Vega A. J. 2002. Spatial and seasonal effects confounding interpretation of sunflower yields in Argentina. Field Crops Research 73: 107 — 120.
Google Scholar
Chapman S.C., Crossa J., Edmeades G.O. 1997. Genotype by environment effects and selection for drought tolerance in tropical maize. I. Two mode pattern analysis of yield. Euphytica 95: 1 — 9.
Google Scholar
Collaku A., Harrison S.A., Finney P.L., Van Sanford D.A. 2002. Clustering of environments of Southern Soft Red Winter Wheat Region for milling and baking quality attributes. Crop Sci. 42:58 — 63.
Google Scholar
Cooper M., Delacy I. H. 1994. Relationships among analytic methods used to study genotypic variation and genotype-by-environment interaction in plant breeding multi-environment trials. Theor. Appl. Genet. 88: 561 — 572 .
Google Scholar
Cornelius P. L. 1993. Statistical tests and retention of terms in the additive main effects and multiplicative interaction model for cultivar trials. Crop Sci. 33: 1186 — 1193.
Google Scholar
Cornelius P.L., Seyedsadr M., Crossa J. 1992. Using the shifted multiplicative model to search for "separability" in crop cultivar trials. Theor. Appl. Genet. 84: 161 — 172.
Google Scholar
Crossa J. 1990. Statistical analyses of multilocation trials. Adv. Agron. 44: 55 — 85.
Google Scholar
Crossa J., Cornelius P.L. 2002. Linear-bilinear models for the analysis of genotype-environment interaction. In: Kang M.S. (Ed.), Quantitative Genetics, Genomics and Plant Breeding, CAB International Wallingford, UK: 305 — 322.
Google Scholar
Crossa J., Gauch H. G., Zobel R.W. 1990. Additive Main Effects and Multiplicative Interaction Analysis of Two Interaction Maize Cultivar Trials. Crop Sci. 30: 493 — 500 .
Google Scholar
Crossa J., Fox P.N., Pfeiffer W. H., Rajaram S., Gauch H.G. 1991. AMMI adjustment for statistical analysis of an international wheat yield trial. Theor. Appl. Genet. 81: 27 — 37.
Google Scholar
Crossa J., Cornelius P.L., Seyedsadr M., Byrne P. 1993. A shifted multiplicative model cluster analysis for grouping environments without genotypic rank change. Theor. Appl. Genet. 85: 577 — 586.
Google Scholar
Crossa J., Cornelius P.L., Yan W. 2002. Biplots of linear-bilinear models for studying crossover genotype x environment interaction Crop Sci. 42: 619 — 633.
Google Scholar
de la Vega A.J., Chapman S.C. 2006. Defining sunflower selection strategies for a highly heterogeneous target population of environments. Crop Sci. 46: 136 — 144.
Google Scholar
de la Vega A.J., DeLacy I.H., Chapman S.C. 2007a. Changes in agronomic traits of sunflower hybrids over 20 years of breeding in central Argentina. Field Crops Res. 100: 73 — 81.
Google Scholar
de la Vega A.J., DeLacy I.H., Chapman S.C. 2007b. Progress over 20 years of sunflower breeding in central Argentina. Field Crops Res.100: 61 — 72.
Google Scholar
DeLacy I.H., Cooper M. 1990. Pattern analysis for the analysis of regional variety trials. In: Kang M.S. (ed.) Genotype-by-environments interaction and plant breeding. Louisiana State Univ., Baton Rouge, LA: 301 — 334.
Google Scholar
Dias C., Krzanowski W. 2003. Model selection and cross validation in additive main effect and multiplicative interaction models. Crop Sci. 43: 865 — 873.
Google Scholar
Dixon A.G.O., Ngeve J.M., Nukenine E.N. 2002. Genotype× environment effects on severity of cassava bacterial blight disease caused by Xanthomonas axonopodis pv. Manihotis. European Journal of Plant Pathology 108: 763 — 770.
Google Scholar
Drzazga T., Krajewski P. 2001. Zróżnicowanie środowisk pod względem stopnia interakcji w seriach doświadczeń z pszenicą ozimą. Biul. IHAR. 218/219: 111 — 115.
