Usefulness of statistical methods and measures for evaluating cultivar stability and adaptation: an overview of research
Wiesław Mądry
wieslaw_madry@sggw.ed.plKatedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie (Poland)
Marzena Iwańska
Katedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie (Poland)
Abstract
In the paper results of the newest studies on using statistical methods to analysis and interpretation of genotype x environment interaction (GEI) on the basis of multi-environment trials (MET) are presented. The methods presented here facilitate to evaluate stability and adaptability of tested cultivars for yield and other quantitative traits. Both univariate and multivariate methods are considered. The set of the discussed multivariate methods includes mostly those which are based on singular value decomposition of respective GE data matrix, e.g. the additive main effects and multiplicative interaction (AMMI) model-based analysis, the genotype main effects and genotype × environment interaction effects (GGE) model-based analysis as well as combined cluster and AMMI or GGE analyses called usually pattern analyses. Also, methods involving simple measures of cultivar stability and wide adaptability are overviewed. The all considered methods are addressed to plant breeders and cultivar evaluators who could and should use them in wider scale to improve reliability of testing new germplasm in order to implement effectively genetic gain to agricultural practice in Poland.
Supporting Agencies
Keywords:
AMMI analysis, cluster analysis, cultivar adaptation, GGE analysisReferences
Abidin P.E., Eeuwijk F.A., Stam P., Struik P.C., Malosetti M., Mwanga R.O.M., Odongo B., Hermann M., Carey E.E. 2005. Adaptation and stability analysis of sweet potato varieties for low-input systems in Uganda. Plant Breed. 124: 491 — 497.
Google Scholar
Adugna A.2008. Assessment of yield stability in sorghum using univariate and multivariate statistical approaches. Hereditas 145: 28 — 37.
Google Scholar
Adugna W., Labuschagne M.T. 2002. Genotype-environment interactions and phenotypic stability analyses of linseed in Ethiopia. Plant Breed. 121: 66 — 71.
Google Scholar
Adugna W., Labuschagne M.T. 2003. Parametric and nonparametric measures of phenotypic stability in linseed (Linum usitatissimum L.). Euphytica 129: 211 — 218.
Google Scholar
Akcura M., Kaya Y. 2008. Nonparametric stability methods for interpreting genotpe by environment interaction of bread wheat genotypes (Triticum aestivum L.). Gen. Mol. Biol. 31: 906 — 913.
Google Scholar
Albrizio R., Todorovic M., Matic T., Stellacc A.M. 2010. Comparing the interactive effects of water and nitrogen on durum wheat and barley grown in a Mediterranean environment. Field Crops Res. 115: 179 — 190.
Google Scholar
Allard R.W., Bradshaw A.D. 1964. Implications of genotype-environmental interactions in applied plant breeding. Crop Sci. 4: 503 — 508.
Google Scholar
Anbessa Y., Juskiw P., Good A., Nyachiro J., Helm J. 2010. Selection efficiency across environments in improvement of barley yield for moderately low nitrogen environments. Crop Sci. 50: 451 — 457.
Google Scholar
Annicchiarico P., Abdelguerfi A. Ben Younes M., Bouzerzour H., Carroni A.M., Pecetti L., Tibao G. 2008. Adaptation of sulla cultivars to contrasting Mediterranean environments. Austr. J. Agric. Res. 59: 702 — 706.
Google Scholar
Annicchiarico P. 1997. Joint regression vs AMMI analysis of genotype-environment interactions for cereals in Italy. Euphytica 94: 53 — 62.
Google Scholar
Annicchiarico P. 2002a. Defining adaptation strategies and yield stability targets in breeding programmes. In: Kang M.S. (Ed.) Quantitative genetics, genomics and plant breed. CABI, Wallingford, UK.: 165 — 183.
Google Scholar
Annicchiarico P. 2002 b. Genotype-environment interactions: challenges and opportunities for plant breeding and cultivar recommendations. FAO Plant Production and Protection Paper No. 174. Food and Agriculture Organization, Rome.
Google Scholar
Annicchiarico P., Bellah F., Chiari T. 2005. Defining subregions and estimating benefits for a specific-adaptation strategy by breeding programs: A case study. Crop Sci. 45: 1741 — 749.
Google Scholar
Annicchiarico P., Chiapparino E., Perenzin M. 2010. Response of common wheat varieties to organic and conventional production systems across Italian locations, and implications for selection. Field Crops Res. 116: 230 — 238.
Google Scholar
Annicchiarico P., Bellah F., Chiari T. 2006. Repeatable genotype×location interaction and its exploitation by conventional and GIS-based cultivar recommendation for durum wheat in Algeria. Europ. J. Agron. 24: 70 — 81.
Google Scholar
Annicchiarico P., Iannucci A. 2008. Adaptation strategy, germplasm type and adaptive traits for field pea improvement in Italy based on variety responses across climatically contrasting environments. Field Crops Res. 108: 133 — 142.
Google Scholar
Annicchiarico P., Mariani G. 1996. Prediction of adaptability and yield stability of durum wheat genotypes from yield response in normal and artificially drought-stressed conditions. Field Crops Res. 46: 71 — 80.
Google Scholar
Annicchiarico P., Perenzin M. 1994. Adaptation patterns and definition of macro-environments for selection and recommendation of common-wheat genotypes in Italy. Plant Breed. 113: 197 — 205.
Google Scholar
Atlin G.N., Baker R.J., McRae K.B., Lu X. 2000 b. Selection response in subdivided target regions. Crop Sci. 40: 7 — 13.
