Przydatność metod oraz miar statystycznych do oceny stabilności i adaptacji odmian: przegląd literatury

Wiesław Mądry

wieslaw_madry@sggw.ed.pl
Katedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie (Poland)

Marzena Iwańska


Katedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie (Poland)

Abstrakt

W pracy przedstawiono przegląd najnowszego dorobku naukowego, publikowanego głównie w prestiżowych czasopismach, w zakresie zastosowań i badań przydatności wielu metod statystycznych do charakterystyki interakcji genotypowo-środowiskowej (interakcji GE) dla plonu i innych cech rolniczych odmian testowanych w doświadczeniach oraz analizy i interpretacji tej interakcji w kategoriach oceny odmian pod względem ich stabilności i adaptacji dla rozpatrywanych cech. Wśród rosnącego bogactwa klasycznych i oryginalnych metod, stosowanych w wymienionych badaniach nad oceną wartości gospodarczej odmian, dominują metody wielowymiarowe oparte na analizie składowych głównych, takie, jak analiza AMMI (ang. the additive main effects and multiplicative interaction model-based analysis), analiza GGE (ang. the genotype main effects and genotype × environment interaction effects model-based analysis) oraz łączna analiza skupień i AMMI lub GGE. Stosowane są także dość szeroko metody oparte na relatywnie prostych miarach stabilności i szerokiej adaptacji odmian pod względem badanych cech. To wyjątkowo bogate spektrum metod, przeznaczonych do wielostronnej oceny odmian z uwzględnieniem średnich genotypowych i efektów interakcji GE, stanowi wartościową ofertę metodyki statystycznej, z której szerzej powinni korzystać hodowcy i badacze wartości gospodarczej odmian roślin uprawnych w Polsce.

Instytucje finansujące

Publikacja została wykonana w ramach projektu badawczego No. N N310 091136 finansowanego przez Ministerstwo Nauki i Szkolnictwa Wyższego w latach 2009–2011 w Katedrze Agronomii i Katedrze Doświadczalnictwa i Bioinformatyki SGGW w Warszawie

Słowa kluczowe:

adaptacja odmian, analiza AMMI, analiza GGE, analiza skupień

Abidin P.E., Eeuwijk F.A., Stam P., Struik P.C., Malosetti M., Mwanga R.O.M., Odongo B., Hermann M., Carey E.E. 2005. Adaptation and stability analysis of sweet potato varieties for low-input systems in Uganda. Plant Breed. 124: 491 — 497.
Google Scholar

Adugna A.2008. Assessment of yield stability in sorghum using univariate and multivariate statistical approaches. Hereditas 145: 28 — 37.
Google Scholar

Adugna W., Labuschagne M.T. 2002. Genotype-environment interactions and phenotypic stability analyses of linseed in Ethiopia. Plant Breed. 121: 66 — 71.
Google Scholar

Adugna W., Labuschagne M.T. 2003. Parametric and nonparametric measures of phenotypic stability in linseed (Linum usitatissimum L.). Euphytica 129: 211 — 218.
Google Scholar

Akcura M., Kaya Y. 2008. Nonparametric stability methods for interpreting genotpe by environment interaction of bread wheat genotypes (Triticum aestivum L.). Gen. Mol. Biol. 31: 906 — 913.
Google Scholar

Albrizio R., Todorovic M., Matic T., Stellacc A.M. 2010. Comparing the interactive effects of water and nitrogen on durum wheat and barley grown in a Mediterranean environment. Field Crops Res. 115: 179 — 190.
Google Scholar

Allard R.W., Bradshaw A.D. 1964. Implications of genotype-environmental interactions in applied plant breeding. Crop Sci. 4: 503 — 508.
Google Scholar

Anbessa Y., Juskiw P., Good A., Nyachiro J., Helm J. 2010. Selection efficiency across environments in improvement of barley yield for moderately low nitrogen environments. Crop Sci. 50: 451 — 457.
Google Scholar

Annicchiarico P., Abdelguerfi A. Ben Younes M., Bouzerzour H., Carroni A.M., Pecetti L., Tibao G. 2008. Adaptation of sulla cultivars to contrasting Mediterranean environments. Austr. J. Agric. Res. 59: 702 — 706.
Google Scholar

Annicchiarico P. 1997. Joint regression vs AMMI analysis of genotype-environment interactions for cereals in Italy. Euphytica 94: 53 — 62.
Google Scholar

Annicchiarico P. 2002a. Defining adaptation strategies and yield stability targets in breeding programmes. In: Kang M.S. (Ed.) Quantitative genetics, genomics and plant breed. CABI, Wallingford, UK.: 165 — 183.
Google Scholar

Annicchiarico P. 2002 b. Genotype-environment interactions: challenges and opportunities for plant breeding and cultivar recommendations. FAO Plant Production and Protection Paper No. 174. Food and Agriculture Organization, Rome.
Google Scholar

Annicchiarico P., Bellah F., Chiari T. 2005. Defining subregions and estimating benefits for a specific-adaptation strategy by breeding programs: A case study. Crop Sci. 45: 1741 — 749.
Google Scholar

Annicchiarico P., Chiapparino E., Perenzin M. 2010. Response of common wheat varieties to organic and conventional production systems across Italian locations, and implications for selection. Field Crops Res. 116: 230 — 238.
Google Scholar

Annicchiarico P., Bellah F., Chiari T. 2006. Repeatable genotype×location interaction and its exploitation by conventional and GIS-based cultivar recommendation for durum wheat in Algeria. Europ. J. Agron. 24: 70 — 81.
Google Scholar