Google Scholar
Ebdon J. S., Gauch H.G. 2002 a. Additive main effect and multiplicative interaction analysis of national turfgrass performance trials: I. Interpretation of genotype by environment interaction. Crop Sci. 42: 489 — 496.
Google Scholar
Ebdon J. S., Gauch H. G. 2002 b. Additive main effect and multiplicative interaction analysis of national turfgrass performance trials: II. Cultivar recommendations. Crop Sci. 42: 497 — 506.
Google Scholar
Fox P.N. Rosielle A.A. 1982. Reducing the influence of environmental main-effects on pattern analysis of plant breeding environments. Euphytica 31: 645 — 656.
Google Scholar
Gabriel K. R. 1971 The biplot graphic display of matrices with application to principal component analysis. Biometrika 58: 453 — 467.
Google Scholar
Gauch H. G. 1988. Model selection and validation for yield trials with interaction. Biometrics 44: 705 — 715.
Google Scholar
Gauch H. G. 1990. Full and reduced models for yield trials. Theor. Appl. Genet. 80: 153 — 160.
Google Scholar
Gauch H. G. 1992. Statistical analysis of regional yield trials. AMMI analysis of factorial designs. Elsevier Science, New York.
Google Scholar
Gauch H. G. 2006. Statistical analysis of yield trials by AMMI and GGE. Crop Sci. 46: 1488 — 1500.
Google Scholar
Gauch H. G., Furnas R.E. 1991. Statistical analysis of yield trials with MATMODEL. Agron. J. 83: 916 — 920.
Google Scholar
Gauch H. G., Zobel R. W. 1988. Predictive and postdictive success of statistical analyses of yield trials. Theor. Appl. Genet. 76: 1 — 10.
Google Scholar
Gauch H. G., Zobel R. W. 1989. Accuracy and selection success in yield trial analyses. Theor. Appl. Genet. 77: 473 — 481.
Google Scholar
Gauch H. G., Zobel R. W. 1996. AMMI analysis of yield trials, In: M.S. Kang, H.G. Gauch (Ed.) Genotype by environment interaction. CRC Press, Boca Raton: 85 — 122.
Google Scholar
Gauch H. G., Zobel R.W. 1997. Identifying mega-environments and targeting genotypes. Crop Sci. 37: 311 — 326.
Google Scholar
Gauch H.G., Piepho H.P., Annicchiarico P. 2008. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Sci. 48: 866 — 889.
Google Scholar
Gollob H. 1968. A statistical model which combines features of factor analytic and analysis of variance techniques. Psychometrika 33: 73 — 115.
Google Scholar
Grausgruber H., Oberforster M., Werteker M., Ruckenbauer P., Vollmann J. 2000. Stability of quality traits in Austrian-grown winter wheats. Field Crops Res. 66: 257 —267.
Google Scholar
Haussmann B. I. G., Obilana A. B., Ayiecho P. O., Blum A., Schipprack W., Geiger H. H. 2000. Yield and yield stability of four population types of grain sorghum in a semi-arid area of Kenya. Crop Sci. 40: 319 — 329.
Google Scholar
Hernandez M., Crossa J. 2000. The AMMI analysis and graphing the biplot. CIMMYT, Int. Mexico.
Google Scholar
Hühn M., Truberg B. 2002. Contributions to the analysis of genotype x environment interactions: theoretical results of the application and comparison of clustering techniques for the stratification of field test sites. J. Agron. Crop Sci. 188: 65 — 72.
Google Scholar
Ibanez M. A., Di Renzo M.A., Samami S. S., Bonamico N. C., Poverene M. M. 2001. Genotype-environment interaction of lovegrass forage yield in the semi-arid region of Argentina. Journal of Agricultural Science, Cambridge 137: 329 — 336.
Google Scholar
Joshi A.K., Ortiz-Ferrara G., Crossa J., Singh G., Alvarado G., Bhatta M.R., Duveiller E., Sharma R.C., Pandit D.B., Siddique A.B., Das S.Y., Sharma R.N., Chand R. 2007. Associations of environments in South Asia based on spot blotch disease of wheat caused by Cochliobolus sativus. Crop Sci. 47: 1071— 1081.
Google Scholar
Kang M.S. 1993. Simultaneous selection for yield and stability: Consequences for growers. Agron. J. 85: 754 — 757 .