Google Scholar
Atlin G.N., McRae K.B., Lu X. 2000a. Genotype region interaction for two-row barley yield in Canada. Crop Sci. 40: 1 — 6.
Google Scholar
Basford K.E., Cooper M. 1998. Genotype×environment interactions and some considerations of their implications for wheat breeding in Australia. Austr. J. Agric. Res. 49: 153 — 174.
Google Scholar
Barah B.C., Binswanger H.P., Rana B.S., Rao N.G.P. 1981. The use of risk aversion in plant breeding; concept and application. Euphytica 30: 451 — 458.
Google Scholar
Baxevanos D., Goulas C., Tzortzios S., Mavromatis A. 2008. Interrelationship among and repeatability of seven stability indices estimated from commercial cotton (Gossypium hirsutum L.) variety evaluation trials in three Mediterranean countries. Euphytica 161: 371 — 382.
Google Scholar
Becker H.C. 1981. Correlations among some statistical measures of phenotypic stability. Euphytica 30: 835 — 840.
Google Scholar
Becker H.C., Leon J. 1988. Stability analysis in plant breeding. Plant Breed. 101: 1 — 23.
Google Scholar
Bilbro J.D., Ray L.L. 1976. Environmental stability and adaptation of several cotton cultivars. Crop Sci. 16: 821 — 824.
Google Scholar
Blanche S.B., Myers G.O., Kang M.S. 2007. GGE biplots and traditional stability measures for interpreting genotype by environment interactions. J. Crop Improv. 20: 123 — 135.
Google Scholar
Blanche S.B., Utomo H.S., Wenefrida I., Myers G.O. 2009. Genotype x environment interactions of hybrid and varietal rice cultivars for grain yield and milling quality. Crop Sci. 49: 2011 — 2018.
Google Scholar
Blum A. 1980. Genetic improvement of drought adaptation. In: Adaptation of plants to water and high temperature stress. (Eds.): N.C. Turner, Kramer P.J. John Wiley and Sons, New York: 450 — 452.
Google Scholar
Braun H.J., Rajaram S., van Ginkel M. 1996. CIMMYT's approach to breeding for wide adaptation. Euphytica 92: 175 — 183.
Google Scholar
Braun H.J., Ekiz H,, Eser V., Keser M., 1998. Breeding priorities of winter wheat programs. In: Braun HJ, Altay F, Kronstad WE, Beniwal SPS, McNab A et al (eds) Wheat: prospects for global improvement. Kluwer, Dordrecht: 553 — 560.
Google Scholar
Brennan P.S., Byth D.E. 1979. Genotype × environmental interactions for wheat yields and selection for widely adapted wheat genotypes. Austr. J. Agr. Res. 30: 221 — 232.
Google Scholar
Burgueno J., Crossa J., Cornelius P.L., Yang R.C. 2008. Using factor analytic models for joining environments and genotypes without crossover genotype × environment interaction. Crop Sci. 48:1291 — 1305.
Google Scholar
Caliński T., Czajka S., Kaczmarek Z. 1980. Analiza jednorocznej serii ortogonalnej doświadczeń odmianowych ze szczególnym uwzględnieniem interakcji odmianowo-środowiskowej. 1. Analiza ogólna. Biul. Oceny Odmian 12: 67 — 81.
Google Scholar
Caliński T., Czajka S., Kaczmarek Z. 1983. Analiza jednorocznej serii ortogonalnej doświadczeń odmianowych ze szczególnym uwzględnieniem interakcji odmianowo-środowiskowej. 2. Analiza szczegółowa. Biul. Oceny Odmian 15: 39 — 60.
Google Scholar
Caliński T., Czajka S., Kaczmarek Z., Krajewski P., Siatkowski I. 1995. SERGEN — a computer program for the analysis of series of variety trials. Biul. Oceny Odmian 26–27: 39 — 41.
Google Scholar
Carena M.J., Yang J., Caffarel J.C., Mergoum M., Hallauer A.R. 2009. Do different production environments justify separate maize breeding programs? Euphytica 169: 141 — 150.
Google Scholar
Casanoves F., Baldessari J., Balzarini M. 2005. Evaluation of multi-environment trials of peanut cultivars. Crop Sci. 45: 18 — 26.
Google Scholar
Cassida K.A., Muir J.P., Hussey M.A., Read J.C., Venuto B.C., Ocumpaugh W.R. 2005. Biofuel component concentrations and yields of switchgrass in South Central U.S. environments. Crop Sci. 40: 692.
Google Scholar
Ceccarelli S. 1989. Wide adaptation: How wide? Euphytica 40: 197 — 205.
Google Scholar
Ceccarelli S., Grando S. 2007. Decentralized participatory plant breeding: an example of demand driven research. Euphytica 155: 349 — 360.
Google Scholar
Chapman S.C., Cooper M., Butler D.G., Henzell R.G. 2000. Genotype by environment interactions affecting grain sorghum. I. Characteristics that confound interpretation of hybrid yield. Austr. J. Agric. Res. 51: 197 — 207.
Google Scholar
Chapman S.C., de la Vega A.J. 2002. Spatial and seasonal effects confounding interpretation of sunflower yields in Argentina. Field Crops Res. 73: 107 — 120.
Google Scholar
Chloupek O., Hrstkova P. 2005. Adaptation of crops to environment. Theor. Appl. Gen. 111: 1316 — 1321.
Google Scholar
Cochran W.G., Cox G.M. 1957. Experimental designs. 2nd ed. John Wiley & Sons, Inc., London.
Google Scholar
Cooper M. 1999. Concepts and strategies for plant adaptation research in rainfed lowland rice. Field Crops Res. 64: 13 — 34.
