Wykorzystanie genów z gatunków diploidalnych, tetraploidalnych i heksaploidalnych pszenicy Triticum L. w odmianach pszenicy heksaploidalnej Triticum aestivum L.

Józef Pilch

j.pilch@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin — PIB, Zakład Roślin Zbożowych — Kraków (Poland)

Abstrakt

W pracy dokonano przeglądu literatury w zakresie wykorzystania gatunków diploidalnych, tetraploidalnych i heksaploidalnych rodzaju Triticum L. w ulepszaniu odmian pszenicy Triticum aestivum L. Przedstawiono źródła korzystnych cech i dokonane introgresje 87 genów w odmianach pszenicy zwyczajnej, oraz podano lokalizację chromosomową. W genomie A, B i D odmian T. aestivum L. wprowadzono odpowiednio 36, 35 i 11 obcych genów. Introgresje te doprowadziły do ulepszenia cech pszenicy T. aestivum L., głównie odporności na patogeny zbożowe. Najwiecej genów obcych (23) warunkuje odporność na mączniaka prawdziwego Erysiphe graminis DC. f. sp. tritici Em. (syn. Blumeria graminis (DC.) E.O. Speer f. sp. tritici Em.), 16 genów nadaje odporność na rdzę brunatną Puccinia recondita Rob. ex Desm. f. sp. tritici, 13 genów — odporność na na rdzę źdźbłową (Puccinia graminis Pers. f. sp. tritici), 10 genów — odporność na rdzę żółtą Puccinia striiformis f.sp. tritici, 3 geny — odporność na uszkodzenia kłosów przez Fusarium graminearum Schwabe. (Gibberella zeae (Schw.) Petch). Wprowadzono także 12 genów odporności na pryszczarka heskiego (syn. muszka heska) Mayetiola destructor Say (syn. Phytophaga destructor Say) (Diptera :Cecidomyiidae), 7 genów wysokiej zawartości białka w ziarnie i 3 geny wysokiej zawartości Zn, Fe, Mn w ziarnie. Geny obce pochodziły z gatunków: T. monococcum L., T. boeoticum Boiss., T. urartu Tum, T. tauschii (Coss.) Schmal., T. speltoides Taush., T. carthlicum Nevski, T. dicoccoides Schweinf., T. turgidum L., T. macha Dek., T. ventricosa Taush., T. dicoccoides Schweinf., T. durum Desf., T. timopheevii Zhuk, T. comosa Sibth et Sm., T. spelta L. W pracy posługiwano się oryginalnym nazewnictwem gatunków, genów, jak i patogenów występujących w źródłowych pracach.


Słowa kluczowe:

gatunki diploidalne, tetraploidalne, heksaploidalne pszenicy, geny obce, introgresje genów, odmiany pszenicy Triticum aestivum L., rodzina Poaceae (Triticeae), rodzaj Triticum L.

Ahmad M., Arain M. A., Siddiqui K. A. 1997. Screening of Aegilops, Triticum and Hordeum species for grain weight, protein and lysine content. Wheat Inf. Serv. 85: 7 — 13.
Google Scholar

Allan R. E. 1997. Registration of 10 pairs of alloplasmic and euplasmic Stephens wheat germplasms . Crop Sci. 37 (3): 1033 — 1034.
Google Scholar

Asins M. J., Carbonell E. A. 1986. A comparative study on variability and philology of Triticum species. 2. Interspecific relationship. Theor. Appl. Genet. 72: 559 — 568.
Google Scholar

Autrique E., Singh R. P., Tanksley S. D., Sorrells M. E. 1995. Molecular markers for four leaf rust resistance genes introgressed into wheat from wild species. Genome 38: 75 — 83.
Google Scholar

Bariana H. S., McIntosh R. A. 1993. Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPMI and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36: 476 — 482.
Google Scholar

Barkworth M. E. 1992. Taxonomy of the Triticeae: a historical perspective. Hereditas 11 6:1 — 14.
Google Scholar

Bhalla P. L., Ottenhof H. H., Singh M. B. 2006. Wheat transformation — an update of recent progress. Euphytica 149: 353 — 366.
Google Scholar

Blanco A., Simeone R., Gadaleta A. 2006. Detection of QTLs for grain protein content in durum wheat. Theor. Appl. Genet. 112: 1195 — 1204.
Google Scholar

Blanco A., Gadaleta A., Cenci A., Carluccio A.V., Abdelbacki A. M. M., Simeone R. 2008. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor. Appl. Genet. 117: 135 — 142.
Google Scholar

Branlard G., Autran J. C., Monneveux P. 1989. High molecular weight glutenin subunits in durum wheat (Triticum durum ). Theor. Appl. Genet. 78: 353 — 358.
Google Scholar

Brites C., Carrillo J. M. 2001. Influence of high molecular weight (HMW) and low molecular weight (LMW) glutenin subunits controlled by Glu-1 and Glu-3 loci on durum wheat quality. Cereal. Chem. 78 (1): 59 — 63.
Google Scholar

Brown-Guedira G., Cox T. S., Gill B. S., Sears R. G. 1999. Registration of KS96WGRC35 and KS96WGRC36 leaf rust-resistant hard red winter wheat germplasms. Crop Sci. 39: 595.
Google Scholar

Brown-Guedira G., Singh S., Fritz A. K. 2003. Performance and mapping of leaf rust resistance transferred to wheat from Triticum timopheevii subsp. Armeniacum. Phytopathology 93: 784 — 789.
Google Scholar

Caballero L., Martin L. M., Alvarez J. B. 2001. Allelic variation of the HMW glutenin subunits in Spanish accessions of spelt wheat (Triticum aestivum ssp. spelta L. em. Thell). Theor. Appl. Genet. 103: 124 — 128.
Google Scholar

Cakmak I., Torun A., Millet E., Feldman M., Fahima T., Korol A. B., Nevo E., Braun H. J., Ozkan H. 2004. Triticum dicoccoides: an important genetic resources for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci. Plant Nutr. 50: 1047 — 1054.
Google Scholar

Chantret N., Sourdille P., Roder M., Tavaud M., Bernard M., Doussinault G. 2000. Location and mapping of the powdery mildew resistance gene MlRE and detection of a resistance QTL by bulked segregant analysis (BSA) with microsatellites in wheat. Theor. Appl. Genet. 100: 1217 — 1224.
Google Scholar

