Multivariate analysis of phenotypic diversity in Polish spring wheat collection

Marcin Studnicki

marcin_studnicki@sggw.edu.pl
Katedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie (Poland)

Wiesław Mądry


Katedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie (Poland)

Tadeusz Śmiałowski


Instytut Hodowli i Aklimatyzacji Roślin, Zakład Roślin Zbożowych w Krakowie (Poland)

Abstract

The success of crop improvement programs depends among others on the knowledge of both phenotypic and genetic diversity within the maintained plant genetic resources and from the degree of their utilization. The use of multivariate statistical methods is an important strategy for assessment of within- collection diversity, classification and typology of accessions. The purpose of the paper was to evaluate phenotypic diversity for selected quantitative agronomic traits in a spring wheat collection (so-called “working” collection) maintained by the Department Unit of Cereal Breeding and Quality Evaluation of the Plant Breeding and Acclimatization Institute in Kraków. A field trial including 149 accessions (released cultivars and advanced breeding lines) was conducted across three seasons (1996–1999) in Kończewice, Kujawy-Pomerania province. In each year 12 agronomic quantitative traits were evaluated. The data were put into incomplete two-way accession × year classification for each trait. Two complementary multivariate methods including cluster analysis and principal component analysis were used. The first four principal components captured 67% of the total multivariate variability among the accessions. The first principal component accounted for 24% of the total variability and it was mostly correlated with grain yield and weight of grain per ear as the traits with the largest contribution to the multivariate variability among the accessions. The accessions were grouped into nine clusters based on Ward’s clustering method. The clusters (groups) were then characterized with regard to all the studied traits, and multivariate similarities among the groups were described using the biplot in principal component analysis.


Keywords:

BLUP, agronomic traits, cluster analysis, genetic resources, phenotypic diversity, principal component analysis, spring wheat

Assefa K., Tefera H., Merker A., Kefyalew T., Hundera F. 2001. Quantitative trait diversity in tef (Eragrostis tef (Zucc.) Trotter) germplasm from Central and Northern Ethiopia. Genetic Resources and Crop Evolution 48: 53 — 61.
Google Scholar

Bennett S. J. 2000. Genetic variation of five species of Trifolium L. from south-west Turkey. Genetic Resources and Crop Evolution 47: 81 — 91.
Google Scholar

Brown-Guedira G. L., Thompson J. A., Nelson R. L., Warburton M. L. 2000. Evaluation of genetic diversity of soybean introductions and North American Ancestors using RAPD and SSR markers. Crop Sci. 40: 815 — 823.
Google Scholar

Casler M. D., van Santen E. 2000. Patterns of variation in a collection of meadow fescue accessions. Crop Sci. 40: 248 — 255.
Google Scholar

Crossa J., Franco J. 2004. Statistical methods for classifying genotypes. Euphytica 153: 19 — 37.
Google Scholar

Damania A. D. 2008. History, achievements, and current status of genetic resources conservation. Agron. J. 100: 9 — 21.
Google Scholar

DeLacy J.H., Skovmand B., Huerta J. 2000. Characterization of Mexican wheat landraces using agronomically useful attributes. Genetic Resources and Crop Evolution 47:591 — 602.
Google Scholar

Hailu F., Merker A., Harjit-Singh., Belay G., Johansson E. (2006) Multivariate analysis of diversity of tetraploid wheat germplasm from Ethiopia. Genetic Resources and Crop Evolution 53: 1089 — 1098
Google Scholar

Hartung K., Piepho H. P. 2005. A threshold model for multiyear genebank data based on different rating scales. Crop Sci. 45: 1045 — 1051.
Google Scholar

Hartung K., Piepho H. P., Knupffer H. 2006. Analysis of genebank evaluation data by using geostatistical methods. Genetic Resources and Crop Evolution 53: 737 — 751.
Google Scholar

Jahufer M. Z. Z., Cooper M., Harch B. D. 1997. Pattern analysis of the diversity of morphological plant attributes and herbage yield in a world collection of white clover (Trifolium repens L.) germplasm characterised in a summer moisture stress environment of Australia. Genetic resources and crop evolution 44: 289 — 300.
Google Scholar

Johnson R. A., Wichern D. W. 2002. Applied multivariate statistical analysis. Prentice – Hall, Inc. Upper Saddle River, NJ.
Google Scholar