Annicchiarico P., Iannucci A. 2008. Adaptation strategy, germplasm type and adaptive traits for field pea improvement in Italy based on variety responses across climatically contrasting environments. Field Crops Res. 108: 133 — 142.
Google Scholar

Annicchiarico P., Mariani G. 1996. Prediction of adaptability and yield stability of durum wheat genotypes from yield response in normal and artificially drought-stressed conditions. Field Crops Res. 46: 71 — 80.
Google Scholar

Annicchiarico P., Perenzin M. 1994. Adaptation patterns and definition of macro-environments for selection and recommendation of common-wheat genotypes in Italy. Plant Breed. 113: 197 — 205.
Google Scholar

Atlin G.N., Baker R.J., McRae K.B., Lu X. 2000 b. Selection response in subdivided target regions. Crop Sci. 40: 7 — 13.
Google Scholar

Atlin G.N., McRae K.B., Lu X. 2000a. Genotype region interaction for two-row barley yield in Canada. Crop Sci. 40: 1 — 6.
Google Scholar

Basford K.E., Cooper M. 1998. Genotype×environment interactions and some considerations of their implications for wheat breeding in Australia. Austr. J. Agric. Res. 49: 153 — 174.
Google Scholar

Barah B.C., Binswanger H.P., Rana B.S., Rao N.G.P. 1981. The use of risk aversion in plant breeding; concept and application. Euphytica 30: 451 — 458.
Google Scholar

Baxevanos D., Goulas C., Tzortzios S., Mavromatis A. 2008. Interrelationship among and repeatability of seven stability indices estimated from commercial cotton (Gossypium hirsutum L.) variety evaluation trials in three Mediterranean countries. Euphytica 161: 371 — 382.
Google Scholar

Becker H.C. 1981. Correlations among some statistical measures of phenotypic stability. Euphytica 30: 835 — 840.
Google Scholar

Becker H.C., Leon J. 1988. Stability analysis in plant breeding. Plant Breed. 101: 1 — 23.
Google Scholar

Bilbro J.D., Ray L.L. 1976. Environmental stability and adaptation of several cotton cultivars. Crop Sci. 16: 821 — 824.
Google Scholar

Blanche S.B., Myers G.O., Kang M.S. 2007. GGE biplots and traditional stability measures for interpreting genotype by environment interactions. J. Crop Improv. 20: 123 — 135.
Google Scholar

Blanche S.B., Utomo H.S., Wenefrida I., Myers G.O. 2009. Genotype x environment interactions of hybrid and varietal rice cultivars for grain yield and milling quality. Crop Sci. 49: 2011 — 2018.
Google Scholar

Blum A. 1980. Genetic improvement of drought adaptation. In: Adaptation of plants to water and high temperature stress. (Eds.): N.C. Turner, Kramer P.J. John Wiley and Sons, New York: 450 — 452.
Google Scholar

Braun H.J., Rajaram S., van Ginkel M. 1996. CIMMYT's approach to breeding for wide adaptation. Euphytica 92: 175 — 183.
Google Scholar

Braun H.J., Ekiz H,, Eser V., Keser M., 1998. Breeding priorities of winter wheat programs. In: Braun HJ, Altay F, Kronstad WE, Beniwal SPS, McNab A et al (eds) Wheat: prospects for global improvement. Kluwer, Dordrecht: 553 — 560.
Google Scholar

Brennan P.S., Byth D.E. 1979. Genotype × environmental interactions for wheat yields and selection for widely adapted wheat genotypes. Austr. J. Agr. Res. 30: 221 — 232.
Google Scholar

Burgueno J., Crossa J., Cornelius P.L., Yang R.C. 2008. Using factor analytic models for joining environments and genotypes without crossover genotype × environment interaction. Crop Sci. 48:1291 — 1305.
Google Scholar

Caliński T., Czajka S., Kaczmarek Z. 1980. Analiza jednorocznej serii ortogonalnej doświadczeń odmianowych ze szczególnym uwzględnieniem interakcji odmianowo-środowiskowej. 1. Analiza ogólna. Biul. Oceny Odmian 12: 67 — 81.
Google Scholar

Caliński T., Czajka S., Kaczmarek Z. 1983. Analiza jednorocznej serii ortogonalnej doświadczeń odmianowych ze szczególnym uwzględnieniem interakcji odmianowo-środowiskowej. 2. Analiza szczegółowa. Biul. Oceny Odmian 15: 39 — 60.
Google Scholar

Caliński T., Czajka S., Kaczmarek Z., Krajewski P., Siatkowski I. 1995. SERGEN — a computer program for the analysis of series of variety trials. Biul. Oceny Odmian 26–27: 39 — 41.
Google Scholar

Carena M.J., Yang J., Caffarel J.C., Mergoum M., Hallauer A.R. 2009. Do different production environments justify separate maize breeding programs? Euphytica 169: 141 — 150.
Google Scholar

Casanoves F., Baldessari J., Balzarini M. 2005. Evaluation of multi-environment trials of peanut cultivars. Crop Sci. 45: 18 — 26.
Google Scholar

Cassida K.A., Muir J.P., Hussey M.A., Read J.C., Venuto B.C., Ocumpaugh W.R. 2005. Biofuel component concentrations and yields of switchgrass in South Central U.S. environments. Crop Sci. 40: 692.
Google Scholar

Ceccarelli S. 1989. Wide adaptation: How wide? Euphytica 40: 197 — 205.
Google Scholar

Ceccarelli S., Grando S. 2007. Decentralized participatory plant breeding: an example of demand driven research. Euphytica 155: 349 — 360.
Google Scholar