Chicaiza O., Khan I. A., Zhang X., Brevis J. C., Jackson L., Chen X., Dubcovsky J. 2006. Registration of five wheat isogenic lines for leaf rust and stripe rust resistance genes. Crop Sci 46: 485 — 487.
Google Scholar

Chen X. M., Moore M., Milus E. A., Long D., Marshall D., Line R. F., Jackson L. 2002. Wheat rust epidemics and races of Puccinia striiformis f.sp. tritici in the United States in 2000. Plant Dis. 86: 39 — 46.
Google Scholar

Chen X. M., Luo Y. H., Xia X.C., Xia L. Q., Chen X., Ren Z. L., He Z. H., Jia J. Z. 2005. Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed. 124 (3): 225 — 228.
Google Scholar

Chen X., Faris J. D., Hu J., Stack R. W., Adhikari T., Elias E. M., Kianian S. F. Cai X. 2007. Saturation and comparative mapping of a major Fusarium head blight resistance QTL in tetraploid wheat. Mol. Breeding 19: 113 — 124.
Google Scholar

Ciaffi M., Lee Y. K., Tamas L., Gupta R., Skerritt J., Appels R. 1999. The low- molecular-weight glutenin subunit proteins of primitive wheats. III. The genes from D-genome species. Theor. Appl. Genet. 98: 135 — 148.
Google Scholar

Cox T. S., Hatchett J. H. 1994. Hessian fly resistance gene H26 transferred from Triticum tauschii to common wheat. Crop Sci 34: 958 — 960.
Google Scholar

Cox T. S., Raupp W. J., Gill B. S. 1994 a. Leaf rust resistance genes Lr41, Lr42 and Lr43 transferred from Triticum tauschii to common wheat. Crop Sci. 34: 339 — 343.
Google Scholar

Cox T. S., Sears R. G., Gill B. S., Jellen R. N. 1994 b. Registration of KS91WGRC11, KS92WGRC15 and KS92WGRC23 leaf rust resistant hard red winter wheat germplasms. Crop Sci. 34: 546.
Google Scholar

Cox T. S., Hussien T., Sears R. G., Gill B. S. 1997. Registration of KS92WGRC16 winter wheat germplasm resistant to leaf rust. Crop Sci. 37: 634.
Google Scholar

De Vita P., Riefolo C., Codianni P., Cattivelli L., Fares C. 2006. Agronomic and qualitative traits of T. turgidum ssp. dicoccum genotypes cultivated in Italy. Euphytica 150: 195 — 205.
Google Scholar

Dessalegn T., Van Deventer C. S., Labuschagne M. T., Maartens H. 2003. B-LMW glutenin and y-gliadin of Ethiopian durum wheat genotypes and their association with some quality traits. Cereal Res. Comm. Vol. 31, 3–4: 453 — 457.
Google Scholar

Distelfeld A., Uauy C., Olmos S., Schlatter A.R., Dubcovsky J., Fahima T. 2004. Microcolinearity between a 2-cM region enompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6B and a 350 –kb region on rice chromosome 2. Funct. Integr. Genomics 4: 59 — 66.
Google Scholar

Distelfeld A., Uauy C., Fahima T., Dubcovsky J. 2006. Physical map of the wheat high-protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol. 169: 753 — 763.
Google Scholar

Distelfeld A., Cakmak I. , Peleg Z., Ozturk L., Yazicii A. M., Budak H., Saranga Y., Fahima T. 2007. Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol. Plant 129: 635 — 643.
Google Scholar

Dvorak J. 1980. Homoeology between Agropyron elongatum chromosomes and Triticum aestivum chromosomes. Can. J. Genet. Cytol. 22: 237 — 259.
Google Scholar

Dvorak J., Knott D. R. 1990. Location of a Triticum speltoides chromosome segment conferring resistance to leaf rust in Triticum aestivum. Genome 33: 892 — 897.
Google Scholar

Dweikat I., Zhang W., Ohm H. 2002. Development of STS markers linked to Hessian fly resistance gene H6 in wheat. Theor. Appl. Genet. 105: 766 — 770.
Google Scholar

Dubcovsky J., Echaide M., Antonelli E. F., Lukaszewski A. L. 1998. Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and green bug resistance genes. Crop Sci. 38: 1655 — 1660.
Google Scholar

Dyck P.L. 1992. Transfer of gene for stem rust resistance from Triticum araraticum to hexaploid wheat. Genome 35: 788 — 792.
Google Scholar

Dyck P. L., Kerber E. R . 1970. Inheritance in hexaploid wheat of adult-plant leaf rust resistance derived from Aegilops squarrossa. Can. J. Genetics Cytol. 12: 175 — 180.
Google Scholar

Ekiz H., Kiral A. S., Akcin A., Simsek L. 1998. Cytoplasmic effects on quality traits of bread wheat (Triticum aestivum L.). Euphytica 100: 189 — 196.
Google Scholar

Elia M., Moralejo M., Rodriguez-Quijano M., Molina-Cano J. L. 2004. Spanish spelt: a separate gene pool within the spelt germplasm. Plant Breed. 123, 3: 297 — 299.
Google Scholar

Frederiksen S., Seberg O. 1992. Phylogenetic analysis of the Triticeae (Poaceae). Hereditas 116: 15 — 19.
Google Scholar

Friebe B., Mukai Y., Dhaliwal H. S., Martin T. J. Gill B. S. 1991. Identification of alien chromatin specifying resistance to wheat streak mosaic virus and greenbug in wheat germplasm by C-banding and in situ hybridization. Theor. Appl. Genetic. 81: 381 — 389.
Google Scholar

Friebe B., Jiang J., Raupp W. J., McIntosh R. A., Gill B. S. 1996. Characterization of wheat- alien translocations conferring resistance to diseases and pests: current status. Euphytica 91: 59 — 87.
Google Scholar

Friesen T. L., Xu S. S., Harris M. O. 2008. Stem rust, tan spot, stagonospora nodorum blotch, and hessian fly resistance in Langdon durum — Aegilops tauschii synthetic hexaploid wheat lines Crop Sci. 48: 1062 — 1070.
Google Scholar

Gerechter-Amitai Z. K., Silfhout C. H., Grama A., Kleitman F. 1989. Yr15 a new gene for resistance to Puccinia striiformis in Triticum dicoccoides se. G-25. Euphytica 43: 187 — 190.
Google Scholar