Google Scholar
Kang M.S. 1998. Using genotype-by-environment interaction for crop cultivar development. Adv. in Agronomy 62: 200 — 252.
Google Scholar
Kang M.S. 2002. Genotype-environment interaction: Progress and prospects. In: Kang M.S. (Ed.), Quantitative Genetics, Genomics and Plant Breeding, CAB International Wallingford, UK: 221 — 243.
Google Scholar
Kaya Y., Akcura M., Ayranci R., Taner S. 2006. Pattern analysis of multi-environment trials in bread wheat. Commun. Biometry and Crop Sci. 1: 63 — 71.
Google Scholar
Li W., Yan Z.H., Wei Y.M. Lan X.J., Zheng Y.L. 2006. Evaluation of genotype x environment interactions in Chinese spring wheat by the AMMI model, correlation and path analysis. J. Agronomy and Crop Science 192: 221 — 227.
Google Scholar
Lillemo M., van Ginkel M., Trethowan R.M., Hernandez E., Rajaram S. 2004. Associations among international CIMMYT bread wheat yield testing locations in high rainfall areas and their implications for wheat breeding. Crop Sci. 44: 1163 — 1169.
Google Scholar
Lillemo M., van Ginkel M., Trethowan R. M., Hernandez E., Crossa J. 2005. Differential adaptation of CIMMYT bread wheat to global high temperature environments. Crop Sci. 45: 2443 — 2453.
Google Scholar
Lin C.S., Binns M.R. 1994. Concepts and methods for analyzing regional trial data for cultivar and location selection. Plant Breeding Reviews 12: 271 — 297.
Google Scholar
Link W., Schill B., von Kittlitz E. 1996. Breeding for wide adaptation in faba bean. Euphytica 92: 185 — 190. .
Google Scholar
Ma B. L., Yan W., Dwyer L. M., Frégeau-Reid J., Voldeng H.D., Dion Y., Nass H. 2004. Graphic analysis of genotype, environment, nitrogen fertilizer, and their interactions on spring wheat yield. Agron. J. 96: 169 — 180.
Google Scholar
Mathews K. L., Chapman S. C., Trethowan R., Singh R. P., Crossa J., Pfeiffer W., van Ginkel M., DeLacy I. 2006. Global adaptation of spring bread and durum wheat lines near-isogenic for major reduced height genes. Crop Sci. 46: 603 — 613.
Google Scholar
Mądry W. 2003. Analiza statystyczna miar stabilności na podstawie danych w klasyfikacji genotypy × środowiska. Część II Model mieszany Shukli i model regresji łącznej. Coll. Biom. 33: 207 — 220.
Google Scholar
Mądry W., Kang M.S. 2005. Scheffé-Caliński and Shukla models: their interpretation and usefulness in stability and adaptation analyses. Journal of Crop Improvement 14: 325 — 369 .
Google Scholar
Mądry W., Gacek E.S., Paderewski J., Gozdowski D., Drzazga T. 2011. Adaptive yield response of winter wheat cultivars across environments in Poland using combined AMMI and cluster analyses. International Journal of Plant Production 5.
Google Scholar
Mądry W., Paderewski J., Drzazga T. 2006. Ocena reakcji plonu ziarna rodów hodowlanych pszenicy ozimej na zmienne warunki środowiskowe za pomocą analizy AMMI. Fragmenta Agronomica 92: 130 — 143.
Google Scholar
McLaren C.G. 1996. Methods of data standardization used in pattern analysis and AMMI models for the analysis of international multi-environment variety trials, In: Cooper M., Hammer G.L., Eds. Plant adaptation and crop improvement. Wallingford, UK, CAB International.: 225 — 242.
Google Scholar
Mekbib F. 2003. Yield stability in common bean (Phaseolus vulgaris L.) genotypes. Euphytica 130:147-153.
Google Scholar
Motzo R., Giunta F., Deidda M. 2001. Factors affecting the genotype × environment interaction in spring triticale grown in a Mediterranean environment. Euphytica 121: 317 — 324.
Google Scholar
Muurinen S., Peltonen-Sainio P. 2006. Radiation-use efficiency of modern and old spring cereal cultivars and its response to nitrogen in northern growing conditions. Field Crops Research 96: 363 — 373.