Google Scholar
Cooper M., Byth D.E. 1996. Understanding plant adaptation to achieve systematic applied crop improvement — a fundamental challenge. In: Cooper M., Hammer G.L. (Eds.), Plant Adaptation, Crop Improvement. CAB International/International Rice Research Institute (IRRI)/International Crops Research Institute for Semi Arid Tropics (CRISAT), Wallingford, UK/Los Banos, Laguna, Philippines/Hyderabad, India: 5 — 24.
Google Scholar
Cooper M., DeLacy I.H. 1994. Relationships among analytical methods used to study genotypic variation and genotype.byenvironment interaction in plant breeding multi-environment experiments. Theor. Appl. Genet. 88: 561 — 572.
Google Scholar
Cooper M., DeLacy I.H., Basford K. E. 1996. Relationships among analytical methods used to analyze genotypic adaptation in multi-environment trials. In: Plant Adaptation and Crop Improvement (Eds Cooper M., Hammer G. L.), CAB International, Wallingford, UK: 191 — 224.
Google Scholar
Crossa J. 1990. Statistical analyses of multilocation trials. Adv. Agron. 44: 55 — 85.
Google Scholar
Dehghani H. 2008. Estimating yield stability by nonparametric stability analysis in maize (Zea mays L.). Plant Breed. Seed Sci. 58: 61 — 77.
Google Scholar
de la Vega A.J., Chapman S.C., Hall A.J. 2001. Genotype by environment interaction and indirect selection for yield in sunflower. I. Two-mode pattern analysis of oil and biomass yield across environments in Argentina. Field Crop Res. 72: 17— 38.
Google Scholar
de la Vega A.J., Chapman S.C. 2010. Mega-environment differences affecting genetic progress for yield and relative value of component traits. Crop Sci. 50: 574 — 583.
Google Scholar
de la Vega A.J., Chapman S.C. 2006. Defining sunflower selection strategies for a highly heterogeneous target population of environments. Crop Sci. 46: 136 — 144.
Google Scholar
Dopierała P., Bujak H., Kaczmarek J., Dopierała A. 2003. Ocena interakcji genotypowo-środowiskowej plonu populacyjnych i mieszańcowych odmian żyta ozimego. Biul. IHAR 230: 243 — 254.
Google Scholar
Dreccer M.F., BorgognoneM.G., OgbonnayaF.C., Trethowan R.M., Winter B. 2007. CIMMYT-selected derived synthetic bread wheats for rainfed environments: Yield evaluation in Mexico and Australia. Field Crops Res. 100: 218 — 228.
Google Scholar
Drzazga T., Paderewski J., Mądry W., Kajewski P. 2009. Ocena rodzajów reakcji plonowania odmian pszenicy ozimej w doświadczeniach PDO na przestrzennie zmienne warunki przyrodnicze w kraju. Biul. IHAR 253:71 — 82
Google Scholar
Duarte J.B., Zimmermann M.J. 1995. Correlation among yield stability parameters in common bean. Crop Sci. 35: 905 — 912.
Google Scholar
Eberhard S.A., Russell W.A. 1966. Stability parameters for comparing varieties. Crop Sci. 6: 36 — 40.
Google Scholar
Ebdon J.S., Gauch H.G. 2002b. Additive main effect and multiplicative interaction analysis of national turfgrass performance trials: II. Cultivar recommendations. Crop Sci. 42: 497 — 506.
Google Scholar
Elandt R. 1964. Statystyka matematyczna w zastosowaniu do doświadczalnictwa rolniczego. PWN, Warszawa.
Google Scholar
Epinat-Le Signor C., Dousse S., Lorgeou J., Denis J.B., Bonhomme R., Carolo P., Charcosset A. 2001. Interpretation of genotype × environment interactions for early maize hybrids over 12 years. Crop Sci. 41: 663 — 669.
Google Scholar
Eskridge K.M. 1990. Selection of stable cultivars using a safety-first rule. Crop Sci. 30: 369 — 374.
Google Scholar
Eskridge K.M., Byrne P.F., Crossa J. 1991. Selection of stable varieties by minimizing the probability of disaster. Field Crops Res. 27: 169 — 181.
Google Scholar
Eskridge K.M. Johnson B.E. 1991. Expected utility maximization and selection of stable plant cultivars. Theor. Appl. Genet. 81:825 — 832.
Google Scholar
Eskridge K.M., Mumm R.F. 1992. Choosing plant cultivars based on the probability of outperforming a check. Theor. Appl. Genet. 84:494 — 500.
Google Scholar
Eskridge K.M., Smith O.S., Byrne P.F. 1993. Comparing test cultivars using reliability functions of test-check differences from on-farm trials. Theor. Appl. Genet. 87: 60 — 64.
Google Scholar
Fan X.M., Kang M.S., Chen H., Zhang Y., Tan J., Xu C. 2007. Yield stability of maize hybrids evaluated in multi-environment trials in Yunnan, China. Agron. J. 99: 220 — 228.
Google Scholar
Finlay K.W., Wilkinson G.N. 1963. The analysis of adaptation in a plant breeding programme. Austr. J. Agric. Res. 14: 742 — 754.
Google Scholar
Flores F., Moreno M.T., Cubero J.I. 1998. A comparison of univariate and multivariate methods to analyze G×E interaction. Field Crops Res. 56: 271 — 286.
Google Scholar
Fox P.N., Skovmand B., Thompson B.K., Braun H.J., Cormier R. 1990. Yield and adaptation of hexaploid spring triticale. Euphytica 47: 57 — 64.