Gianibelli M. C., Lagudah E. S., Wrigley C. W., MacRitchie F. 2002. Biochemical and genetic characterization of a monomeric storage protein (T1) with an unusually high molecular weight in Triticum tauschii. Theor. Appl. Genet. 104 (2-3): 497 — 504.
Google Scholar

Gill B. S., Dhaliwal H. S., Multani D. S., Singh P. J. 1989. Evaluation and utilization of wild germplasm of wheat. Review of advances in plant biotechnology 1985–1988: 2nd International Symposium on Genetic Manipulation in Crops. Mexico, D. F. and Manila, Philippines: CIMMYT and IRRI (Eds. Mujeeb-Kazi A., Sitch L. A. 1989), CIMMYT: 165 — 177.
Google Scholar

Gill B. S., Hatchett J. H., Raupp W. J. 1987. Chromosomal mapping of Hessian fly-resistance gene H13 in the D genome of wheat. J. Heredity 78: 97 — 100.
Google Scholar

Gill B. S., Raupp W. J., Browder L. E., Cox T. S., Sears R. G. 1991. Registration of KS89WGRC7 leaf rust-resistance hard red winter wheat germplasm. Crop Sci. 31: 246.
Google Scholar

Gonzalez-Hernandez J. L., Elias E. M., Kianian S. F. 2004. Mapping genes for grain protection concentration and grain yield on chromosome 5B of Triticum turgidum (L.) var. dicoccoides. Euphytica 139: 217 — 225.
Google Scholar

Gororo N. N., Eagles H. A., Eastwood R. F., Nicolas M. E., Flood R. G. 2002. Use of Triticum tauschii to improve yield of wheat in low-yielding environments. Euphytica 123: 241 — 254.
Google Scholar

Grama A., Gerechter-Amitai Z. K. 1974. Inheritance of resistance to stripe rust (Puccinia striiformis) in crosses between wild emmer (Triticum dicoccoides) and cultivated tetraploid and hexaploid wheat. II. Triticum aestivum. Euphytica 23: 393 — 398.
Google Scholar

Grądzielewska A. 2006. The genus Dasypyrum — part 2. Dasypyrum villosum — a wild species used in wheat improvement. Euphytica 152: 441 — 454.
Google Scholar

Gupta R. B., Shepherd K. W. 1990. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutenin. 2. Genetic control of the subunits in species related to wheat. Theor. Appl. Genet. 80: 183 — 187.
Google Scholar

Hajjar R., Hodgkin T. 2007. The use of wild relatives in crop improvement: a survey of development over the last 20 years . Euphytica 156: 1 — 13.
Google Scholar

Hartel K. D., Berzonsky W., A., Kianian S. F., Ali S. 2008. Expression of a Triticum turgidum var. dicoccoides source of Fusarium head blight resistance transferred to synthetic hexaploid wheat. Plant Breed. 123, 6: 516 — 519.
Google Scholar

Hayden M. J., Kuchel H., Chalmers K. J. 2004. Sequence tagged microsatellites for the Xgwm533 locus provide new diagnostic markers to select for the presence of stem rust resistance gene Sr2 in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 1009: 1641 — 1647.
Google Scholar

Hatchett J. H., Martin T. J., Livers R. V. 1981. Expression and inheritance of resistance to Hessian fly in synthetic hexaploid wheats derived from Triticum tauschii (Coss.) Schal. Crop Sci. 21: 731 — 734.
Google Scholar

He X. Y., He Z. H., Morris C. F., Xia X. C. 2009. Cloning and phylogenetic analysis of polyphenol oxidase genes in common wheat and related species. Genet. Resour. Crop Evol. 56: 311 — 321.
Google Scholar

Hegde S. G., Valkoun J., Waines J. G. 2002. Genetic diversity in wild and weedy Aegilops, Amblyopyrum, and Secale species — a preliminary survey. Crop Sci. 42: 608 — 614.
Google Scholar

Helguera M., Khan I. A., Dubcovsky J. 2000. Development of PCR markers for wheat leaf resistance gene Lr47. Theor. Appl. Genet. 100: 1137 — 1143.
Google Scholar

Herrera-Foessel S. A., Singh R. P., Huerta-Espino J., Crossa J., Djurle A., Yuen J. 2007. Evaluation of slow rusting resistance components to leaf rust in CIMMYT durum wheats. Euphytica 155: 361 — 369.
Google Scholar

Heun M. , Friebe B. 1990. Introgression of powdery mildew resistance from rye into wheat. Phytopathology 80: 242 — 245.
Google Scholar

Hiebert C. W., Thomas J. B., Somers D. J., McCallum B. D., Fox S. L. 2007. Microsatellite mapping of adult-plant leaf resistance gene Lr22a in wheat. Theor. Appl. Genet. 115: 877 — 884.
Google Scholar

Hiebert C. W., Thomas J. B., McCallum B. D., Somers D. J. 2008. Genetic mapping of the wheat leaf rust resistance gene Lr60 (LrW2). Crop Sci. 48: 1020 — 1026.
Google Scholar

Hovmoller M. S. 2007. Sources of seedling and adult plant resistance to Puccinia striiformis f.sp. tritici in European wheats. Plant Breeding 126: 225 — 233.
Google Scholar

Hsam S. L. K., Huang X. Q., Ernst F. 1998. Chromosome location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. Em.Thell.). 5. Alleles at the Pm1 locus. Theor. Appl. Genet. 96: 1129 — 1134.
Google Scholar

Hsam S. L. K., Huang X. Q., Zeller F. J. 2001. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 6. Alleles at the Pm5 locus. Theor. Appl. Genet 102: 127 — 133.
Google Scholar

Huang L., Gill B. S. 2001. An RGA — like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat. Theor. Appl. Genet. 103: 1007 — 1013.
Google Scholar

Ji J., Qin B., Wang H., Cao A., Wang S., Chen P., Zhuang L., Du Y., Liu D., Wang X. 2008. STS markers for powdery mildew resistance gene Pm6 in wheat. Euphytica 163: 159 — 165.
Google Scholar

Kaur M., Saini R. G., Preet K. 2000. Adult plant leaf rust resistance from 111 wheat (Triticum aestivum L.) cultivars. Euphytica 113: 235 — 243.
Google Scholar