Google Scholar
Nabugoomu F., Kempton R.A., Talbot M. 1999. Analysis of series of trials where varieties differ in sensitivity to locations. J. Agric. Biol. Environ. Stat. 4: 310 — 325.
Google Scholar
Nachit M. M., Nachit G., Ketata H., Gauch H. G., Zobel R. W. 1992. Use of AMMI and linear regression models to analyze genotype-environment interaction in durum wheat. Theor. Apel. Genet. 83: 597 — 601.
Google Scholar
Ortiz-Monasterio J.I., Sayre K.D., Rajaram S., McMahon M. 1997. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Sci. 37: 898 — 904.
Google Scholar
Pacheco R. M., Duarte J. B., Vencovsky R., Pinheiro J. B., Oliveira A. B. 2005. Use of supplementary genotypes in AMMI analysis. Theor. Appl. Genet. 110: 812 — 818.
Google Scholar
Paderewski J., Mądry W. 2006. Addytywno-multiplikatywny model AMMI do statystycznej analizy danych z serii doświadczeń genotypowych. Coll. Biom. 36: 125 — 148.
Google Scholar
Paderewski J., Mądry W., Rozbicki J. 2010. Yielding of old and modern Polish wheat cultivars under different nitrogen input as assessed by method of joint AMMI and cluster analyses. Plant Breeding and Seed Science 62: 117 — 136.
Google Scholar
Paderewski J., Gauch H.G., Mądry W., Drzazga T., Rodrigues P.C. 2011. Yield Response of Winter Wheat to Agro-Ecological Conditions Using Additive Main Effects and Multiplicative Interaction and Cluster Analysis. Crop Sci. 51: 969 — 980.
Google Scholar
Patterson H. D. 1997. Analysis of series of variety trials. In R.A. Kempton, P.N. Fox (ed.) Statistical methods for plant variety evaluation. Chapman and Hall, London: 139 — 161.
Google Scholar
Piepho H.P. 1996. Analysis of genotype by environment interaction and phenotypic stability. In: M.S. Kang, H.G. Zobel (Eds), Genotype by environment interaction,. CRC Press, Boca Raton: 151 — 174.
Google Scholar
Piepho H.P. 1998. Methods for comparing the yield stability of cropping systems-a review. J. Agron. Crop Sci. 180: 193 — 213.
Google Scholar
Piepho, H.P., van Eeuwijk F.A. 2002. Stability analyses in crop performance evaluation. In: Kang, M. [ed.]: “Crop improvement: Challenges in the twenty-first century”. Food Products Press, Binghamton, New York: 307 — 342.
Google Scholar
Piepho H.P., Möhring J., Melchinger A. E., Büchse A. 2008. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161: 209 — 228.
Google Scholar
Pinnschmidt H.O., Hovmøller M.S. 2002. Genotype × environment interactions In the expression of net blotce resistance In spring and winter barley varieties. Euphytica 125: 227 — 243.
Google Scholar
Presterl T., Weltzien E. 2003. Exploiting heterosis in pearl millet for population breeding in arid environments Crop Sci. 43: 767 — 776.
Google Scholar
R Development Core Team 2007. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
Google Scholar
Robert N. 1997. Structuring genotype x environment interaction for quality traits in bread wheat, in two multi-location series of trials. Euphytica 97: 53 — 66.
Google Scholar
Robinson J., Jalli M. 1999. Sensitivity of resistance to net blotch in barley. J. Phytopathol. 147: 235 — 241.
Google Scholar
Rodriguez M., Rau D., Papa R., Attene G. 2008. Genotype by environment interactions in barley (Hordeum vulgare L.): different responses of landraces, recombinant inbred lines and varieties to Mediterranean environment. Euphytica Vol. 163, No 2: 231 — 247.
Google Scholar
Roozeboom K. L., Schapaugh W. T., Tuinstra M. R., Vanderlip R.L., Milliken G. A. 2008. Testing wheat in variable environments: genotype, environment, interaction effects, and grouping test locations. Crop Sci. 48: 317 — 330.
