Molecular framework of maize adaptation to various climatic factors

Alicja Sobkowiak

a.sobkowiak@ihar.edu.pl
Zakład Biochemii i Fizjologii Roślin, IHAR — PIB, Radzików (Poland)

Jarosław Szczepanik


Zakład Ekofizjologii Molekularnej Roślin, Uniwersytet Warszawski, Warszawa (Poland)

Paweł Sowiński


Zakład Ekofizjologii Molekularnej Roślin, Uniwersytet Warszawski, Warszawa (Poland)

Abstract

Maize becomes more and more important crop during the last decades, mainly due to high yield and economic versatility, and its crop acreage is growing continuously, expanding more to the north and south from its centre of domestication in the tropics. This results in the need for the cultivars adapted to several abiotic factors, such as different photoperiod, periodic droughts and low temperature. Molecular mechanisms of maize adaptation to those factors remain unknown. Filling this gap is essential for future breeding advance, which becomes important especially in the context of predicted climate change.


Keywords:

adaptation, artificial selection, chilling, climate change, drought, maize

Agarwal P. K., Agarwal P, Reddy M. K., Sopory S. K. 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25: 1263 — 1274.
Google Scholar

Blackie M J. 1994. Maize productivity for the 21st century: the African challenge. Outlook Agric. 23: 189 — 195.
Google Scholar

Bratton M. 1986. Farmer organizations and food production in Zimbabwe. World Develop. 14: 367 — 384.
Google Scholar

Buckler E. S., Holland J. B., Bradbury P. J., Acharya C., Brown P. J., Browne C., Erso E, Flint-Garcia S., Garcia A., Glaubitz J., Goodman M., Harjes C., Guill1 K., Kroon D.E, Larsson S., Lepak N.K., Li H., Mitchel S., Pressoir G., Peiffer J., Rosas O., Rocheford T. R., Romay C. M., Romero S., Salvo S., Villeda S., da Silva H. S., Sun Q., Tian F., Upadyayula N., Ware D., Yates H., Yu J., Zhang Z., Kresovich S., McMullen M. D. 2009. The genetic architecture of maize flowering time. Science 325: 714 — 718.
Google Scholar

Chapman G. P. 1996. The biology of grasses. CAB International, Sydney.
Google Scholar

Coles N. D., McMullen M. D., Balint — Kurti P. J., Pratt R. C , Holland J. B. 2010. Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics 184: 799 — 812.
Google Scholar

Driscoll SE, Prins A, Olmos E, Kunert KJ, Foyer CH. 2006. Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves. J. Exp. Bot. 51: 381 — 390.
Google Scholar

Ducrocq S., Madur D., Veyrieras J-B. , Camus-Kulandaivelu L., Kloiber-Maitz M., Presterl T., Ouzunova M., Manicacci D., Charcosset A. 2008. Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics 18: 2433 — 243.
Google Scholar

Edwards E. J., Still E. J. 2008. Climate, phylogeny and the ecological distribution of C4 grasses. Ecol. Let. 11: 266 — 276.
Google Scholar

Ehleringer J. R., Cerling, T. E., Helliker B. R. 1997. C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112: 285 — 299.
Google Scholar

Finan J. J. 1948. Maize in the great herbals. Ann. Mo. Bot. Gard. 35: 149 — 165.
Google Scholar

Fracheboud Y., Jompuk C., Ribaud M. J., Stamp P, Leipner J. 2004. Genetic analysis of cold — tolerance of photosynthesis in maize. Plant Mol. Biol. 56: 241 — 253.
Google Scholar

Franks P.J., Beerling D. J. 2009. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. PNAS 106: 10343 — 10347.
Google Scholar

Ghannoum O. von Caemmerer S. Ziska L. H. Conroy J. P. 2000. The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment. Plant, Cell Environ. Vol. 23: 931 — 942.
Google Scholar

Goodman M. M. 2005. Broadening the U.S. maize germplasm base. Maydica 50: 203 — 214.
Google Scholar

Guo J., Su G., Zhang J., Wang G. 2008. Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semi — arid land condition. Afr. J. Biotech. 7: 1829 — 1838.
Google Scholar

Kenny G. J., Harrison P. A. 1992. Thermal and moisture limits of grain maize in Europe: model testing and sensitivity to climate change. Clim. Res. 2: 113 — 129.
Google Scholar

Knapp A. K., Fay P.A., Blair J. M., Collins S. L., Smith M. D., Carlisle J. D., Harper C. W., Danner B. T., Lett M. S., McCarron J. K. 2002. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Nature 298: 2202 — 2205.
Google Scholar

Koski V. 1996. Breeding plants in case of global warming. Euphytica 92: 235 — 239.
Google Scholar

Labate J. A., Lamkey K. R., Mitchell S. E., Kresovich S., Sullivan H., Smith J. S. C. 2003. Molecular and historical aspects of Corn Belt dent diversity. Crop Sci. 43: 80 — 91.
Google Scholar

Leakey A. D. B., Ainsworth E .A., Bernacchi C. J., Rogers A., Long S. P., Ort D. R. 2009. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 60: 2859 — 2876.
Google Scholar

Lisiecki L. E., Raymo ME. 2005. A Pliocene — Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20: PA1003.
Google Scholar

Liu Y., Subhash C., Yan J., Song C., , Zhao J., Li J. 2011. Maize leaf temperature responses to drought: Thermal imaging and quantitative trait loci (QTL) mapping. Environ. Exp. Bot. 71: 158 — 165.
Google Scholar

Masle J, Gilmore SR, Farquhar GD. 2005. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436: 866 — 870.
Google Scholar