Chapman S.C., Cooper M., Butler D.G., Henzell R.G. 2000. Genotype by environment interactions affecting grain sorghum. I. Characteristics that confound interpretation of hybrid yield. Austr. J. Agric. Res. 51: 197 — 207.
Google Scholar

Chapman S.C., de la Vega A.J. 2002. Spatial and seasonal effects confounding interpretation of sunflower yields in Argentina. Field Crops Res. 73: 107 — 120.
Google Scholar

Chloupek O., Hrstkova P. 2005. Adaptation of crops to environment. Theor. Appl. Gen. 111: 1316 — 1321.
Google Scholar

Cochran W.G., Cox G.M. 1957. Experimental designs. 2nd ed. John Wiley & Sons, Inc., London.
Google Scholar

Cooper M. 1999. Concepts and strategies for plant adaptation research in rainfed lowland rice. Field Crops Res. 64: 13 — 34.
Google Scholar

Cooper M., Byth D.E. 1996. Understanding plant adaptation to achieve systematic applied crop improvement — a fundamental challenge. In: Cooper M., Hammer G.L. (Eds.), Plant Adaptation, Crop Improvement. CAB International/International Rice Research Institute (IRRI)/International Crops Research Institute for Semi Arid Tropics (CRISAT), Wallingford, UK/Los Banos, Laguna, Philippines/Hyderabad, India: 5 — 24.
Google Scholar

Cooper M., DeLacy I.H. 1994. Relationships among analytical methods used to study genotypic variation and genotype.byenvironment interaction in plant breeding multi-environment experiments. Theor. Appl. Genet. 88: 561 — 572.
Google Scholar

Cooper M., DeLacy I.H., Basford K. E. 1996. Relationships among analytical methods used to analyze genotypic adaptation in multi-environment trials. In: Plant Adaptation and Crop Improvement (Eds Cooper M., Hammer G. L.), CAB International, Wallingford, UK: 191 — 224.
Google Scholar

Crossa J. 1990. Statistical analyses of multilocation trials. Adv. Agron. 44: 55 — 85.
Google Scholar

Dehghani H. 2008. Estimating yield stability by nonparametric stability analysis in maize (Zea mays L.). Plant Breed. Seed Sci. 58: 61 — 77.
Google Scholar

de la Vega A.J., Chapman S.C., Hall A.J. 2001. Genotype by environment interaction and indirect selection for yield in sunflower. I. Two-mode pattern analysis of oil and biomass yield across environments in Argentina. Field Crop Res. 72: 17— 38.
Google Scholar

de la Vega A.J., Chapman S.C. 2010. Mega-environment differences affecting genetic progress for yield and relative value of component traits. Crop Sci. 50: 574 — 583.
Google Scholar

de la Vega A.J., Chapman S.C. 2006. Defining sunflower selection strategies for a highly heterogeneous target population of environments. Crop Sci. 46: 136 — 144.
Google Scholar

Dopierała P., Bujak H., Kaczmarek J., Dopierała A. 2003. Ocena interakcji genotypowo-środowiskowej plonu populacyjnych i mieszańcowych odmian żyta ozimego. Biul. IHAR 230: 243 — 254.
Google Scholar

Dreccer M.F., BorgognoneM.G., OgbonnayaF.C., Trethowan R.M., Winter B. 2007. CIMMYT-selected derived synthetic bread wheats for rainfed environments: Yield evaluation in Mexico and Australia. Field Crops Res. 100: 218 — 228.
Google Scholar

Drzazga T., Paderewski J., Mądry W., Kajewski P. 2009. Ocena rodzajów reakcji plonowania odmian pszenicy ozimej w doświadczeniach PDO na przestrzennie zmienne warunki przyrodnicze w kraju. Biul. IHAR 253:71 — 82
Google Scholar

Duarte J.B., Zimmermann M.J. 1995. Correlation among yield stability parameters in common bean. Crop Sci. 35: 905 — 912.
Google Scholar

Eberhard S.A., Russell W.A. 1966. Stability parameters for comparing varieties. Crop Sci. 6: 36 — 40.
Google Scholar

Ebdon J.S., Gauch H.G. 2002b. Additive main effect and multiplicative interaction analysis of national turfgrass performance trials: II. Cultivar recommendations. Crop Sci. 42: 497 — 506.
Google Scholar

Elandt R. 1964. Statystyka matematyczna w zastosowaniu do doświadczalnictwa rolniczego. PWN, Warszawa.
Google Scholar

Epinat-Le Signor C., Dousse S., Lorgeou J., Denis J.B., Bonhomme R., Carolo P., Charcosset A. 2001. Interpretation of genotype × environment interactions for early maize hybrids over 12 years. Crop Sci. 41: 663 — 669.
Google Scholar

Eskridge K.M. 1990. Selection of stable cultivars using a safety-first rule. Crop Sci. 30: 369 — 374.
Google Scholar

Eskridge K.M., Byrne P.F., Crossa J. 1991. Selection of stable varieties by minimizing the probability of disaster. Field Crops Res. 27: 169 — 181.
Google Scholar

Eskridge K.M. Johnson B.E. 1991. Expected utility maximization and selection of stable plant cultivars. Theor. Appl. Genet. 81:825 — 832.
Google Scholar

Eskridge K.M., Mumm R.F. 1992. Choosing plant cultivars based on the probability of outperforming a check. Theor. Appl. Genet. 84:494 — 500.
Google Scholar

Eskridge K.M., Smith O.S., Byrne P.F. 1993. Comparing test cultivars using reliability functions of test-check differences from on-farm trials. Theor. Appl. Genet. 87: 60 — 64.
Google Scholar