Kubicka H., Mądry W., Sieczko L., Komar L., Puchalski J. 2004. Wielowymiarowa analiza różnorodności genotypowej linii wsobnych żyta ozimego (Secale cereale L.) dla cech rolniczych i fenologicznych. Zesz. Probl. Post. Nauk Rol. Seria A 497: 375 — 389.
Google Scholar

Littell R. C., Milligan G.A., Stroup W. W., Wolfinger R.D., Schabenberger O. 2006. SAS for mixed models. SAS Institute Inc. Cary, NC.
Google Scholar

Manjunatha T., Bisht I. S., Bhat K. V., Singh B. P. 2007. Genetic diversity in barley (Hordeum vulgare L. ssp. vulgare) landraces from Uttaranchal Himalaya of India. Genetic resources and crop evolution 54: 55 — 65.
Google Scholar

Mapes C., Caballero J., Espitia E., Bye R.A. (1996) Morphophysiological variation in some Mexican species of vegetable Amaranthus: evolutionary tendencies under domestication. Genetic resources and crop evolution 43: 283 — 290.
Google Scholar

Martinez-Calvo J., Gisbert A. D., Carmen Alamar M., Hernandorena R., Romeo C. 2007. Study of a germplasm collection of loquat (Eriobotrya japonica Lindl.) by multivariate analysis. Genetic Resources and Crop Evolution 55: 695 — 703.
Google Scholar

Mazurkiewicz B., Struś M. (1997) Kolekcje robocze pszenicy ozimej jako czynnik postępu hodowlanego. Biuletyn IHAR 204: 81 — 87.
Google Scholar

Mądry W. 2007. Metody statystyczne do oceny różnorodności fenotypowej dla cech ilościowych w kolekcjach roślinnych zasobów genowych. Zesz. Probl. Post. Nauk Rol. 517:21 — 41.
Google Scholar

Mohammadi S. A., Prasanna B. M. 2003. Analysis of genetic diversity in crop plants — salient statistical tools and considerations. Crop Sci. 43: 1235 — 1248.
Google Scholar

Okpul T., Singh D., Gunua T., Wagih M. E. 2004. Assessment of diversity using agro-morphological traits for selecting a core sample of Papua New Guinea taro (Colocasia esculenta (L.) Schott) collection. Genetic Resources and Crop Evolution 51: 671 — 678.
Google Scholar

Piepho H. P., Mohring J. 2005. Best Linear Unbiased Prediction of cultivar effects for subdivided target regions. Crop Sci. 45:1151 — 1159.
Google Scholar

Robinson G. K. 1991. That BLUP is a good thing: the estimation of random effects Statistical Science 6:15 — 51.
Google Scholar

Ruiz M., Ravela F., Carrillo J. M. 1997. Analysis of the discriminating power of agro-morphological and biochemical descriptors in a sample of the Spanish collection of barley (Hordeum vulgare L.). Genetic Resources and Crop Evolution 44: 247 — 255.
Google Scholar

SAS Institute Inc. (2004) SAS OnlineDoc® 9.1.3. Cary, NC.
Google Scholar

Sorrells M. E. 2007. Application of new knowledge, technologies, and strategies to wheat improvement. Euphytica 157: 299 — 306.
Google Scholar

Upadhyaya H. D., Ortiz R., Bramel P. J., Singh S. 2003. Development of a groundnut core collection using taxonomical, geographical and morphological descriptors. Genetic Resources and Crop Evolution 50:139 — 148.
Google Scholar

Žáková M., Benková M. 2006. Characterization of spring barley accessions based on multivariate analysis. Commun. Biometry Crop Sci. 1 (2): 124 — 134.
Google Scholar


Published
2009-06-30

Cited by

Studnicki, M., Mądry, W. and Śmiałowski, T. (2009) “Multivariate analysis of phenotypic diversity in Polish spring wheat collection”, Bulletin of Plant Breeding and Acclimatization Institute, (252), pp. 91–104. doi: 10.37317/biul-2009-0059.

Authors

Marcin Studnicki 
marcin_studnicki@sggw.edu.pl
Katedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie Poland

Authors

Wiesław Mądry 

Katedra Doświadczalnictwa i Bioinformatyki, SGGW w Warszawie Poland

Authors

Tadeusz Śmiałowski 

Instytut Hodowli i Aklimatyzacji Roślin, Zakład Roślin Zbożowych w Krakowie Poland

Statistics

Abstract views: 374
PDF downloads: 17


License

Copyright (c) 2009 Marcin Studnicki, Wiesław Mądry, Tadeusz Śmiałowski

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)

1 2 3 4 5 > >>