Google Scholar
Fufa H., Stephen Baenziger P., Beecher B.S., Graybosch R.A., Eskridge K.M., Nelson L.A. 2005. Genotypic improvement trends in agronomic performances and end-use quality characteristics among hard red winter wheat cultivars in Nebraska. Euphytica 144: 187 — 198.
Google Scholar
Ghaderi A., Adams M.W., Saettler A.W. 1982. Environmental response patterns in commercial classes of common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 63:17 — 22.
Google Scholar
Gauch H.G. 1992. Statistical analysis of regional yield trials. AMMI analysis of factorial designs. Elsevier Science, New York.
Google Scholar
Gauch H.G. 2006. Statistical analysis of yield trials by AMMI and GGE. Crop Sci. 46: 1488 — 1500.
Google Scholar
Gauch H.G., Piepho H.P., Annicchiarico P. 2008. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Sci. 48: 866 — 889.
Google Scholar
Gauch H.G., Zobel R.W. 1997. Identifying mega-environments and targeting genotypes. Crop Sci. 37: 311 — 326
Google Scholar
Gomez-Becerra H., Morgounov A., Abugalieva A. 2007. Evaluation of yield grain stability, reliability and cultivar recommendation in spring wheat (Triticum aestivum L.) from Kazakhstan and Siberia. J. Cent. Eur. Agric. 7: 649 — 660.
Google Scholar
Gomez — Becerra H.F., Yazici A., Ozturk L., Budak H., Peleg Z., Morgounov A., Fahima T., Saranga Y., Cakmak I. 2010. Genetic variation and environmental stability of grain mineral nutrient concentrations in Triticum dicoccoides under five environments. Euphytica 171: 39 — 52.
Google Scholar
Grausgruber H., Oberforster M., Werteker M., Ruckenbauer P., Vollmann J. 2000. Stability of quality traits in Austrian-grown winter wheats. Field Crops Res. 66:257 — 267.
Google Scholar
Haussmann B.I.G., Obilana A.B., Ayiecho P.O., Blum A., Schipprack W., Geiger H.H. 2000. Yield and yield stability of four population types of grain sorghum in a semi-arid area of Kenya. Crop Sci. 40: 319 — 329.
Google Scholar
Helms T.C. 1993. Selection for yield and stability among oat lines. Crop Sci. 33: 423 — 426.
Google Scholar
Hernandez-Segundo E., Capettini F., Trethowan R., van Ginkel M., Mejia A., Carballo A., Crossa J., Vargas M., Balbuena-Melgarejo A. 2009. Mega-environment identification for barley based on twenty-seven years of global grain yield data. Crop Sci. 49: 1705 — 1718.
Google Scholar
Herring M.R., O'Brien L. 2000. A regional adaptation analysis of oats in New South Wales and southern Queensland for grain yield and dry matter production. Austr. J. Agric. Res. 51: 961 — 970.
Google Scholar
Hill J., Becker H.C., Tigerstedt P.M. 1997. Quantitative and ecological aspects of plant breeding. Chapman and Hall, London.
Google Scholar
Howe T.G., Brunner A.M. 2005. An evolving approach to understanding plant adaptation. New Phytol. 167: 1 — 5.
Google Scholar
Hühn M. 1990 a. Nonparametric measures of phenotypic stability: Part 1. Theory. Euphytica 47: 189 — 194.
Google Scholar
Hühn M. 1990 b. Nonparametric measures of phenotypic stability: Part 2. Applications. Euphytica 47: 195 — 201.
Google Scholar
Hühn M. 1996. Nonparametric analysis of genotype × environment interactions by ranks. In: Genotype by environment interaction. (Eds.): M.S. Kang, Gauch H.G. CRC Press, Boca Raton, FL, USA: 213 — 228.
Google Scholar
Hussein M.A., Bjørnstad A., Aastveit A.H. 2000. SASG X ESTAB: A SAS program for computing genotype × environment stability statistics. Agron. J. 92: 454 — 459.
Google Scholar
Iwańska M., Mądry W., Drzazga T., Rajfura A. 2008. Zastosowanie miar statystycznych do oceny stopnia szerokiej adaptacji odmian pszenicy ozimej na podstawie serii doświadczeń przedrejestrowych. Biul. IHAR 250: 67 — 86.
Google Scholar
Iwańska M. 2010. Przydatność różnych miar statystycznych do oceny stopnia szerokiej adaptacji odmian pszenicy ozimej. Praca doktorska, Wydział Rolnictwa i Biologii, SGGW, Warszawa.
Google Scholar
Jalaluddin M.D., Harrison S.A. 1993. Repeatability of stability statistics for grain yield in wheat. Crop Sci. 33: 720 — 725.
Google Scholar
Jarvie J.A., Shanahan P.E. 2009. Assessing tolerance to soybean rust in selected genotypes. Field Crops Res. 114: 419 — 425.
Google Scholar
Joshi A.K., Ortiz-Ferrara G., Crossa J., Singh G., Alvarado G., Bhatta M.R., Duveiller E., Sharma R.C., Pandit D.B., Siddique A.B., Das S.Y., Sharma R.N., Chand R. 2007a. Associations of environments in South Asia based on spot blotch disease of wheat caused by Cochliobolus sativus. Crop Sci. 47: 1071 — 1081.
Google Scholar
Joshi K.D., Musa A.M., Johansen C., Gyawali S., Harris D., Witcombe J.R. 2007b. Highly client-oriented breeding, using local preferences and selection, produces widely adapted rice varieties. Field Crops Res. 100: 107 — 116.