Kerber E. R. 1987. Resistance to leaf rust in hexaploid wheat Lr32 a third gene derived from Triticum tauschii. Crop Sci. 27: 204 — 206.
Google Scholar

Kerber E. R., Dyck P. L. 1979. Resistance to stem rust and leaf rust of wheat in Aegilops squarrosa and transfer of a gene for stem rust resistance to hexaploid wheat . In: Ramanujam S. (ed.) Proc. 5th Int. Wheat Genet. Sym., Indian Society of Genetics and Plant Breeding , IARI, New Delhi, India: 358 — 364.
Google Scholar

Kerber E. R., Dyck P. L. 1990. Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides × Triticum monococcum . Genome 33: 530 — 537.
Google Scholar

Khan I. A., Procunier J. D., Humphreys D. G., Tranquilli G., Schlatter A. R., Marcucci-Poltri S., Frohberg R., Dubcovsky J. 2000. Development of PCR — based markers for a high grain protein content gene from Triticum turgidum ssp. dicoccoides transferred to bread wheat. Crop Sci. 40: 518 — 524.
Google Scholar

Kimber G., Feldman M. 1987. Wild wheat. An introduction. Special report 353, College of Agriculture, Univ. of Missouri, Columbia, USA.
Google Scholar

Kong L., Ohm H. W., Cambron S. E., Williams C. E. 2005. Molecular mapping determines that Hessian fly resistance gene H9 is located on chromosome 1A of wheat. Plant Breed., 124, 6: 525 — 531.
Google Scholar

Kumar S., Stack R. W., Friesen T. L., Faris J. D. 2007. Identification of a novel Fusarium head blight resistance quantitative trait locus on chromosome 7A in tetraploid wheat. Phytopathology 97: 592 — 597.
Google Scholar

Labuschagne M. T., Pretorius Z. A., Grobbelaar B. 2002. The influence of leaf rust resistance genes Lr29, Lr34, Lr35 and Lr37 on breadmaking quality in wheat. Euphytica 124: 65 — 70.
Google Scholar

Law C. N. 1976. Genetic control of yellow rust resistance in T. spelta album. Ann. Report (Plant Breeding Institute, Cambridge) 1975: 108 — 109.
Google Scholar

Lee Y. K., Bekes F., Gupta R., Apples R., Morrell M. K. 1999 a. The low-molecular-weight glutenin subunit proteins of primitive wheats. I. Variation in A-genome species. Theor. Appl. Genet. 98: 119 — 125.
Google Scholar

Lee Y. K., Bekes F., Gras P., Ciaffi M., Morrell M. K. Apples R. 1999 b. The low-molecular-weight glutenin subunit proteins of primitive wheats. IV. Functional properties of products from individual genes. Theor. Appl. Genet. 98: 149 — 155.
Google Scholar

Leonova I., Borner A., Budashkina E., Kalinina N., Unger O., Roder M., Salina E. 2004. Identification of microsatellite markers for a leaf rust resistance gene introgressed into common wheat from Triticum timopheevii. Plant Breeding 123: 93.
Google Scholar

Levy A. A., Feldman M. 1987. Increase in grain protein percentage in high-yielding common wheat breeding lines by genes from wild tetraploid wheat. Euphytica 36: 353 — 359.
Google Scholar

Li G. Q., Li Z. F., Yang W. Y., Zhang Y., He Z. H., Xu S. C., Singh R. P., Qu Y. Y., Xia X. C. 2006. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor. Appl. Genet. 112: 1434 — 1440.
Google Scholar

Lillemo M., Simeone M. C., Morris C. F. 2002. Analysis of puroindoline a and b sequences from Triticum aestivum cv. “Penawawa” and related diploid taxa. Euphytica 126: 321 — 331.
Google Scholar

Liu Z., Sun Q., Ni Z., Nevo E., Yang T. 2002. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123: 21 — 29.
Google Scholar

Liu C. Y., Rathjen A. J., Shepherd K. W., Gras P. W., Giles L. C. 1995. Grain quality and field characteristics of D-genome disomic substitution lines in „Langdon” (Triticum turgidum var.durum). Plant Breed. 114: 34 — 39.
Google Scholar

Liu C. Y., Shepherd K. W. 1996. Variation of B subunits of glutenin in durum, wild and less widely cultivated tetraploid wheats. Plant Breed. 115: 172 — 178.
Google Scholar

Liu X. M., Fritz A. K., Reese J. C., Wilde G. E., Gill B. S., Chen M. S. 2005 a. H9, H10, and H11 compose a cluster of Hessian fly-resistance genes in the distal gene-rich region of wheat chromosome 1AS. Theor. Appl. Genet. 110: 1473 — 1480.
Google Scholar

Liu X. M., Gill B. S., Chen M. S. 2005 b. Hessian fly resistance gene H13 is mapped to a distal cluster of resistance genes in chromosome 6DS of wheat. Theor. Appl. Genet., 111: 243 — 249.
Google Scholar

Liu X. M., Brown-Guedira G. L., Hatchett J. H., Owuoche J. O., Chen M. S. 2005 c. Genetic characterization and molecular mapping of a Hessian fly-resistance gene transferred from T.turgidum ssp. dicoccum to common wheat. Theor. Appl. Genet. 111: 1308 — 1315.
Google Scholar

Luig N. H. 1985. Epidemiology in Australia and New Zealand. Diseases, distribution, epidemiology, and control. (Eds A. P. Roelfs, W. R. Bushnell, Orlando) Cereal Rusts Vol. II: 301 — 328.
Google Scholar

Lukaszewski A. J. 1995. Physical distribution of translocation breakpoints in homoeologous recombinants induced by the absence of the Ph1 gene in wheat and triticale. Theor. Appl. Genet. 90: 714 — 719.
Google Scholar

Lukaszewski A. J., Porter D. R., Antonelli E. F., Dubcovsky J. 2000. Registration of UCRBW98-1 and UCRBW98-2 wheat germplasms with leaf rust and greenbug resistance genes. Crop Sci. 40: 590.
Google Scholar

Ma Z. Q., Sorrells M. E., Tanksley S. D. 1994. RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3, and Pm4 in wheat. Genome 37: 871 — 875.
Google Scholar

Ma J., Zhou R., Dong Y., Wang L., Wang X., Jia J. 2001. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica 120: 219 — 226.
Google Scholar