Google Scholar
Samonte S. O., Wilson L. T., McClung A. M., Medley J. C. 2005. Targeting cultivars onto rice growing environments using AMMI and SREG GGE biplot analyses. Crop Sci. 45: 2414 — 2424.
Google Scholar
SAS Institute. 2001. SAS system for Windows. v. 8.2. SAS Inst., Cary, NC.
Google Scholar
Sharma R. C., Ortiz-Ferrara G.. Crossa J., Bhatta M. R., Sufian M.A., Shoran J., Joshi A. K ., Chand R. Singh G., Ortiz R. 2007. Wheat grain yield and stability assessed through regional trials in the Eastern Gangetic Plains of South Asia. Euphytica 157: 457 — 464.
Google Scholar
Sinebo W. 2005. Trade off between yield increase and yield stability in three decades of barley breeding in a tropical highland environment. Field Crops Research 92: 35 — 52.
Google Scholar
Sivapalan S., O’Brien L., Ortiz-Ferrera G., Hollamby G. J., Barclay I., Martin P.J. 2000. An adaptation analysis of Australian and CIMMYT/ICARDA wheat germplasm in Australian production environments. Aust. J. Agric. Res. 51: 903 — 915.
Google Scholar
Tollenaar M., Lee E. A. 2002. Yield potential, yield stability and stress tolerance in maize. Field Crops Research 75: 161 — 170.
Google Scholar
Trethowan R. M., van Ginkel M., Rajaram S. 2002. Progress in breeding wheat for yield and adaptation in global drought affected environments. Crop Sci. 42: 1441 — 1446.
Google Scholar
Trethowan R. M., van Ginkel M., Ammar K., Crossa J., Payne T. S., Cukadar B., Rajaram S., Hernandez E. 2003. Associations among twenty years of international bread wheat yield evaluation environments. Crop Sci. 43: 1698 — 1711.
Google Scholar
Truberg B., Hühn M. 2002. Contributions to the analysis of genotype × environment interactions: Experimental results of the application and comparison of clustering techniques for the stratification of field test sites. J. Agron. Crop Sci. 188: 113 — 122.
Google Scholar
van Eeuwijk F.A., Keizer L.C.E., Bakker J.J. 1995. Linear and bilinear models for the analysis of multi-environment trials: II. An application to data from the Dutch Maize variety trials. Euphytica 84: 9 — 22.
Google Scholar
Vargas M., Crossa J., van Eeuwijk F., Sayre K.D., Reynolds M.P. 2001. Interpreting treatment × environment interaction in agronomy trials. Agron. J. 93:949 — 960.
Google Scholar
Viele K., Srinivasan C. 2000. Parsimonious estimation of multiplicative interaction in analysis of variance using Kullback Leibler Information. J. Stat. Plan. Inf. 84: 201 — 219.
Google Scholar
Voltas J., Romagosa I., Lafarga A., Armesto A.P., Sombrero A., Araus J.L. 1999. Genotype by environment interaction for grain yield and carbon isotope discrimination of barley in Mediterranean Spain. Australian Journal of Agricultural Research 50: 1263 — 1271.
Google Scholar
Wade L.J., McLaren C.G., Quintana L., Harnpichitivitaya D., Rajatasereekul S., Sarawgi A.K., Kumar A., Ahmed H.U., Sarwoto, Singh A.K., Rodriguez R., Siopongco J, Sarkarung S. 1999. Genotype by environment interactions across diverse rained lowland rice environments. Field Crop Reserch 64: 35 — 50.
Google Scholar
Wamatu J.N., Thomas E. 2002. The influence of genotype-environment interaction on the grain yields of 10 pigeonpea cultivars grown in Kenya. J. Agron. Crop Sci. 188: 25 — 33.
Google Scholar
Wamatu J. N., Thomas E.,. Piepho H.P. 2003. Responses of different Arabica coffee (Coffea arabica L.) clones to varied environmental conditions. Euphytica 129: 175 — 182.
Google Scholar
Weber R., Zalewski D., Kotecki A., Kaczmarek J. 2007. Ocena przydatności punktów doświadczalnych do prowadzenia PDO na Dolnym Śląsku. Biul. IHAR 245: 5 — 16.
Google Scholar
Williams W. T. 1976. Pattern analysis in agricultural science. Elsevier, Amsterdam.