Google Scholar
Kaczmarek Z. Adamski T., Surma M. 1997. The influence of cytoplasmatic effects on yielding and stability of barley DH lines. W: Krajewski P., Kaczmarek Z (Ed), Advances in Biometrical Genetics, Poznań: 159 — 163.
Google Scholar
Kang M.S. 1988. A rank-sum method for selecting high yielding stable corn genotypes. Cereal Res. Comm. 16:113 — 115.
Google Scholar
Kang M.S. 1993. Simultaneous selection for yield and stability in crop performance trials: Consequences for growers. Agron. J. 85: 754 — 757.
Google Scholar
Kang M.S. 1998. Using genotype-by environment interaction for crop cultivar development. Adv. Agron. 62: 199 — 253.
Google Scholar
Kang M.S., Aggarwal V.D., Chirwa R.M. 2006. Adaptability and stability of bean cultivars as determined via yield-stability statistic and GGE biplot analysis. J. Crop Improvement 15: 97 — 120.
Google Scholar
Kang M.S., Magari R. 1995. Stable: a basic program for calculating stability and yield-stability statistics. Agron. J. 87: 276 — 277.
Google Scholar
Kang M.S., Pham H.N. 1991. Simultaneous selection for high and stable crop genotypes. Agron. J. 83: 161—165.
Google Scholar
Kataoka S. 1963. A stochastic programming model. Econometrika 31:181 — 196.
Google Scholar
Kaut A.H.E.E., Mason H.E., Navabi A., O'Donovan J. T., Spaner D. 2009. Performance and stability of performance of spring wheat variety mixtures in organic and conventional management systems in western Canada. J. Agric. Sci. 147: 141 —153.
Google Scholar
Kaya Y., Akcura M., Ayranci R., Taner S. 2006. Pattern analysis of multi-environment trials in bread wheat. Commun. Biometry Crop Sci. 1: 63 —71.
Google Scholar
Léon J., Becker H. C. 1988. Repeatability of some statistical measures of phenotypic stability — Correlations between single year results and multi years results. Plant Breed. 100: 137 — 142.
Google Scholar
Li W., Yan Z.H., Wei Y.M., Lan X.J., Zheng Y.L. 2006. Evaluation of genotype × environment interactions in Chenese spring wheat by the AMMI model, correlation and path analysis. J. Agron. Crop Sci. 192: 221 — 227.
Google Scholar
Lillemo M., van Ginkel M., Trethowan R. M., Hernandez E., Crossa J. 2005. Differential adaptation of CIMMYT bread wheat to global high temperature environments. Crop Sci. 45: 2443 — 2453.
Google Scholar
Lillemo M., Singh R.P., van Ginkel M. 2010. Identification of stable resistance to powdery mildew in wheat based on parametric and nonparametric methods. Crop Sci. 50: 478 — 485.
Google Scholar
Lin C.S., Binns M.R. 1988. A superiority measure of cultivar performance for cultivar × location data. Can. J. Plant Sci. 68: 193 — 198.
Google Scholar
Lin C.S., Binns M. R., Lefkovitch L. P. 1986. Stability analysis: where do we stand? Crop Sci. 26: 894 — 900.
Google Scholar
Link W., Schill B., von Kittlitz E. 1996. Breeding for wide adaptation in faba bean. Euphytica 92: 185 — 190.
Google Scholar
Luquez J. E., Aguirreza L. A. N., Aguero M. E., Pereyra V. R. 2002. Stability and adaptability of cultivars in non-balanced yield trials: Comparison of methods for selecting ‘high oleic’ sunflower hybrids for grain yield and quality. J. Agron. Crop Sci. 188: 225 — 234.
Google Scholar
Mądry W. 2002. Skuteczność kryterium YS Kanga, opartego na średniej i stabilności plonu w wyborze genotypów zbóż o szerokiej adaptacji w rejonie uprawnym. Roczn. Nauk Roln. Seria A. 116: 11 — 24.
Google Scholar
Mądry W. 2003. Analiza statystyczna miar stabilności na podstawie danych w klasyfikacji genotypy × środowiska. Cęść II. Model mieszany Shukli i model regresji łącznej. Coll. Biom. 33: 207 — 220.
Google Scholar
Mądry W., Rajfura A. 2003. Analiza statystyczna miar stabilności na podstawie danych w klasyfikacji genotypy x środowiska. Część I. Model mieszany Scheffego-Calińskiego i model regresji łącznej. Coll. Biom. 33: 181 — 206.
Google Scholar
Mądry W., Talbot M., Ukalski K., Drzazga T., Iwańska M. 2006. Podstawy teoretyczne znaczenia efektów genotypowych i interakcyjnych w hodowli roślin na przykładzie pszenicy ozimej. Biul. IHAR 240/241: 13 — 31.
Google Scholar
Mekbib F. 2002. Simultaneous selection for high yield and stability in common bean (Phaseolus vulgaris L.) genotypes. J. Agric. Sci. 138: 249 — 253.
Google Scholar
Mekbib F. 2003. Yield stability in common bean (Phaseolus vulgaris L.) genotypes. Euphytica 130: 147 — 153.
Google Scholar
Moghaddam M.J., Pourdad S.S. 2009. Comparison of parametric and non-parametric methods for analysing genotype x environment interactions in safflower (Carthamus tinctorius L.). J. Agric. Sci. 147: 601 — 612.
Google Scholar
Mohammadi R., Amri A. 2008. Comparison of parametric and nonparametric methods for selecting stable and adapted durum wheat genotypes in variable environments. Euphytica 159: 419 — 432.