Maccaferri M., Mantovani P., Tuberosa R., DeAmbriogio E., Giulani S., Demontis A., Massi A., Sanguineti M. C. 2008. A major QTL for durable leaf rust resistance widely exploited in durum wheat breeding programs maps on the distal region of chromosome arm 7BL. Theor. Appl. Genet. 117: 1225 — 1240.
Google Scholar

Macer R. C. F. 1966.The formal monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat. Proc. 2nd Int. Wheat Genet. Symp. Hereditas Suppl. 2: 127 — 142.
Google Scholar

Mallard S., Gaudet D., Aldeia A., Abelard C., Besnard A., L., Sourdille P., Dedryver F. 2005. Genetic analysis of durable resistance to yellow rust in bread wheat. Theor. Appl. Genet. 110: 1401 — 1409.
Google Scholar

Marais G. F., McCallum B., Snyaman J. E., Pretorius Z. A., Marais A. S. 2005. Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breeding 124: 538 — 541.
Google Scholar

Marais G. F., Pretorius Z. A., Wellings C. R., McCallum B., Marais A. S. 2005 b. Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica 143: 115 — 123.
Google Scholar

Marone D., Del Olmo A. I., Laido G., Sillero J. C., Emeran A. A., Russo M. A., Ferragonio P., Giovanniello V., Mazzucotelli E., De Leonardis A. M., De Vita P., Blanco A., Cattivelli L., Rubiales D., Mastrangelo A. M. 2009. Genetic analysis of durable resistance against leaf rust in durum wheat. Mol. Breeding 19: 113 — 124.
Google Scholar

Martin J. N., Carver B. F., Hunger R. M., Cox T. S. 2003. Contributions of leaf rust resistance and awns to agronomic and grain quality performance in winter wheat. Crop Sci. 43: 1712 — 1717.
Google Scholar

Massa A. N., Beecher B., Morris C. F. 2007. Polyphenol oxidase (PPO) in wheat and wild relatives: molecular evidence for a multigene family. Theor. Appl. Genet. 114: 1239 — 1247.
Google Scholar

McFadden E. S. 1930. A successful transfer of emmer characters to vulgare wheat. Agronomy Journal 22: 1020 — 1034.
Google Scholar

McIntosh R. A. 1981. Catalogue of gene symbols for wheat. Wheat Newsletter 27: 10 — 11.
Google Scholar

McIntosh R. A. 1983. Genetic and cytogenetic studies involving Lr18 resistance to Puccinia recondita. In: S. Sakamoto (ed.). Proc. 6th Int. Wheat Genet. Symp., Kyoto, Japan: 777 — 783.
Google Scholar

McIntosh R. A. 1988 a. Catalogue of gene symbols for wheat. In: Koebner R., Miller T.E. (Eds.) Proc.7th Int. Wheat Genet. Symp. Inst. Of Plant Sci. Res., Cambridge, UK: 1225 — 1324.
Google Scholar

McIntosh R. A. 1988 b. The role of specific genes in breeding for durable stem rust resistance in wheat and triticale. Breeding strategies for resistance to the rusts of wheat (Eds. Hettel G., Simmonds N. W., Rajaram S., CIMMYT — Mexico): 1 — 9.
Google Scholar

McIntosh R. A., Dyck P. L., The T. T., Cusick J. E., Milne D. L. 1984. Cytogenetical studies of wheat. XIII. Sr35- a third gene from Triticum monococcum for resistance to Puccinia graminis tritici. Z. Pflanzenzüchtg. 92: 1 — 14.
Google Scholar

McIntosh R. A., Friebe B., Jiang J., The D., Gill B. S. 1995. Cytogenetical studies in wheat XVI. Chromosome location of a new gene for resistance to leaf rust in a Japanese wheat-rye translocation line. Euphytica 82: 141 — 147.
Google Scholar

McIntosh R. A., Friebe B., Jiang J., The D., Gill B. S. 1995 a. Cytogenetical studies in wheat XVI. Chromosome location of a new gene for resistance to leaf rust in a Japanese wheat-rye translocation line. Euphytica 82: 141 — 147.
Google Scholar

McIntosh R. A., Gyarfas J. 1971. Triticum timopheevii as a source of resistance to wheat stem rust. Z. Pflanzenzüchtg. 66: 240 — 248.
Google Scholar

McIntosh R. A., Miller T. E., Chapman V. 1982. Cytogenetical studies in wheat. XII. Lr28 for resistance to Puccinia recondita and Sr34 for resistance to P. graminis tritici. Z. Pflanzenzüchtg. 92: 1 — 14.
Google Scholar

McIntosh R. A., Wellings C. R., Park R. F.1995 b. Wheat rusts: an atlas of resistance genes. CSIRO, Australia.
Google Scholar

McNeil M. D., Kota R., Paux E., Dunn D., McLean R., Feuillet C., Li D., Kong X., Lagudah E., Zhang J. C., Jia J. Z., Spielmeyer W., Bellgard M., Appels R. 2008. BAC-derived markers for assaying the stem rust resistance gene, Sr2 in wheat breeding programs. Mol. Breeding 22: 15 — 24.
Google Scholar

Mesfin A., Frohberg R. C., Khan K., Olson T. C. 2000. Increased grain protein content and its association with agronomic and end-use quality in two hard red spring wheat populations derived from Triticum turgidum L. var. dicoccoides. Euphytica 116: 237 — 242.
Google Scholar

Miller T. E. 1984. The homoeologous relationships between the chromosomes of rye and wheat. Current status. Can. J. Genet. Cytol. 26: 578 — 589.
Google Scholar

Miranda M. L., Perugini L., Srnić G., Brown-Guedira G., Marshall D., Leath S., Murphy J. P. 2007 b. Genetic mapping of a Triticum monococcum — derived powdery mildew resistance gene in common wheat. Crop Sci. 47: 2323 — 2329.
Google Scholar

Mishra A. N., Kaushal K., Yadoav S. R., Shrsekar G., S., Pandey H., N. 2005. The linkage between the stem rust resistance gene Sr2 and pseudo-black chaff in wheat can be broken. Plant Breeding 124 (5): 520 — 522.
Google Scholar

Mohler V., Zeller F. J., Wenzel G., Hsam S. L. K. 2005. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.). 9. Gene MIZec1 from the Triticum dicoccoides-derived wheat line Zeco-1. Euphytica vol. 142, No.1 - 2: 161 — 167.
Google Scholar