Fan X.M., Kang M.S., Chen H., Zhang Y., Tan J., Xu C. 2007. Yield stability of maize hybrids evaluated in multi-environment trials in Yunnan, China. Agron. J. 99: 220 — 228.
Google Scholar

Finlay K.W., Wilkinson G.N. 1963. The analysis of adaptation in a plant breeding programme. Austr. J. Agric. Res. 14: 742 — 754.
Google Scholar

Flores F., Moreno M.T., Cubero J.I. 1998. A comparison of univariate and multivariate methods to analyze G×E interaction. Field Crops Res. 56: 271 — 286.
Google Scholar

Fox P.N., Skovmand B., Thompson B.K., Braun H.J., Cormier R. 1990. Yield and adaptation of hexaploid spring triticale. Euphytica 47: 57 — 64.
Google Scholar

Fufa H., Stephen Baenziger P., Beecher B.S., Graybosch R.A., Eskridge K.M., Nelson L.A. 2005. Genotypic improvement trends in agronomic performances and end-use quality characteristics among hard red winter wheat cultivars in Nebraska. Euphytica 144: 187 — 198.
Google Scholar

Ghaderi A., Adams M.W., Saettler A.W. 1982. Environmental response patterns in commercial classes of common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 63:17 — 22.
Google Scholar

Gauch H.G. 1992. Statistical analysis of regional yield trials. AMMI analysis of factorial designs. Elsevier Science, New York.
Google Scholar

Gauch H.G. 2006. Statistical analysis of yield trials by AMMI and GGE. Crop Sci. 46: 1488 — 1500.
Google Scholar

Gauch H.G., Piepho H.P., Annicchiarico P. 2008. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Sci. 48: 866 — 889.
Google Scholar

Gauch H.G., Zobel R.W. 1997. Identifying mega-environments and targeting genotypes. Crop Sci. 37: 311 — 326
Google Scholar

Gomez-Becerra H., Morgounov A., Abugalieva A. 2007. Evaluation of yield grain stability, reliability and cultivar recommendation in spring wheat (Triticum aestivum L.) from Kazakhstan and Siberia. J. Cent. Eur. Agric. 7: 649 — 660.
Google Scholar

Gomez — Becerra H.F., Yazici A., Ozturk L., Budak H., Peleg Z., Morgounov A., Fahima T., Saranga Y., Cakmak I. 2010. Genetic variation and environmental stability of grain mineral nutrient concentrations in Triticum dicoccoides under five environments. Euphytica 171: 39 — 52.
Google Scholar

Grausgruber H., Oberforster M., Werteker M., Ruckenbauer P., Vollmann J. 2000. Stability of quality traits in Austrian-grown winter wheats. Field Crops Res. 66:257 — 267.
Google Scholar

Haussmann B.I.G., Obilana A.B., Ayiecho P.O., Blum A., Schipprack W., Geiger H.H. 2000. Yield and yield stability of four population types of grain sorghum in a semi-arid area of Kenya. Crop Sci. 40: 319 — 329.
Google Scholar

Helms T.C. 1993. Selection for yield and stability among oat lines. Crop Sci. 33: 423 — 426.
Google Scholar

Hernandez-Segundo E., Capettini F., Trethowan R., van Ginkel M., Mejia A., Carballo A., Crossa J., Vargas M., Balbuena-Melgarejo A. 2009. Mega-environment identification for barley based on twenty-seven years of global grain yield data. Crop Sci. 49: 1705 — 1718.
Google Scholar

Herring M.R., O'Brien L. 2000. A regional adaptation analysis of oats in New South Wales and southern Queensland for grain yield and dry matter production. Austr. J. Agric. Res. 51: 961 — 970.
Google Scholar

Hill J., Becker H.C., Tigerstedt P.M. 1997. Quantitative and ecological aspects of plant breeding. Chapman and Hall, London.
Google Scholar

Howe T.G., Brunner A.M. 2005. An evolving approach to understanding plant adaptation. New Phytol. 167: 1 — 5.
Google Scholar

Hühn M. 1990 a. Nonparametric measures of phenotypic stability: Part 1. Theory. Euphytica 47: 189 — 194.
Google Scholar

Hühn M. 1990 b. Nonparametric measures of phenotypic stability: Part 2. Applications. Euphytica 47: 195 — 201.
Google Scholar

Hühn M. 1996. Nonparametric analysis of genotype × environment interactions by ranks. In: Genotype by environment interaction. (Eds.): M.S. Kang, Gauch H.G. CRC Press, Boca Raton, FL, USA: 213 — 228.
Google Scholar

Hussein M.A., Bjørnstad A., Aastveit A.H. 2000. SASG X ESTAB: A SAS program for computing genotype × environment stability statistics. Agron. J. 92: 454 — 459.
Google Scholar

Iwańska M., Mądry W., Drzazga T., Rajfura A. 2008. Zastosowanie miar statystycznych do oceny stopnia szerokiej adaptacji odmian pszenicy ozimej na podstawie serii doświadczeń przedrejestrowych. Biul. IHAR 250: 67 — 86.
Google Scholar

Iwańska M. 2010. Przydatność różnych miar statystycznych do oceny stopnia szerokiej adaptacji odmian pszenicy ozimej. Praca doktorska, Wydział Rolnictwa i Biologii, SGGW, Warszawa.
Google Scholar

Jalaluddin M.D., Harrison S.A. 1993. Repeatability of stability statistics for grain yield in wheat. Crop Sci. 33: 720 — 725.
Google Scholar

Jarvie J.A., Shanahan P.E. 2009. Assessing tolerance to soybean rust in selected genotypes. Field Crops Res. 114: 419 — 425.
Google Scholar