Google Scholar
Mohammadi R., Amri A. 2009. Analysis of genotype x environment interactions for grain yield in durum wheat. Crop Sci. 49: 1177 — 1186.
Google Scholar
Mohammadi R., Pourdad S.S., Amri A. 2008. Grain yield stability of spring safflower (Carthamus tinctorius L.). Austr. J. Agric. Res. 59: 546 — 553.
Google Scholar
Mohammadi R., Haghparast R., Amri A. Ceccarelli S. 2010. Yield stability of rainfed durum wheat and GGE biplot analysis of multi-environment trials. Crop Pasture Sci. 61: 92 — 101.
Google Scholar
Mohebodini M., Dehghani H., Sabaghpour S.H. 2006. Stability of performance in lentil (Lens culinaris Medik) genotypes in Iran. Euphytica 149: 343 — 352.
Google Scholar
Möhring J., Piepho H. P. 2009. Comparison of weighting in two-stage analysis of plant breeding trials. Crop Sci. 49: 1977 — 1988.
Google Scholar
Mulema J.M.K, Olanya O.M., Adipala E., Wagoire W. 2004. Stability of late blight resistance in population B potato clones. Potato Research 47: 11 — 24.
Google Scholar
Murphy K.M., Campbell K.G., Lyon S.R., Jones S.S. 2007. Evidence of varietal adaptation to organic farming systems. Field Crops Res. 102: 172 — 177.
Google Scholar
Murphy S.E., Lee E.A., Woodrow L., Seguin P., Kumar J., Rajcan I., Ablett G.R. 2009. Genotype × environment interaction and stability for isoflavone content in soybean. Crop Sci. 49: 1313 — 1321.
Google Scholar
Navabi A., Yang R-C., Helm J., Spaner D.M. 2006. Can spring wheat-growing mega-environments in the Northern Great Plains be dissected for representative locations or niche-adapted genotypes? Crop Sci. 46: 1107 — 1116.
Google Scholar
Paderewski J. 2008. Przydatność modelu AMMI do badania reakcji roślin rolniczych na warunki środowiskowe. Praca doktorska, Wydział Rolnictwa i Biologii, SGGW, Warszawa.
Google Scholar
Paderewski J., Mądry W., Pilarczyk W., Drzazga T. 2008. Retrospektywne badanie reakcji plonu odmian pszenicy ozimej na warunki środowiskowe w miejscowościach za pomocą łącznej analizy AMMI i skupień: ocena postępu genetycznego w plonowaniu. Biul. IHAR 250: 87 — 106.
Google Scholar
Paderewski J., Gauch H.G., Mądry W., Drzazga T., Rodrigues P.C. 2011.Yield response of winter wheat to agro.ecological conditions using Additive Main Effects and Multiplicative Interaction and cluster analysis. Crop Sci. 51: 969 — 980.
Google Scholar
Pham H.N., Kang M.S. 1988. Interrelationships among repeatability of several stability statistics estimated from international maize trials. Crop Sci. 28: 925 — 928.
Google Scholar
Piepho H.P. 1995. Assessing cultivar adaptability by multiple comparison with the best. Agron. J. 87: 1225 — 1227.
Google Scholar
Piepho H.P. 1998. Methods for comparing the yield stability of cropping systems- A review. J. Agron. Crop Sci. 180: 193 — 213.
Google Scholar
Piepho H.P. 1999. Stability analysis using the SAS system. Agron. J. 91: 154 — 160.
Google Scholar
Pritts M., Luby J. 1990. Stability indices for horticultural crops. HortScience 25:740 — 745.
Google Scholar
Przystalski M., Osman A., Thiemt E.M., Rolland B., Ericson L., Østergård H., Levy L., Wolfe M., Büchse A., Piepho H.P., Krajewski P. 2008. Comparing the performance of cereal varieties in organic and non-organic cropping systems in different European countries. Euphytica 163: 417 — 433.
Google Scholar
Rajfura A., Mądry W., 2001. Metoda wyboru genotypów o szerokiej adaptacji wykorzystująca zarówno ich średnie w rejonie jak i stabilność plonowania. Coll. Biom.: 169 — 182.
Google Scholar
Robert N. 2002. Comparison of stability statistics for yield and quality traits in bread wheat. Euphytica 128: 333 — 341.
Google Scholar
Robinson J., Jalli M. 1999. Sensitivity of resistance to net blotch in barley. J. Phytopathol. 147: 235 — 241.
Google Scholar
Rodriguez M., Rau D., Papa R., Attene G. 2008. Genotype by environment interactions in barley (Hordeum vulgare L.): different responses of landraces, recombinant inbred lines and varieties to Mediterranean environment. Euphytica 163: 231 — 247.
Google Scholar
Romay M. C., Malvar R.A., Campo L., Alvarez A., Moreno-González J., Ordás A.,Pedro R. 2010. Climatic and genotypic effects for grain yield in maize under stress conditions. Crop Sci. 50:51 — 58.
Google Scholar
Roozeboom K.L., Schapaugh W.T., Tuinstra M.R., Vanderlip R.L., Milliken G.A. 2008. Testing wheat in variable environments: genotype, environment, interaction effects, and grouping test locations. Crop Sci. 48: 317 — 330.
Google Scholar
Rose L.W., Das M.K., Taliaferro C.M. 2008. A comparison of dry matter yield stability assessment methods for small numbers of genotypes of bermudagrass. Euphytica 164: 19 — 25.