Murashige T. 1974. Plant propagation through tissue culture. Ann. Rev. Pl. Physiol. 25: 35 — 166.
Google Scholar

Nocente F., Gazza L., Pasquini M. 2007. Evaluation of leaf rust resistance genes Lr1, Lr9, Lr24, Lr47 and their introgression into common wheat cultivars by marker-assisted selection. Euphytica 155: 329 — 336.
Google Scholar

Obanni M., Ohm H. W., Foster J. F., Patterson F. L. 1989. Reactions of eleven tetraploid and hexaploid wheat introductions to Hessian fly. Crop Sci. 29: 267 — 269.
Google Scholar

Ohm H. W., Sharma H. C., Patterson F. L., Ratcliffe R. H., Obanni M. 1995. Linkage relationships among genes on wheat chromosome 5A that condition resistance to Hessian fly. Crop Sci. 35, 6: 603 — 1607.
Google Scholar

Olmos S., Distelfeld A., Chicaiza O., Schlatter A. R., Fahima T., Echenique V., Dubcovsky J. 2003. Precise mapping of a locus affecting grain protein content in durum wheat . Theor. Appl. Genet. 107: 1243 — 1251.
Google Scholar

Ostergard H. 1998. European cooperation in the field of scientific and technical research, COST817, population studded of air borne pathogens on cereals as a means of improving strategies for disease control. Annual report 1997. EUR18422 EN: 58 — 230.
Google Scholar

Otto C. D., Kianian S. F., Elias E. M., Stack R.W., Joppa L. R. 2002. Genetic dissection of a major Fusarium head blight QTL in tetraploid wheat. Plant. Mol. Biol. 48: 625 — 632.
Google Scholar

Pathan A. K., Park R. F. 2007. Evaluation of seedling and adult plant resistance to stem rust in European wheat cultivars. Euphytica 155: 87 — 105.
Google Scholar

Patterson F. L., Mass F. B., Foster J. E., Ratcliffe R. H., Cambron S., Safanski G., Taylor P. L., Ohm H. W. 1994. Registration of eight Hessian fly resistant common winter wheat germplasm lines (Carol, Erin, Flynn, Iris, Joy, Karen, Lola, and Molly). Crop Sci. 34: 315 — 316.
Google Scholar

Payne P. I., Lawrence G. J. 1983. Catalogue of alleles for the complex gene loci Glu-A1, Glu-B1,Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res. Comm. 11: 29 — 36.
Google Scholar

Peng J. H., Fahima T., Roder M. S., Huang Q.Y., Dahan A., Li Y. C., Grama A., Nevo E. 2000. High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetica 109: 199 — 210.
Google Scholar

Pestsova E. G., Borner A., Roder M. S. 2006. Development and QTL assessment of Triticum aestivum — Aegilops tauschii introgression lines. Theor. Appl. Genet. 112: 634 — 647.
Google Scholar

Pilch J., Głowacz E., Kubara-Szpunar Ł. 1993. Usefulness of some interspecific and intergeneric hybrids T.aestivum L. in breeding for resistance of hexaploid winter wheat. Biul. IHAR. 187: 7 — 12.
Google Scholar

Pilch J., Głowacz E., Kubara-Szpunar Ł., Gajda Z. 1995. Mieszańce oddalone Triticum aestivum L. jako źródła odporności na choroby kłosa. Biul. IHAR 194: 159 — 167.
Google Scholar

Pilch J., Głowacz E. 1997. Międzygatunkowe i międzyrodzajowe krzyżowania jako sposób ulepszania cech kłosa i ziarna w hodowli pszenicy heksaploidalnej Triticum aestivum L. Biul. IHAR 204: 15 — 31.
Google Scholar

Pilch J. 2005 a. Możliwości wykorzystania krzyżowania introgresywnego w hodowli pszenicy ozimej Triticum aestivum L. Część I. Zastosowanie systemów genetycznych pszenicy T.aestivum L. do otrzymania mieszańców pomostowych F1. Biul. IHAR 235: 31 — 41.
Google Scholar

Pilch J. 2005 b. Możliwości wykorzystania krzyżowania introgresywnego w hodowli pszenicy ozimej Triticum aestivum L. Część II. Efektywność w ulepszaniu cech kłosa i jakości ziarna. Biul. IHAR 235: 43 — 55.
Google Scholar

Qi L., Chen P. D., Liu D. J., Gill B.S.1999. Homoeologous relationships of Haynaldia villosa chromosomes with those of Triticum aestivum as revealed by RFLP analysis. Genes Genet. Syst. 74: 77 — 82.
Google Scholar

Qiu Y. C., Zhou R. H., Kong X.Y., Zhang S. S., Jia J. Z. 2005. Microsatellite mapping of a Triticum urartu Tum. derived powdery mildew resistance gene transferred to common wheat (Triticum aestivum L.). Theor. Appl. Genet 111: 1524 — 1531.
Google Scholar

Rabinowich S. V. 1998. Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica 100: 323 — 340.
Google Scholar

Rajaram S., Singh R. P., Torres E. 1988. Current CIMMYT approaches in breeding wheat for rust resistance. Breeding strategies for resistance to the rusts of wheat (Eds. Hettel G., Simmonds N. W., Rajaram S. CIMMYT — Mexico): 101 — 118.
Google Scholar

Ratcliffe R. H., Patterson F. L., Cambron S. E., Ohm H. W. 2002. Resistance in durum wheat sources to Hessien fly (Diptera: Cecidomyiidae) populations in eastern USA. Crop Sci. 42: 1350 — 1356.
Google Scholar

Raupp W. J., Singh S., Brown-Guedira G. L., Gill B. S. 2001. Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theor. Appl. Genet. 102: 347 — 352.
Google Scholar

Reader S. M., Miller T. E. 1991. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica 53: 57 — 60.
Google Scholar

Rimpau W. 1891. Kreuzungsprodukte landwirtschaftlicher Kulturpflanzen. Landwirts Jahrb. 20: 335 — 371.
Google Scholar

Robe P., Doussinault G. 1995. Genetic analysis of powdery mildew resistance of a winter wheat line, RE714, and identification of a new specific-resistance gene. Plant Breeding 114: 387 —391.
Google Scholar

