Effect of eight quantitative traits of spring rape (Brassica napus ssp. oleifera) on seed weight per plant

Jan Bocianowski

jan.bocianowski@up.poznan.pl
Katedra Metod Matematycznych i Statystycznych, Uniwersytet Przyrodniczy w Poznaniu (Poland)

Tadeusz Łuczkiewicz


Katedra Genetyki i Hodowli Roślin, Uniwersytet Przyrodniczy w Poznaniu (Poland)

Piotr Szulc


Katedra Agronomii, Uniwersytet Przyrodniczy w Poznaniu (Poland)

Abstract

To evaluate the quantitative characteristics of F1 and F2 hybrids of spring oilseed rape (Brassica napus ssp. oleifera) and their parental forms, a field experiment was established in two years (2002 and 2003) in the Dłoń Experimental Station (Poznań University of Life Sciences). In each year, following measurements were performed: root collar diameter, plant height, number of branches of the first row, first branch height, number of pods per plant, number of seeds per plant, 1000 seed weight, number of seeds per pod and seed weight per plant. To assess the quantitative impact of individual characteristics on the mass of seeds per plant multiple regression analysis was used. The results show that the number of seeds per plant, thousand seed weight and the number of seeds per pod determined the seed weight per plant hybrids F1 and F2 in both study years.


Keywords:

multiple regression, phenotypic traits, seed yield, spring oilseed rape

Bocianowski J. 2008. Comparison of two methods of estimation of nonallelic interaction of QTL effects on the basis of doubled haploid lines in barley. Agriculturae Conspectus Scientificus 73 (3): 183 — 187.
Google Scholar

Bocianowski J. 2012. Analytical and numerical comparisons of two methods of estimation of additive × additive interaction of QTL effects. Scientia Agricola 69 (4): 240 — 246.
Google Scholar

Bocianowski J., Krajewski P. 2000. Estymacja efektów genetycznych na podstawie fenotypu i genotypu markerowego. Colloquium Biometryczne 30: 270 — 280.
Google Scholar

Bocianowski J., Krajewski P. 2001. Numerical comparison of classical and marker-based methods of QTL effects estimation. In: Gallais A., Dillmann C., Goldringer I. (eds.). Quantitative genetics and breeding methods: the way ahead, Proceedings of the Eleventh Meeting of the EUCARPIA Section Biometrics in Plant Breeding. Institut National de la Recherche Agronomique, Paris, France, Les Colloques 96: 35 — 40.
Google Scholar

Bocianowski J., Krajewski P. 2003. Porównanie dwóch metod estymacji efektu addytywnego działania genów na podstawie linii podwojonych haploidów jęczmienia. Biul. IHAR 226/227: 41 — 47.
Google Scholar

Bocianowski J., Krajewski P. 2009. Comparison of the genetic additive effect estimators based on phenotypic observations and on molecular marker data. Euphytica 165: 113 — 122.
Google Scholar

Bocianowski J., Liersch A., Bartkowiak-Broda I. 2010. Zależność plonu nasion mieszańców F1 CMS ogura rzepaku ozimego (Brassica napus L.) od wybranych cech fenotypowych roślin oceniona przy zastosowaniu analizy regresji wielokrotnej. Rośliny Oleiste — Oilseed Crops XXXI (2): 373 — 389.
Google Scholar

Brzozowska I., Brzozowski J., Hruszka M. 2008. Plonowanie i struktura plonu pszenicy ozimej w zależności od sposobu pielęgnacji i nawożenia azotem. Acta Agrophysica 11 (3): 597 — 611.
Google Scholar

Degenhart D. F., Kondra Z. P. 1984. Relationships between seed yield and growth characters, yield components and seed quality of summer-type oilseed rape (Brassica napus L.). Euphytica 33 (3): 885 — 889.
Google Scholar

Dmowski Z., Dzieżyc H., Nowak L. 2008. Ocena wpływu wybranych parametrów opadu i gleby na plonowanie pszenicy jarej w rejonie południowo-zachodniej Polski. Acta Agrophysica 11 (3): 613 — 622.
Google Scholar