Mayewski P. A., Rohling E. E., Stager J. C., Wibjörn K., Maasch K. A. Meeker L. D., Meyerson E. A., Gasse F., van Kreveld S., Holmgren K., Lee-Thorp J., Rosqvist G., Rack F., Staubwasser M., Schneider R. R., Steig E. J. . 2004. Holocene climate variability. Quaternary Res. 62: 243 — 255.
Google Scholar

Moose S.P, Dudley J. W., Rocheford T. R. 2004. Maize selection passes the century mark: a unique resource for 21st century genomics. Trends Plant Sci. 9: 358 — 364.
Google Scholar

Ortiz R., Taba S., Chavez V. H., Mezzalama M., Xu Y., Yan J., Crouch J. H. 2010. Conserving and genetic resources as global public goods– a perspective from CIMMYT. Crop Sci. 50: 13 — 28.
Google Scholar

Petit J. R., Jouzel J., Raynaud D., Barkov N. I., Barnola J.-M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pepin L., Ritz C., Saltzman E., Stievenard M. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429 — 436.
Google Scholar

Prasanna B. M. 2012. Diversity in global maize germplasm: characterization and utilization. J. Biosci. 37: 843 — 855.
Google Scholar

Prasanna B. M., Vasal S. K., Kassahun B., Singh N. N. 2001. Quality protein maize. Current Science 81: 1308 — 1319.
Google Scholar

Sage R. F., Christin P. A., Edwards E. J. 2011. The C4 plant lineages of planet Earth. J. Exp. Bot. 62: 3155 —3169.
Google Scholar

Sage R. F., Kubien D. S. 2003. Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynth. Res. 77: 209 — 225.
Google Scholar

Salvi S., Castelletti S., Tuberosa R. 2009. An updated consensus map on flowering time QTLs in maize. Maydica 54: 501 — 512.
Google Scholar

Salvi S., Sponza G., Morgante M., Tomes D., Niu X., Fengler K. A., Meeley R., Ananiev E. V., Svitashev S., Bruggemann E., Li B., Hainey C. F., Radovic S., Zaina G., Rafalski J. A., Tingey S. V., Miao G.-H., Phillips R. L., Tuberosa R. 2007. Conserved non coding genomic sequences associated with a flowering — time quantitative trait locus in maize PNAS 104: 11376 — 11381.
Google Scholar

Sobkowiak A. 2012. Reakcje kukurydzy na chłód umiarkowany na poziomie transkryptomicznym i proteomicznym. Rozprawa doktorska. IHAR PIB, Radzików.
Google Scholar

Sowiński P. 2000 a. Wrażliwość kukurydzy na chłód. Cz. 1. Wzrost, rozwój, fotosynteza. Biul. IHAR 214: 3 — 16.
Google Scholar

Sowiński P. 2000 b. Wrażliwość kukurydzy na chłód. Cz. 2. System korzeniowy, regulacja funkcjonowania rośliny, perspektywy hodowli. Biul. IHAR. 214: 17 — 29.
Google Scholar

Stamp P. 1984. Chilling tolerance of young plants demonstrated on the example of maize (Zea mays L.). In: Advances in Agronomy and Crop Science no 7, G. Geisler (ed.), Berlin, Parey: 83.
Google Scholar

Tenaillon M. I., Charcosset A. 2011. A European perspective on maize history. C.R. Biologies 334: 221 — 228.
Google Scholar

Tian F., Stevens N. M., Buckler E. S. 2009. Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. PNAS 106: 9979 — 9986.
Google Scholar

Tracy W. F., Goldman I. L., Tiefenthaler A. E., Schaber M. A. 2004. Trends in productivity of U.S. crops and long- term selection. In: Janick J. (ed.). Plant Breeding Reviews. Long -term selection: Crops, animals, and bacteria. Vol. 24 (2). John Wiley & Sons. Oxford.
Google Scholar

Troyer A. F. 2004. Background of U.S. Hybrid corn: II. Breeding, climate and food. Crop Sci. 44: 370 — 380.
Google Scholar

Tuberosa R., Salvi S., Sanguineti M.C., Landi P., Maccaferri M., Conti S. 2002. Mapping QTLs regulating morpho-physiological traits and yield: Case studies, shortcomings and perspectives in drought — stressed maize. Annals Bot. 89: 941 — 963.
Google Scholar

Ureta C., Martinez-Meyer E., Perales H. R., Alvarez-Buylla E. R. 2012. Projecting the effects of climate change on the distribution of maize races and their wild relatives in Mexico Global Change Biol. 18: 1073 — 1082.
Google Scholar

Wang C. L, Cheng F. F., Sun Z. H., Tang J. H., Wu L. C., Ku L. X., Chen Y. H. 2008. Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theor. Appl. Genet. 117: 1129 — 1139.
Google Scholar

Wasilewski M. 2005. Udomowienie roślin w Nowym Świecie. Wiad. Bot. 49: 19 — 37.
Google Scholar


Published
2013-03-31

Cited by

Sobkowiak, A., Szczepanik, J. and Sowiński, P. (2013) “Molecular framework of maize adaptation to various climatic factors”, Bulletin of Plant Breeding and Acclimatization Institute, (267), pp. 31–40. doi: 10.37317/biul-2013-0048.

Authors

Alicja Sobkowiak 
a.sobkowiak@ihar.edu.pl
Zakład Biochemii i Fizjologii Roślin, IHAR — PIB, Radzików Poland

Authors

Jarosław Szczepanik 

Zakład Ekofizjologii Molekularnej Roślin, Uniwersytet Warszawski, Warszawa Poland

Authors

Paweł Sowiński 

Zakład Ekofizjologii Molekularnej Roślin, Uniwersytet Warszawski, Warszawa Poland

Statistics

Abstract views: 214
PDF downloads: 63


License

Copyright (c) 2013 Alicja Sobkowiak, Jarosław Szczepanik, Paweł Sowiński

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)