Joshi A.K., Ortiz-Ferrara G., Crossa J., Singh G., Alvarado G., Bhatta M.R., Duveiller E., Sharma R.C., Pandit D.B., Siddique A.B., Das S.Y., Sharma R.N., Chand R. 2007a. Associations of environments in South Asia based on spot blotch disease of wheat caused by Cochliobolus sativus. Crop Sci. 47: 1071 — 1081.
Google Scholar

Joshi K.D., Musa A.M., Johansen C., Gyawali S., Harris D., Witcombe J.R. 2007b. Highly client-oriented breeding, using local preferences and selection, produces widely adapted rice varieties. Field Crops Res. 100: 107 — 116.
Google Scholar

Kaczmarek Z. Adamski T., Surma M. 1997. The influence of cytoplasmatic effects on yielding and stability of barley DH lines. W: Krajewski P., Kaczmarek Z (Ed), Advances in Biometrical Genetics, Poznań: 159 — 163.
Google Scholar

Kang M.S. 1988. A rank-sum method for selecting high yielding stable corn genotypes. Cereal Res. Comm. 16:113 — 115.
Google Scholar

Kang M.S. 1993. Simultaneous selection for yield and stability in crop performance trials: Consequences for growers. Agron. J. 85: 754 — 757.
Google Scholar

Kang M.S. 1998. Using genotype-by environment interaction for crop cultivar development. Adv. Agron. 62: 199 — 253.
Google Scholar

Kang M.S., Aggarwal V.D., Chirwa R.M. 2006. Adaptability and stability of bean cultivars as determined via yield-stability statistic and GGE biplot analysis. J. Crop Improvement 15: 97 — 120.
Google Scholar

Kang M.S., Magari R. 1995. Stable: a basic program for calculating stability and yield-stability statistics. Agron. J. 87: 276 — 277.
Google Scholar

Kang M.S., Pham H.N. 1991. Simultaneous selection for high and stable crop genotypes. Agron. J. 83: 161—165.
Google Scholar

Kataoka S. 1963. A stochastic programming model. Econometrika 31:181 — 196.
Google Scholar

Kaut A.H.E.E., Mason H.E., Navabi A., O'Donovan J. T., Spaner D. 2009. Performance and stability of performance of spring wheat variety mixtures in organic and conventional management systems in western Canada. J. Agric. Sci. 147: 141 —153.
Google Scholar

Kaya Y., Akcura M., Ayranci R., Taner S. 2006. Pattern analysis of multi-environment trials in bread wheat. Commun. Biometry Crop Sci. 1: 63 —71.
Google Scholar

Léon J., Becker H. C. 1988. Repeatability of some statistical measures of phenotypic stability — Correlations between single year results and multi years results. Plant Breed. 100: 137 — 142.
Google Scholar

Li W., Yan Z.H., Wei Y.M., Lan X.J., Zheng Y.L. 2006. Evaluation of genotype × environment interactions in Chenese spring wheat by the AMMI model, correlation and path analysis. J. Agron. Crop Sci. 192: 221 — 227.
Google Scholar

Lillemo M., van Ginkel M., Trethowan R. M., Hernandez E., Crossa J. 2005. Differential adaptation of CIMMYT bread wheat to global high temperature environments. Crop Sci. 45: 2443 — 2453.
Google Scholar

Lillemo M., Singh R.P., van Ginkel M. 2010. Identification of stable resistance to powdery mildew in wheat based on parametric and nonparametric methods. Crop Sci. 50: 478 — 485.
Google Scholar

Lin C.S., Binns M.R. 1988. A superiority measure of cultivar performance for cultivar × location data. Can. J. Plant Sci. 68: 193 — 198.
Google Scholar

Lin C.S., Binns M. R., Lefkovitch L. P. 1986. Stability analysis: where do we stand? Crop Sci. 26: 894 — 900.
Google Scholar

Link W., Schill B., von Kittlitz E. 1996. Breeding for wide adaptation in faba bean. Euphytica 92: 185 — 190.
Google Scholar

Luquez J. E., Aguirreza L. A. N., Aguero M. E., Pereyra V. R. 2002. Stability and adaptability of cultivars in non-balanced yield trials: Comparison of methods for selecting ‘high oleic’ sunflower hybrids for grain yield and quality. J. Agron. Crop Sci. 188: 225 — 234.
Google Scholar

Mądry W. 2002. Skuteczność kryterium YS Kanga, opartego na średniej i stabilności plonu w wyborze genotypów zbóż o szerokiej adaptacji w rejonie uprawnym. Roczn. Nauk Roln. Seria A. 116: 11 — 24.
Google Scholar

Mądry W. 2003. Analiza statystyczna miar stabilności na podstawie danych w klasyfikacji genotypy × środowiska. Cęść II. Model mieszany Shukli i model regresji łącznej. Coll. Biom. 33: 207 — 220.
Google Scholar

Mądry W., Rajfura A. 2003. Analiza statystyczna miar stabilności na podstawie danych w klasyfikacji genotypy x środowiska. Część I. Model mieszany Scheffego-Calińskiego i model regresji łącznej. Coll. Biom. 33: 181 — 206.
Google Scholar

Mądry W., Talbot M., Ukalski K., Drzazga T., Iwańska M. 2006. Podstawy teoretyczne znaczenia efektów genotypowych i interakcyjnych w hodowli roślin na przykładzie pszenicy ozimej. Biul. IHAR 240/241: 13 — 31.
Google Scholar

Mekbib F. 2002. Simultaneous selection for high yield and stability in common bean (Phaseolus vulgaris L.) genotypes. J. Agric. Sci. 138: 249 — 253.
Google Scholar