Google Scholar
Sabaghnia N., Dehghani H., Sabaghpour S.H. 2006. Nonparametric methods for interpreting genotype x environment interaction of lentil genotypes. Crop Sci. 46: 1100 — 1106.
Google Scholar
Sabaghnia N., Sabaghpour S.H., Dehghani H. 2008. The use of an AMMI model and its parameters to analyse yield stability in multi-environment trials. J. Agric. Sci. 146: 571 — 581.
Google Scholar
Samonte S.O., Wilson L.T., McClung A.M., Medley J.C. 2005. Targeting cultivars onto rice growing environments using AMMI and SREG GGE biplot analyses. Crop Sci. 45: 2414 — 2424.
Google Scholar
Scapim C.A., Oliveira V.R., Braccinil A.L., Cruz C.D., Andrade C.A.B., Vidigal M.C.G. 2000. Yield stability in maize (Zea mays L.) and correlations among the parameters of the Eberhart and Russell, Lin and Binns and Huehn models. Gen. Mol. Biol. 23: 387 — 393.
Google Scholar
Scapim C.A., Pacheco C.A., Amaral A.T., Vieira R.A., Pinto R.J., Conrado T.V. 2010. Correlations between the stability and adaptability statistics of popcorn cultivars. Euphytica (w druku) .
Google Scholar
Segherloo A.E., Sabaghpour S.H., Dehghani H., Kamrani M. 2008. Nonparametric measures of phenotypic stability in chickpea genotypes (Cicer arietinum L.). Euphytica 162: 221 — 229.
Google Scholar
Shah S.H., Shah S.M., Khan M.I., Ahmed M., Hussain I., Eskridge K.M. 2009. Nonparametric methods in combined heteroscedastic experiments for assessing stability of wheat genotypes in Pakistan. Pak. J. Bot. 41: 711 — 730.
Google Scholar
Sharma R.C., Ortiz-Ferrara G., Crossa J., Bhatta M.R., Sufian M.A., Shoran J., Joshi A.K., Chand R. Singh G., Ortiz R. 2007. Wheat grain yield and stability assessed through regional trials in the Eastern Gangetic Plains of South Asia. Euphytica 157: 457 — 464.
Google Scholar
Sharma R.C., Morgounov A.I., Braun H.J., Akin B., Keser M., Bedoshvili D., Bagci A., Martius C. van Ginkel M. 2010. Identifying high yielding stable winter wheat genotypes for irrigated environments in Central and West Asia. Euphytica 171: 53 — 64.
Google Scholar
Shukla G.K. 1972. Some aspects of partitioning genotype. environmental components of variability. Heredity 28:237 — 245.
Google Scholar
Silva W.C., Duarte J.B. 2006. Statistical methods to study phenotypic adaptability and stability in soybean (praca w języku portugalskim). Pesq. agropec. bras. Brasilia 41:23 30 http://www.scielo.br/pdf/pab/v41n1/28136.pdf.
Google Scholar
Singh R.P., Huerta-Espino J., Sharma R., Joshi A.K.,·Trethowan R. 2007. High yielding spring bread wheat germplasm for global irrigated and rainfed production systems. Euphytica 157: 351 — 363.
Google Scholar
Sivapalan S., O’Brien L., Ortiz-Ferrera G., Hollamby G.J., Barclay I., Martin P.J. 2000. An adaptation analysis of Australian and CIMMYT/ICARDA wheat germplasm in Australian production environments. Austr. J. Agric. Res. 51: 903 — 915.
Google Scholar
Sivapalan S., O’Brien L., Ortiz-Ferrera G., Hollamby G.J., Barclay I., Martin P.J. 2003. A comparative study for yield performance and adaptation of some Australian and CIMMYT/ICARDA wheat genotypes grown at selected locations in Australia and WANA region. Austr. J. Agric. Res. 54: 91 — 100.
Google Scholar
Smith A.B., Cullis B.R., Thompson R. 2005. The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches. J. Agr. Sci. Cam. 143: 449 — 462.
Google Scholar
Solomon K.F., Smit H.A., Malan E., Du Toit W.J. 2007. Comparison study using rank based nonparametric stability statistics of durum wheat. World J. Agric. Sci. 3: 444 — 450.
Google Scholar
Stefanova K.T., Buirchell B. 2010. Multiplicative mixed models for genetic gain assessment in lupin breeding. Crop Sci. 50: 880 — 891.
Google Scholar
St-Pierre C.A., Klinck H.R., Gauthier F.M. 1967. Early generation selection under different environments as it influences adaptation of barley. Can. J. Oplant Sci. 47: 507 — 517.
Google Scholar
Tollenaar M., Lee E.A. 2002. Yield potential, yield stability and stress tolerance in maize
Google Scholar
Field Crops Res.75: 161 — 169.
Google Scholar
Trethowan R.M., van Ginkel M., Rajaram S. 2002. Progress in breeding wheat for yield and adaptation in global drought affected environments. Crop Sci. 42: 1441 — 1446.
Google Scholar
Ulukan H. 2008. Agronomic adaptation of some field crops: a general approach. J. Agronomy & Crop Sci. 194: 169 — 179.
Google Scholar
Waldron B.L., Asay K.H., Jensen K.B. 2002. Stability and yield of cool — season pasture grass species grown at five irrigation levels. Crop Sci. 42: 890 — 896.
Google Scholar
Wamatu J.N., Thomas E. 2002. The influence of genotype x environment interaction on the grain yields of 10 pigeonpea cultivars grown in Kenya. J. Agron. Crop Sci. 188: 25 — 33.