Robert O., Dedryver F., Leconte M., Rolland B., De Vellavieille-Pope C. 2000. Combination of resistance tests and molecular tests to postulate the yellow rust resistance gene Yr17 in bread wheat lines. Plant Breed. 119, 6: 467 — 472.
Google Scholar

Roelfs A. P. 1988. Resistance to leaf and stem rusts in wheat. Breeding strategies for resistance to the rusts of wheat (Eds. Hettel G., Simmonds N.W., Rajaram S. CIMMYT — Mexico): 10 — 22.
Google Scholar

Roelfs P., Singh R. P., Saari E. E. 1992. Rust Diseases of Wheat. Concepts and methods of disease Management. (Ed. G. P. Hettel, CIMMYT Mexico): 7 — 14.
Google Scholar

Rong J. K., Millet E., Manisterski J., Feldman M. 2000. A new powdery mildew resistance gene: Introgression from emmer into common wheat and RFLP-based mapping. Euphytica 115: 121 — 126.
Google Scholar

Rowell J. B. 1982. Control of wheat stem rust by low receptivity to infection conditioned by a single dominant gene. Phytopathology 72: 297 — 299.
Google Scholar

Valkoun J. J. 2001. Wheat pre-breeding using wild progenitors . Euphytica 119: 17 — 23.
Google Scholar

Vallega V., Mello-Sampayo T. 1987. Variation of high-molecular weight glutenin subunits amongst cultivars of T. turgidum L. from Portugal. Euphytica 3: 755 — 762.
Google Scholar

Wan Y., Wang D., Shewry P. R., Halford N. G. 2002. Isolation and characterization of five novel high molecular weight subunit of glutenin genes from Triticum timopheevi and Aegilops cylindrica. Theor. Appl. Genet. 104: 828 — 839.
Google Scholar

Wang Ch., Zhang Y., Han D., Kang Z., Li G., Cao A., Chen P. 2008. SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica 159: 359 — 366.
Google Scholar

Sasanuma T., Chabane K., Endo T. R., Valkoun J. 2002. Genetic diversity of wheat wild relatives in the Near East detected by AFLP. Euphytica 127: 81 — 93.
Google Scholar

Shewry P. R., Tatham A. S., Fido R., Jones H., Barcelo P., Lazzeri P. A. 2001. Improving the end use properties of wheat by manipulating the grain protein composition. Euphytica 119: 45 — 48.
Google Scholar

Shi A. N., Leath S., Murphy J. P. 1998. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology 88: 144 — 147.
Google Scholar

Singh R. P., Huerta-Espino J. 2003 a. Effect of leaf rust resistance gene Lr34 on components of slow rusting at seven growth stages in wheat. Euphytica 129: 371 — 376.
Google Scholar

Sing S., Franks C. D., Huang L., Brown-Guedira G. L., Marshall D. S., Gill B. S., Fritz A. 2003 b. Lr41, Lr39 and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS. Theor. Appl. Genet. 108: 586 — 591.
Google Scholar

Stack R. W., Elias E. M., Mitchell F. J., Miller J. D., Joppa L. R. 2002. Fusarium head blight reaction of Langdom durum-Triticum dicoccoides chromosome substitution lines. Crop Sci. 42: 637 — 642.
Google Scholar

Stack R. W., Frohberg R. C., Hansen J. M., Mergoum M. 2003. Transfer and expression of resistance to Fusarium head blight from wild emmer chromosome 3A to bread wheat. Proc. of National Fusarium Head Blight Forum , USA, (Eds. Canty S. C., Lewis J., Ward R. W.), Wheat and Barley Scab Initiative: 232.
Google Scholar

Steed A., Chandler E., Thomsett M., Gosman N., Faure S., Nicholson P. 2005. Identification of type I resistance to fusarium head blight controlled by a major gene located on chromosome 4A of Triticum macha. Theor. Appl. Genet. 111: 521 — 529.
Google Scholar

Stubbs R. W. 1985. Strip rust. The cereal rusts vol. II: Diseases, distribution, epidemiology, and control (Eds. Roelfs A. P., Bushnell W. R.): 61 — 101.
Google Scholar

Sun G. L., Fahima T., Korol A. B., Turpeinen T., Grama A., Ronin Y. I., Nevo E. 1997. Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor. Appl. Genet. 95: 622 — 628.
Google Scholar

Sun Q., Wei Y., Ni Z., Xie C., Yang T. 2002. Microsatellite marker for yellow rust resistance gene Yr5 in wheat introgressed from spelt wheat. Plant Breed. 121, 6: 539 — 541.
Google Scholar

Sybenga J. 1983. Rye chromosomes nomenclature and homoeology relationships. Workshop report. Z. Pflanzenzüchtg. 90: 297 — 304.
Google Scholar

Szunics L., Szunics L., Vida G., Bedo Z., Svec M. 2001. Dynamics of changes in the races and virulence of wheat powdery mildew in Hungary between 1971 and 1999. Euphytica 119: 143 — 147.
Google Scholar

Tao W., Liu D., Liu J., Feng Y., Chen P. 2000. Genetic mapping of the powdery mildew resistance gene Pm6 in wheat by RFLP analysis. Theor. Appl. Genet 100: 564 — 568.
Google Scholar

The T. T. 1973. Chromosome location of genes conditioning stem rust resistance transferred from diploid to hexaploid wheat. Nature New Biology 241: 256 — 262.
Google Scholar

Uauy C., Brevis J. C., Chen X., Khan I., Jackson L., Chicaiza O., Distelfeld A., Fahima T., Dubcovsky J. 2005. High temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor. Appl. Genet. 122: 97 — 105.
Google Scholar

Uauy C., Distelfeld A., Fahima T., Blechl A., Dubcovsky J. 2006. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314: 1298 — 1301.
Google Scholar

Wang T., Xiu S. S., Harris M. O., Hu J., Liu L., Cai X. 2006. Genetic characterization and molecular mapping of Hessian fly resistance genes derived from Aegilops tauschii in synthetic wheat. Theor. Appl. Genet. 113: 611 — 618.
Google Scholar

Wells D. G., Kota R. S., Sandhu H. S., Gardner W. A. S., Finney K. F. 1982. Registration of one disomic substitution line and five translocation lines of winter wheat germplasm resistant to wheat strain mosaic virus. Crop Sci. 22: 1277 — 1278.
Google Scholar