Dresler S., Bednarek W., Tkaczyk P. 2010. Plonowanie żyta ozimego w zależności od niektórych właściwości gleby i zabiegów agrotechnicznych. Acta Agrophysica 15 (1): 83 — 90.
Google Scholar

Fahrmeir L., Tutz G. 1994. Multivariate statistical modeling based on generalized linear models. Second Edition. Springer Verlag, New York: 515.
Google Scholar

GenStat. 2007. GenStat Release 10 Reference Manual. Lawes Agricultural Trust, Rothamsted, UK.
Google Scholar

Gołaszewski J., Idźkowska M., Milewska J. 1998. The TDP method of seed yield component analysis in grain legume breeding. Journal of Applied Genetics 39 (4): 299 — 308.
Google Scholar

Jammalamadaka S. R. 2003. Introduction to linear regression analysis. The American Statistician 57 (1): 67 — 67.
Google Scholar

Johnson R. A., Wichern D. W. 1998. Applied multivariate statistical analysis. Fourth Edition. Prentice-Hall, Upper Saddle River, New York: 769.
Google Scholar

Kadłubiec W., Kuriata R. 2004. Wielocechowa analiza kształtowania plonu ziarna linii wsobnych i mieszańców F1 kukurydzy. Biul. IHAR 231: 419 — 424.
Google Scholar

Kleinbaum D. G., Kupper L. L., Nizam A., Muller K. E. 2008. Applied regression analysis and other multivariable methods. Fourth Edition. Thompson Brooks/Cole. Belmont, USA, str. 928.
Google Scholar

Kozak M. 2007. Ontogenetic chain and the Markov condition in crop science. Nature and Science 5 (3): 5 — 8.
Google Scholar

Kozak M. 2011. Analiza związków przyczynowo-skutkowych w agronomii i hodowli roślin. Biul. IHAR 259: 3 — 21.
Google Scholar

Kozak M., Bocianowski J., Rybiński W. 2008. Selection of promising genotypes based on path and cluster analyses. Journal of Agricultural Science 146: 85 — 92.
Google Scholar

Kozak M., Mądry W. 2006. Note on yield component analysis. Cereal Research Communications 34 (2–3): 933 — 940.
Google Scholar

Kozdój J., Mańkowski D., Czembor H. J. 2009. Analiza plonu jęczmienia jarego (Hordeum vulgare L.) porażonego mączniakiem prawdziwym (Blumeria graminis f. sp. hordei). Komunikat. Biul. IHAR 254: 65 — 74.
Google Scholar

Kozdój J., Mańkowski D., Oleszczuk S. 2010. Analiza potencjału plonotwórczego linii podwojonych haploidów jęczmienia jarego (Hordeum vulgare L.) otrzymanych na drodze androgenezy. Biul. IHAR 256: 97 — 103.
Google Scholar

Krajewski P., Bocianowski J., Gawłowska M., Kaczmarek Z., Pniewski T., Święcicki W., Wolko B. 2012. QTL for yield components and protein content: a multienvironment study of two pea (Pisum sativum L.) populations. Euphytica 183: 323 — 336.
Google Scholar

Krajewski P., Bocianowski J., Kaczmarek Z. 2004. Ocena efektów nieallelicznej interakcji QTL metodę regresji wielokrotnej. W: Krajewski P., Zwierzykowski Z., Kachlicki P. (red.). Genetyka w ulepszaniu roślin użytkowych. Rozprawy i Monografie 11, Instytut Genetyki Roślin PAN w Poznaniu: 275 — 282.
Google Scholar

Marinković R., Marjanović-Jeromela A. 1996. Genotypic and phenotypic correlations of some characters of oilrape (Brassica napus L.). Proc. of the Eucarpia. Symposium on breeding of oil and protein crops: 127 — 130.
Google Scholar