Google Scholar
Worku M., Bänziger M., Schulte Erley G., Friesen D., Diallo A.O. Horst W.J. 2007. Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids. Crop Sci. 47: 519 — 528 .
Google Scholar
Yan W., Frégeau-Reid J. 2008. Breeding line selection based on multiple traits. Crop Sci. 48: 417 — 423.
Google Scholar
Yan W., Hunt L.A. 2001. Interpretation of genotype x environment interaction for winter wheat yield in Ontario. Crop Sci. 41: 19 — 25.
Google Scholar
Yan W., Kang M.S. 2003. GGE biplot analysis: A graphical tool for breeders, geneticists and agronomists. CRC Press, Boca Raton, FL.
Google Scholar
Yan W., Tinker N.A. 2005. An Integrated Biplot Analysis System for Displaying, Interpreting, and Exploring Genotype × Environment Interaction. Crop Sci. 45: 1004 — 1016.
Google Scholar
Yan W., Hunt L.A. Sheng Q., Szlanics Z. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot.. Crop Sci.. 40: 597 — 605.
Google Scholar
Yan W., Kang M.S., Ma B., Woods S., Cornelius P.L.2007. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 47: 643 — 653.
Google Scholar
Yau S.K., Ortiz-Ferrara G. Srivastava J.P. 1991. Classification of diverse bread wheat-growing environments based on differential yield responses. Crop Sci. 31: 571 — 576.
Google Scholar
Zhang Y., He Z., Zhang A., van Ginkel M., Ye G. 2006a. Pattern analysis on grain yield of Chinese and CIMMYT spring wheat cultivars grown in China and CIMMYT. Euphytica 147: 409 — 420.
Google Scholar
Zhang Y., He Z., Zhang A., van Ginkel M., Pena R.J., Ye G. 2006b. Pattern analysis on protein properties of Chinese and CIMMYT spring wheat cultivars sown in China and CIMMYT. Australian Journal of Agricultural Research 57: 811 — 822.
Google Scholar
Zieliński A., Jankowski P., Mądry W. 2005. Biplot typu GGE jako narzędzie do graficznej analizy danych z serii doświadczeń odmianowych. Coll. Biom. 35: 207 — 224.
Google Scholar
Zobel R.W., Wright M.J., Gauch H.G. 1988. Statistical analysis of a yield trial. Agron. J. 80:388 — 393.
Google Scholar
Autorzy
Jakub Paderewskijakub_paderewski@sggw.edu.pl
Katedra Doświadczalnictwa i Bioinformatyki, SGGW, Warszawa Poland
Autorzy
Wiesław MądryKatedra Doświadczalnictwa i Bioinformatyki, SGGW, Warszawa Poland
Statystyki
Abstract views: 83PDF downloads: 39
Licencja
Prawa autorskie (c) 2012 Jakub Paderewski, Wiesław Mądry
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.
Z chwilą przekazania artykułu, Autorzy udzielają Wydawcy niewyłącznej i nieodpłatnej licencji na korzystanie z artykułu przez czas nieokreślony na terytorium całego świata na następujących polach eksploatacji:
- Wytwarzanie i zwielokrotnianie określoną techniką egzemplarzy artykułu, w tym techniką drukarską oraz techniką cyfrową.
- Wprowadzanie do obrotu, użyczenie lub najem oryginału albo egzemplarzy artykułu.
- Publiczne wykonanie, wystawienie, wyświetlenie, odtworzenie oraz nadawanie i reemitowanie, a także publiczne udostępnianie artykułu w taki sposób, aby każdy mógł mieć do niego dostęp w miejscu i w czasie przez siebie wybranym.
- Włączenie artykułu w skład utworu zbiorowego.
- Wprowadzanie artykułu w postaci elektronicznej na platformy elektroniczne lub inne wprowadzanie artykułu w postaci elektronicznej do Internetu, lub innej sieci.
- Rozpowszechnianie artykułu w postaci elektronicznej w internecie lub innej sieci, w pracy zbiorowej jak również samodzielnie.
- Udostępnianie artykułu w wersji elektronicznej w taki sposób, by każdy mógł mieć do niego dostęp w miejscu i czasie przez siebie wybranym, w szczególności za pośrednictwem Internetu.