Mekbib F. 2003. Yield stability in common bean (Phaseolus vulgaris L.) genotypes. Euphytica 130: 147 — 153.
Google Scholar

Moghaddam M.J., Pourdad S.S. 2009. Comparison of parametric and non-parametric methods for analysing genotype x environment interactions in safflower (Carthamus tinctorius L.). J. Agric. Sci. 147: 601 — 612.
Google Scholar

Mohammadi R., Amri A. 2008. Comparison of parametric and nonparametric methods for selecting stable and adapted durum wheat genotypes in variable environments. Euphytica 159: 419 — 432.
Google Scholar

Mohammadi R., Amri A. 2009. Analysis of genotype x environment interactions for grain yield in durum wheat. Crop Sci. 49: 1177 — 1186.
Google Scholar

Mohammadi R., Pourdad S.S., Amri A. 2008. Grain yield stability of spring safflower (Carthamus tinctorius L.). Austr. J. Agric. Res. 59: 546 — 553.
Google Scholar

Mohammadi R., Haghparast R., Amri A. Ceccarelli S. 2010. Yield stability of rainfed durum wheat and GGE biplot analysis of multi-environment trials. Crop Pasture Sci. 61: 92 — 101.
Google Scholar

Mohebodini M., Dehghani H., Sabaghpour S.H. 2006. Stability of performance in lentil (Lens culinaris Medik) genotypes in Iran. Euphytica 149: 343 — 352.
Google Scholar

Möhring J., Piepho H. P. 2009. Comparison of weighting in two-stage analysis of plant breeding trials. Crop Sci. 49: 1977 — 1988.
Google Scholar

Mulema J.M.K, Olanya O.M., Adipala E., Wagoire W. 2004. Stability of late blight resistance in population B potato clones. Potato Research 47: 11 — 24.
Google Scholar

Murphy K.M., Campbell K.G., Lyon S.R., Jones S.S. 2007. Evidence of varietal adaptation to organic farming systems. Field Crops Res. 102: 172 — 177.
Google Scholar

Murphy S.E., Lee E.A., Woodrow L., Seguin P., Kumar J., Rajcan I., Ablett G.R. 2009. Genotype × environment interaction and stability for isoflavone content in soybean. Crop Sci. 49: 1313 — 1321.
Google Scholar

Navabi A., Yang R-C., Helm J., Spaner D.M. 2006. Can spring wheat-growing mega-environments in the Northern Great Plains be dissected for representative locations or niche-adapted genotypes? Crop Sci. 46: 1107 — 1116.
Google Scholar

Paderewski J. 2008. Przydatność modelu AMMI do badania reakcji roślin rolniczych na warunki środowiskowe. Praca doktorska, Wydział Rolnictwa i Biologii, SGGW, Warszawa.
Google Scholar

Paderewski J., Mądry W., Pilarczyk W., Drzazga T. 2008. Retrospektywne badanie reakcji plonu odmian pszenicy ozimej na warunki środowiskowe w miejscowościach za pomocą łącznej analizy AMMI i skupień: ocena postępu genetycznego w plonowaniu. Biul. IHAR 250: 87 — 106.
Google Scholar

Paderewski J., Gauch H.G., Mądry W., Drzazga T., Rodrigues P.C. 2011.Yield response of winter wheat to agro.ecological conditions using Additive Main Effects and Multiplicative Interaction and cluster analysis. Crop Sci. 51: 969 — 980.
Google Scholar

Pham H.N., Kang M.S. 1988. Interrelationships among repeatability of several stability statistics estimated from international maize trials. Crop Sci. 28: 925 — 928.
Google Scholar

Piepho H.P. 1995. Assessing cultivar adaptability by multiple comparison with the best. Agron. J. 87: 1225 — 1227.
Google Scholar

Piepho H.P. 1998. Methods for comparing the yield stability of cropping systems- A review. J. Agron. Crop Sci. 180: 193 — 213.
Google Scholar

Piepho H.P. 1999. Stability analysis using the SAS system. Agron. J. 91: 154 — 160.
Google Scholar

Pritts M., Luby J. 1990. Stability indices for horticultural crops. HortScience 25:740 — 745.
Google Scholar

Przystalski M., Osman A., Thiemt E.M., Rolland B., Ericson L., Østergård H., Levy L., Wolfe M., Büchse A., Piepho H.P., Krajewski P. 2008. Comparing the performance of cereal varieties in organic and non-organic cropping systems in different European countries. Euphytica 163: 417 — 433.
Google Scholar

Rajfura A., Mądry W., 2001. Metoda wyboru genotypów o szerokiej adaptacji wykorzystująca zarówno ich średnie w rejonie jak i stabilność plonowania. Coll. Biom.: 169 — 182.
Google Scholar

Robert N. 2002. Comparison of stability statistics for yield and quality traits in bread wheat. Euphytica 128: 333 — 341.
Google Scholar

Robinson J., Jalli M. 1999. Sensitivity of resistance to net blotch in barley. J. Phytopathol. 147: 235 — 241.
Google Scholar

Rodriguez M., Rau D., Papa R., Attene G. 2008. Genotype by environment interactions in barley (Hordeum vulgare L.): different responses of landraces, recombinant inbred lines and varieties to Mediterranean environment. Euphytica 163: 231 — 247.
Google Scholar

Romay M. C., Malvar R.A., Campo L., Alvarez A., Moreno-González J., Ordás A.,Pedro R. 2010. Climatic and genotypic effects for grain yield in maize under stress conditions. Crop Sci. 50:51 — 58.
Google Scholar