Marinković R., Marjanović-Jeromela A., Crnobarac J., Lazarević J. 2003. Path-coefficient analysis of yield components of rapeseed (Brassica napus L.). Proceedings of the 11th International Rapeseed Congress, Copenhagen, Denmark: 988 — 991.
Google Scholar

Mądry W., Kozak M. 2000. Analiza ścieżek i sekwencyjna analiza plonu w badaniach zależności plonu od cech łanu. Cz. I. Opis metod. Roczniki Nauk Rolniczych. Seria A 115: 143 — 157.
Google Scholar

Menke K. H., Raab L., Salewski A., Steingass H., Fritz D., Schneider W. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agricultural Science 93: 217 — 222.
Google Scholar

Mousanejad S., Alizadeh A., Safaie N. 2009. Effect of weather factors on spore population dynamics of rice blast fungus in guilan province. Journal of Plant Protection Research 49 (3): 319 — 329.
Google Scholar

Ogrodowczyk M., Wawrzyniak M. 2004. Adoption and path- coefficient analysis for assessment of relationship and interrelationship of yield and yield parameters of winter oilseed rape. Rośliny Oleiste — Oilseed Crops 25 (2): 479 — 491.
Google Scholar

Oleksiak T. 2009. Plony pszenicy ozimej w zależności od jakości stosowanego materiału siewnego. Biul. IHAR 251: 83 — 93.
Google Scholar

Ozer H., Oral E., Dogru U. 1999. Relationship between yield and yield components on currently improved spring rapeseed cultivars. Turk. J. Agric. For. 23: 603 — 607.
Google Scholar

Piepho H. P. 1995. A simple procedure for yield component analysis. Euphytica 84: 43 — 48.
Google Scholar

Rawlings J. O., Pantula S. G., Dickey D. A. 2001. Applied regression analysis — a research tool. 2nd Edition. New York, USA: Springer Verlag Inc.
Google Scholar

Seber G. A. F., Lee A. J. 2003. Linear regression analysis, (2nd Ed.). Wiley-InterScience, New York: 557.
Google Scholar

Shapiro S. S., Wilk M. B. 1965. An analysis of variance test for normality (complete samples). Biometrika 52: 591 — 611.
Google Scholar

Singh M.P., Sharma S.C. 2008. Studies on bio-energetics of draught buffalo. Technical Sciences 11: 21 — 34.
Google Scholar

Szulc P., Bocianowski J. 2011 a. Hierarchy of mineral uptake in the creation of generative yield. Fresenius Environmental Bulletin 20 (8): 2135 — 2140.
Google Scholar

Szulc P., Bocianowski J. 2011 b. Variability and correlation of grain yield structure components of two different types of maize cultivars (Zea mays L.). Fresenius Environmental Bulletin 20 (10): 2684 — 2692.
Google Scholar

Szulc P., Bocianowski J., Rybus-Zając M. 2011. Correlation between traits and their influence on grain yield of „stay-green” maize hybrid (Zea mays L.). Fresenius Environmental Bulletin 20 (8): 2150 — 2155.
Google Scholar


Published
2012-06-28

Cited by

Bocianowski, J., Łuczkiewicz, T. and Szulc, P. (2012) “Effect of eight quantitative traits of spring rape (Brassica napus ssp. oleifera) on seed weight per plant”, Bulletin of Plant Breeding and Acclimatization Institute, (264), pp. 55–65. doi: 10.37317/biul-2012-0056.

Authors

Jan Bocianowski 
jan.bocianowski@up.poznan.pl
Katedra Metod Matematycznych i Statystycznych, Uniwersytet Przyrodniczy w Poznaniu Poland

Authors

Tadeusz Łuczkiewicz 

Katedra Genetyki i Hodowli Roślin, Uniwersytet Przyrodniczy w Poznaniu Poland

Authors

Piotr Szulc 

Katedra Agronomii, Uniwersytet Przyrodniczy w Poznaniu Poland

Statistics

Abstract views: 47
PDF downloads: 35


License

Copyright (c) 2012 Jan Bocianowski, Tadeusz Łuczkiewicz, Piotr Szulc

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.