Autorzy poprzez przesłanie wniosku o publikację:
- Wyrażają zgodę na publikację artykułu w czasopiśmie,
- Wyrażają zgodę na nadanie publikacji DOI (Digital Object Identifier),
- Zobowiązują się do przestrzegania kodeksu etycznego wydawnictwa zgodnego z wytycznymi Komitetu do spraw Etyki Publikacyjnej COPE (ang. Committee on Publication Ethics), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- Wyrażają zgodę na udostępniane artykułu w formie elektronicznej na mocy licencji CC BY-SA 4.0, w otwartym dostępie (open access),
- Wyrażają zgodę na wysyłanie metadanych artykułu do komercyjnych i niekomercyjnych baz danych indeksujących czasopisma.
Inne teksty tego samego autora
- Joanna Ukalska, Krzysztof Ukalski, Tadeusz Śmiałowski, Wiesław Mądry, Badanie zmienności i współzależności cech użytkowych w kolekcji roboczej pszenicy ozimej (Triticum aestivum L.) za pomocą metod wielowymiarowych. Część II. Analiza składowych głównych na podstawie macierzy korelacji fenotypowych i genotypowych , Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin: Nr 249 (2008): Wydanie regularne
- Dariusz Gozdowski, Wiesław Mądry, Zdzisław Wyszyński, Analiza korelacji i współczynników ścieżek w ocenie współzależności plonu ziarna i jego składowych u dwóch odmian jęczmienia jarego , Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin: Nr 248 (2008): Wydanie regularne
- Wiesław Mądry, Dariusz Gozdowski, Historia rozwoju statystycznych metod planowania i analizy doświadczeń rolniczych na świecie oraz w Polsce , Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin: Nr 288 (2020): Wydanie regularne
- Krzysztof Ukalski, Joanna Ukalska, Tadeusz Śmiałowski, Wiesław Mądry, Badanie zmienności i współzależności cech użytkowych w kolekcji roboczej pszenicy ozimej (Triticum aestivum L.) za pomocą metod wielowymiarowych. Część I. Korelacje fenotypowe i genotypowe , Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin: Nr 249 (2008): Wydanie regularne
- Marcin Studnicki, Wiesław Mądry, Tadeusz Śmiałowski, Wielocechowa analiza różnorodności fenotypowej w kolekcji roboczej pszenicy jarej , Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin: Nr 252 (2009): Wydanie regularne
- Adriana Derejko, Wiesław Mądry, Dariusz Gozdowski, Jan Rozbicki, Jan Golba, Mariusz Piechociński, Marcin Studnicki, Wpływ odmian, miejscowości i intensywności uprawy oraz ich interakcji na plon pszenicy ozimej w doświadczeniach PDO , Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin: Nr 259 (2011): Wydanie regularne
- Anna Rajfura, Wiesław Mądry, Tadeusz Drzazga, Marzena Iwańska, Wydzielanie grup miejscowości na podstawie serii doświadczeń wielokrotnych ze zmiennym składem odmian w latach przy użyciu pakietu SEQRET. Część II. Przykład dla plonu ziarna z doświadczeń przedrejestrowych z pszenicą ozimą , Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin: Nr 250 (2008): Wydanie regularne
- Dariusz Gozdowski, Wiesław Mądry, Charakterystyka i empiryczne porównanie prostej oraz złożonej analizy ścieżek w ocenie determinacji plonu roślin przez ich cechy plonotwórcze. Część I. Prezentacja stosowanych metod , Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin: Nr 249 (2008): Wydanie regularne
- Stanisław Pluta, Wiesław Mądry, Edward Żurawicz, Marcin Kozak, Analiza statystyczna zależności plonu owoców u porzeczki czarnej (Ribes nigrum L.) od dwóch składowych multiplikatywnych , Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin: Nr 249 (2008): Wydanie regularne
- Jakub Paderewski, Wiesław Mądry, Wiesław Pilarczyk, Tadeusz Drzazga, Retrospektywne badanie reakcji plonu odmian pszenicy ozimej na warunki środowiskowe w miejscowościach za pomocą łącznej analizy AMMI i skupień: ocena postępu genetycznego w plonowaniu , Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin: Nr 250 (2008): Wydanie regularne