Roozeboom K.L., Schapaugh W.T., Tuinstra M.R., Vanderlip R.L., Milliken G.A. 2008. Testing wheat in variable environments: genotype, environment, interaction effects, and grouping test locations. Crop Sci. 48: 317 — 330.
Google Scholar

Rose L.W., Das M.K., Taliaferro C.M. 2008. A comparison of dry matter yield stability assessment methods for small numbers of genotypes of bermudagrass. Euphytica 164: 19 — 25.
Google Scholar

Sabaghnia N., Dehghani H., Sabaghpour S.H. 2006. Nonparametric methods for interpreting genotype x environment interaction of lentil genotypes. Crop Sci. 46: 1100 — 1106.
Google Scholar

Sabaghnia N., Sabaghpour S.H., Dehghani H. 2008. The use of an AMMI model and its parameters to analyse yield stability in multi-environment trials. J. Agric. Sci. 146: 571 — 581.
Google Scholar

Samonte S.O., Wilson L.T., McClung A.M., Medley J.C. 2005. Targeting cultivars onto rice growing environments using AMMI and SREG GGE biplot analyses. Crop Sci. 45: 2414 — 2424.
Google Scholar

Scapim C.A., Oliveira V.R., Braccinil A.L., Cruz C.D., Andrade C.A.B., Vidigal M.C.G. 2000. Yield stability in maize (Zea mays L.) and correlations among the parameters of the Eberhart and Russell, Lin and Binns and Huehn models. Gen. Mol. Biol. 23: 387 — 393.
Google Scholar

Scapim C.A., Pacheco C.A., Amaral A.T., Vieira R.A., Pinto R.J., Conrado T.V. 2010. Correlations between the stability and adaptability statistics of popcorn cultivars. Euphytica (w druku) .
Google Scholar

Segherloo A.E., Sabaghpour S.H., Dehghani H., Kamrani M. 2008. Nonparametric measures of phenotypic stability in chickpea genotypes (Cicer arietinum L.). Euphytica 162: 221 — 229.
Google Scholar

Shah S.H., Shah S.M., Khan M.I., Ahmed M., Hussain I., Eskridge K.M. 2009. Nonparametric methods in combined heteroscedastic experiments for assessing stability of wheat genotypes in Pakistan. Pak. J. Bot. 41: 711 — 730.
Google Scholar

Sharma R.C., Ortiz-Ferrara G., Crossa J., Bhatta M.R., Sufian M.A., Shoran J., Joshi A.K., Chand R. Singh G., Ortiz R. 2007. Wheat grain yield and stability assessed through regional trials in the Eastern Gangetic Plains of South Asia. Euphytica 157: 457 — 464.
Google Scholar

Sharma R.C., Morgounov A.I., Braun H.J., Akin B., Keser M., Bedoshvili D., Bagci A., Martius C. van Ginkel M. 2010. Identifying high yielding stable winter wheat genotypes for irrigated environments in Central and West Asia. Euphytica 171: 53 — 64.
Google Scholar

Shukla G.K. 1972. Some aspects of partitioning genotype. environmental components of variability. Heredity 28:237 — 245.
Google Scholar

Silva W.C., Duarte J.B. 2006. Statistical methods to study phenotypic adaptability and stability in soybean (praca w języku portugalskim). Pesq. agropec. bras. Brasilia 41:23 30 http://www.scielo.br/pdf/pab/v41n1/28136.pdf.
Google Scholar

Singh R.P., Huerta-Espino J., Sharma R., Joshi A.K.,·Trethowan R. 2007. High yielding spring bread wheat germplasm for global irrigated and rainfed production systems. Euphytica 157: 351 — 363.
Google Scholar

Sivapalan S., O’Brien L., Ortiz-Ferrera G., Hollamby G.J., Barclay I., Martin P.J. 2000. An adaptation analysis of Australian and CIMMYT/ICARDA wheat germplasm in Australian production environments. Austr. J. Agric. Res. 51: 903 — 915.
Google Scholar

Sivapalan S., O’Brien L., Ortiz-Ferrera G., Hollamby G.J., Barclay I., Martin P.J. 2003. A comparative study for yield performance and adaptation of some Australian and CIMMYT/ICARDA wheat genotypes grown at selected locations in Australia and WANA region. Austr. J. Agric. Res. 54: 91 — 100.
Google Scholar

Smith A.B., Cullis B.R., Thompson R. 2005. The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches. J. Agr. Sci. Cam. 143: 449 — 462.
Google Scholar

Solomon K.F., Smit H.A., Malan E., Du Toit W.J. 2007. Comparison study using rank based nonparametric stability statistics of durum wheat. World J. Agric. Sci. 3: 444 — 450.
Google Scholar

Stefanova K.T., Buirchell B. 2010. Multiplicative mixed models for genetic gain assessment in lupin breeding. Crop Sci. 50: 880 — 891.
Google Scholar

St-Pierre C.A., Klinck H.R., Gauthier F.M. 1967. Early generation selection under different environments as it influences adaptation of barley. Can. J. Oplant Sci. 47: 507 — 517.
Google Scholar

Tollenaar M., Lee E.A. 2002. Yield potential, yield stability and stress tolerance in maize
Google Scholar

Field Crops Res.75: 161 — 169.
Google Scholar

Trethowan R.M., van Ginkel M., Rajaram S. 2002. Progress in breeding wheat for yield and adaptation in global drought affected environments. Crop Sci. 42: 1441 — 1446.
Google Scholar

Ulukan H. 2008. Agronomic adaptation of some field crops: a general approach. J. Agronomy & Crop Sci. 194: 169 — 179.
Google Scholar