Williams C. E., Collier N., Sardesai C. C., Ohm H. W, Cambron S. E. 2003. Phenotypic assessment and mapped markers for H31, a new wheat gene conferring resistance to Hessian fly (Diptera: Cecidomyiidae). Theor. Appl. Genet. 107: 1516 — 1523.
Google Scholar

Wilson A. S. 1876. On wheat and rye hybrids. Trans. Proc. Bot. Soc., Edinburgh, 12: 286 — 288.
Google Scholar

Xie Ch., Sun Q., Ni Z., Yang T., Nevo E., Fahima T. 2003. Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers. Theor. Appl. Genet. 106: 341 — 345.
Google Scholar

Xie Ch., Sun Q., Ni Z., Yang T., Nevo E., Fahima T. 2004. Identification of resistance gene analogue markers closely linked to wheat powdery mildew resistance gene Pm31. Plant Breeding 123: 198 — 200.
Google Scholar

Xie W. L. 2006. Identification and molecular mapping of powdery mildew resistance genes derived from wild relatives of wheat . Ph D. Thesis, Univ. of Haifa , Israel.
Google Scholar

Xu H., Yao G., Xiong L., Yang L., Jiang Y., Fu B., Zhao W., Zhang Z., Zhang C., Ma Z. 2008. Identification and mapping of pm2026: a recessive powdery mildew resistance gene in an einkorn (Triticum monocccum L.). Theor. Appl. Genet. 117: 471 — 477.
Google Scholar

Xu S. S., Khan K., Klindworth D. L., Faris J. D., Nygard G. 2004. Chromosomal location of genes for novel glutenin subunits and gliadins in wild emmer wheat (Triticum turgidum L. var. dicoccoides). Theor. Appl. Genet. 108: 1221 — 1228.
Google Scholar

Xueli A., Qiaoyun L., Yueming Y., Yinghua X., Hsam S. L. K., Zeller F. J. 2005. Genetic diversity of European spelt wheat (Triticum aestivum ssp. spelta L. em. Thell) revealed by glutenin subunit variations at the Glu-1 and Glu-3 loci. Euphytica 146: 193 — 201.
Google Scholar

Yao G., Zhang J., Yang L., Xu H., Jiang Y., Xiong L., Zhang C., Zhang Z., Ma Z., Sorrells M. E. 2007. Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions. Theor. Appl. Genet 114: 351 — 358.
Google Scholar

Yan G. P., Chen X. M., Line R. F., Wellings C. R. 2003. Resistance gene-analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theor. Appl. Genet. 106: 636 — 643.
Google Scholar

Yi Y. J., Liu H. Y., Huang X. Q., An L. Z., Wang F., Wang X. L. 2007. Development of molecular markers linked to the wheat powdery mildew resistance gene Pm4b and marker validation for molecular breeding. Plant Breeding 127 (2): 116 — 120.
Google Scholar

Zhang W., Qu L. J., Gu H., Gao W., Liu M. 2002. Studies on the origin and evolution of tetraploid wheats based on the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Theor. Appl. Genet. 104: 1099 — 1106.
Google Scholar

Zhang H. Q., Fan X., Sha L. N., Zhang C., Yang R. W., Zhou Y. H. 2008. Phylogeny of Hystrix and related genera (Poaceae: Triticeae) based on nuclear rDNA ITS sequences. Plant Biology 10, 5: 635 — 642.
Google Scholar

Zhu Z . D., Zhou R. G., Kong X.Y., Dong Y. C. Jia J. Z. 2005. Microsatellite markers linked to powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome 48: 585 — 590.
Google Scholar

Pobierz


Opublikowane
12/29/2011

Cited By / Share

Pilch, J. (2011) „Wykorzystanie genów z gatunków diploidalnych, tetraploidalnych i heksaploidalnych pszenicy Triticum L. w odmianach pszenicy heksaploidalnej Triticum aestivum L”., Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, (262), s. 3–24. doi: 10.37317/biul-2011-0001.

Autorzy

Józef Pilch 
j.pilch@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin — PIB, Zakład Roślin Zbożowych — Kraków Poland

Statystyki

Abstract views: 33
PDF downloads: 49


Licencja

Prawa autorskie (c) 2011 Józef Pilch

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.

Z chwilą przekazania artykułu, Autorzy udzielają Wydawcy niewyłącznej i nieodpłatnej licencji na korzystanie z artykułu przez czas nieokreślony na terytorium całego świata na następujących polach eksploatacji:

  1. Wytwarzanie i zwielokrotnianie określoną techniką egzemplarzy artykułu, w tym techniką drukarską oraz techniką cyfrową.
  2. Wprowadzanie do obrotu, użyczenie lub najem oryginału albo egzemplarzy artykułu.
  3. Publiczne wykonanie, wystawienie, wyświetlenie, odtworzenie oraz nadawanie i reemitowanie, a także publiczne udostępnianie artykułu w taki sposób, aby każdy mógł mieć do niego dostęp w miejscu i w czasie przez siebie wybranym.
  4. Włączenie artykułu w skład utworu zbiorowego.
  5. Wprowadzanie artykułu w postaci elektronicznej na platformy elektroniczne lub inne wprowadzanie artykułu w postaci elektronicznej do Internetu, lub innej sieci.
  6. Rozpowszechnianie artykułu w postaci elektronicznej w internecie lub innej sieci, w pracy zbiorowej jak również samodzielnie.
  7. Udostępnianie artykułu w wersji elektronicznej w taki sposób, by każdy mógł mieć do niego dostęp w miejscu i czasie przez siebie wybranym, w szczególności za pośrednictwem Internetu.

Autorzy poprzez przesłanie wniosku o publikację:

  1. Wyrażają zgodę na publikację artykułu w czasopiśmie,
  2. Wyrażają zgodę na nadanie publikacji DOI (Digital Object Identifier),
  3. Zobowiązują się do przestrzegania kodeksu etycznego wydawnictwa zgodnego z wytycznymi Komitetu do spraw Etyki Publikacyjnej COPE (ang. Committee on Publication Ethics), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. Wyrażają zgodę na udostępniane artykułu w formie elektronicznej na mocy licencji CC BY-SA 4.0, w otwartym dostępie (open access),
  5. Wyrażają zgodę na wysyłanie metadanych artykułu do komercyjnych i niekomercyjnych baz danych indeksujących czasopisma.