Google Scholar
Weber R., Zalewski D. 2006. Wpływ interakcji genotypowo-środowiskowej na plonowanie pszenicy ozimej. Biul. IHAR 240/241: 33 — 42.
Google Scholar
Williams R.M., O'Brien L., Eagles H.A., Solah V.A., Jayasena V. 2008. The influences of genotype, environment, and genotype × environment interaction on wheat quality. Aust. J. Agric. Res. 95: 95 — 111.
Google Scholar
Wójcik A.R. 1987. Statystyka matematyczna z elementami rachunku prawdopodobieństwa i statystyki opisowej. Wydawnictwo SGGW-AR, Warszawa.
Google Scholar
Wricke G. 1965. Zur Berechnung der Ökovalenz bei Sommerweizen und Hafer. Pflanzenzuchtung 52: 127 — 138.
Google Scholar
Yang R.C. 2007. Mixed model analysis of crossover genotype x environment interactions. Crop Sci. 47: 1051 — 1062.
Google Scholar
Yan W., Hunt L.A., Sheng Q., Szlavnics Z. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 40: 597 — 605.
Google Scholar
Yan W., Kang M.S. 2003. GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. Boca Raton, FL, CRC Press.
Google Scholar
Yan W., Rajcan I. 2003. Prediction of cultivar performance based on single- versus multiple-year tests in soybean. Crop Sci. 43: 549 —555.
Google Scholar
Yan W., Tinker N.A. 2005. An integrated system of biplot analysis for displaying, interpreting, and exploring genotype-by-environment interactions. Crop Sci. 45: 1004 — 1016.
Google Scholar
Yan W., Kang M.S., Ma B., Woods S., Cornelius P.L. 2007. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 47: 643 — 655.
Google Scholar
Yau S.K., Hamblin J. 1994. Relative yield as a measure of entry performance in variable environments. Crop. Sci. 34: 813 — 817.
Google Scholar
Yue G.L., Roozeboom K.L., Schapaugh W.T., Liang G.H. 1997. Evaluation of soybean cultivars using parametric and nonparametric stability estimates. Plant Breed. 116: 271 — 275.
Google Scholar
Zhang M., Kang M.S., Reese P.F., Harbans J., Bhardwaj L. 2005. Soybean cultivar evaluation via GGE biplot analysis. J. New Seeds 7: 37 — 50.
Google Scholar
Authors
Wiesław Mądrywieslaw_madry@sggw.ed.pl
Katedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie Poland
Authors
Marzena IwańskaKatedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie Poland
Statistics
Abstract views: 75PDF downloads: 47
License
Copyright (c) 2011 Wiesław Mądry, Marzena Iwańska
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:
- Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
- Placing on the market, lending or renting the original or copies of the article.
- Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
- Including the article in a collective work.
- Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
- Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
- Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.
Authors by sending a request for publication:
- They consent to the publication of the article in the journal,
- They agree to give the publication a DOI (Digital Object Identifier),
- They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
- They agree to send article metadata to commercial and non-commercial journal indexing databases.
Most read articles by the same author(s)
- Wiesław Mądry, Jakub Paderewski, Jan Rozbicki, Dariusz Gozdowski, Jan Golba, Mariusz Piechociński, Marcin Studnicki, Adriana Derejko, Yielding of winter wheat cultivars across environments — one-year multi-environment post-registration trial , Bulletin of Plant Breeding and Acclimatization Institute: No. 263 (2012): Regular issue
- Anna Rajfura, Wiesław Mądry, The clustering of locations based on multi-environment trials with different cultivars across years using the SEQRET package. Part I. Theoretical development of retrospective analysis , Bulletin of Plant Breeding and Acclimatization Institute: No. 250 (2008): Regular issue
- Dariusz Gozdowski, Danuta Martyniak, Wiesław Mądry, Multivariate evaluation of cultivars and advanced lines of perennial ryegrass in respect of traits important in seed production , Bulletin of Plant Breeding and Acclimatization Institute: No. 253 (2009): Regular issue
- Marzena Iwańska, Wiesław Mądry, Tadeusz Drzazga, Anna Rajfura, Assessment of wide adaptation degree of winter wheat cultivars by some statistical measures using yield data from preregistration trials , Bulletin of Plant Breeding and Acclimatization Institute: No. 250 (2008): Regular issue
- Wiesław Mądry, Dariusz Gozdowski, Jan Rozbicki, Mirosław Pojmaj, Stanisław Samborski, Relationships between grain yield and its components in winter triticale advanced lines across three locations , Bulletin of Plant Breeding and Acclimatization Institute: No. 245 (2007): Regular issue
- Marcin Studnicki, Wiesław Mądry, Sampling methodology to establish a core collection of plant genetic resources: an overview of research , Bulletin of Plant Breeding and Acclimatization Institute: No. 263 (2012): Regular issue
- Leszek Sieczko, Agnieszka Masny, Wiesław Mądry, Edward Żurawicz, Analysis of the similarities between hybrid families of everbearing strawberry in relation to fruit yield and quality , Bulletin of Plant Breeding and Acclimatization Institute: No. 250 (2008): Regular issue
- Dariusz Gozdowski, Danuta Martyniak, Wiesław Mądry, The path analysis for assessment of the determination of ryegrass seed yield , Bulletin of Plant Breeding and Acclimatization Institute: No. 247 (2008): Regular issue
- Marzena Iwańska, Wiesław Mądry, Anna Rajfura, Tadeusz Drzazga, Comparison of some indices for evaluating wide adaptation degree of cultivars on the basis of data from pre-registration trials with winter wheat , Bulletin of Plant Breeding and Acclimatization Institute: No. 253 (2009): Regular issue