Waldron B.L., Asay K.H., Jensen K.B. 2002. Stability and yield of cool — season pasture grass species grown at five irrigation levels. Crop Sci. 42: 890 — 896.
Google Scholar

Wamatu J.N., Thomas E. 2002. The influence of genotype x environment interaction on the grain yields of 10 pigeonpea cultivars grown in Kenya. J. Agron. Crop Sci. 188: 25 — 33.
Google Scholar

Weber R., Zalewski D. 2006. Wpływ interakcji genotypowo-środowiskowej na plonowanie pszenicy ozimej. Biul. IHAR 240/241: 33 — 42.
Google Scholar

Williams R.M., O'Brien L., Eagles H.A., Solah V.A., Jayasena V. 2008. The influences of genotype, environment, and genotype × environment interaction on wheat quality. Aust. J. Agric. Res. 95: 95 — 111.
Google Scholar

Wójcik A.R. 1987. Statystyka matematyczna z elementami rachunku prawdopodobieństwa i statystyki opisowej. Wydawnictwo SGGW-AR, Warszawa.
Google Scholar

Wricke G. 1965. Zur Berechnung der Ökovalenz bei Sommerweizen und Hafer. Pflanzenzuchtung 52: 127 — 138.
Google Scholar

Yang R.C. 2007. Mixed model analysis of crossover genotype x environment interactions. Crop Sci. 47: 1051 — 1062.
Google Scholar

Yan W., Hunt L.A., Sheng Q., Szlavnics Z. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 40: 597 — 605.
Google Scholar

Yan W., Kang M.S. 2003. GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. Boca Raton, FL, CRC Press.
Google Scholar

Yan W., Rajcan I. 2003. Prediction of cultivar performance based on single- versus multiple-year tests in soybean. Crop Sci. 43: 549 —555.
Google Scholar

Yan W., Tinker N.A. 2005. An integrated system of biplot analysis for displaying, interpreting, and exploring genotype-by-environment interactions. Crop Sci. 45: 1004 — 1016.
Google Scholar

Yan W., Kang M.S., Ma B., Woods S., Cornelius P.L. 2007. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 47: 643 — 655.
Google Scholar

Yau S.K., Hamblin J. 1994. Relative yield as a measure of entry performance in variable environments. Crop. Sci. 34: 813 — 817.
Google Scholar

Yue G.L., Roozeboom K.L., Schapaugh W.T., Liang G.H. 1997. Evaluation of soybean cultivars using parametric and nonparametric stability estimates. Plant Breed. 116: 271 — 275.
Google Scholar

Zhang M., Kang M.S., Reese P.F., Harbans J., Bhardwaj L. 2005. Soybean cultivar evaluation via GGE biplot analysis. J. New Seeds 7: 37 — 50.
Google Scholar

Pobierz


Opublikowane
09/30/2011

Cited By / Share

Mądry, W. i Iwańska, M. (2011) „Przydatność metod oraz miar statystycznych do oceny stabilności i adaptacji odmian: przegląd literatury”, Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, (260/261), s. 193–218. doi: 10.37317/biul-2011-0035.

Autorzy

Wiesław Mądry 
wieslaw_madry@sggw.ed.pl
Katedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie Poland

Autorzy

Marzena Iwańska 

Katedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie Poland

Statystyki

Abstract views: 75
PDF downloads: 47


Licencja

Prawa autorskie (c) 2011 Wiesław Mądry, Marzena Iwańska

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Miedzynarodowe.

Z chwilą przekazania artykułu, Autorzy udzielają Wydawcy niewyłącznej i nieodpłatnej licencji na korzystanie z artykułu przez czas nieokreślony na terytorium całego świata na następujących polach eksploatacji:

  1. Wytwarzanie i zwielokrotnianie określoną techniką egzemplarzy artykułu, w tym techniką drukarską oraz techniką cyfrową.
  2. Wprowadzanie do obrotu, użyczenie lub najem oryginału albo egzemplarzy artykułu.
  3. Publiczne wykonanie, wystawienie, wyświetlenie, odtworzenie oraz nadawanie i reemitowanie, a także publiczne udostępnianie artykułu w taki sposób, aby każdy mógł mieć do niego dostęp w miejscu i w czasie przez siebie wybranym.
  4. Włączenie artykułu w skład utworu zbiorowego.
  5. Wprowadzanie artykułu w postaci elektronicznej na platformy elektroniczne lub inne wprowadzanie artykułu w postaci elektronicznej do Internetu, lub innej sieci.
  6. Rozpowszechnianie artykułu w postaci elektronicznej w internecie lub innej sieci, w pracy zbiorowej jak również samodzielnie.
  7. Udostępnianie artykułu w wersji elektronicznej w taki sposób, by każdy mógł mieć do niego dostęp w miejscu i czasie przez siebie wybranym, w szczególności za pośrednictwem Internetu.

Autorzy poprzez przesłanie wniosku o publikację:

  1. Wyrażają zgodę na publikację artykułu w czasopiśmie,
  2. Wyrażają zgodę na nadanie publikacji DOI (Digital Object Identifier),
  3. Zobowiązują się do przestrzegania kodeksu etycznego wydawnictwa zgodnego z wytycznymi Komitetu do spraw Etyki Publikacyjnej COPE (ang. Committee on Publication Ethics), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. Wyrażają zgodę na udostępniane artykułu w formie elektronicznej na mocy licencji CC BY-SA 4.0, w otwartym dostępie (open access),
  5. Wyrażają zgodę na wysyłanie metadanych artykułu do komercyjnych i niekomercyjnych baz danych indeksujących czasopisma.

Inne teksty tego samego autora

1 2 3 > >>