An examination of diversity and interrelationships among traits in a winter wheat (Triticum aestivum L.) germplasm collection by multivariate methods. Part II. Principal component analysis using the phenotypic and genotypic correlation matrix
Joanna Ukalska
joanna_ukalska@sggw.edu.plKatedra Biometrii, Szkoła Główna Gospodarstwa Wiejskiego, Warszawa (Poland)
Krzysztof Ukalski
Katedra Biometrii, Szkoła Główna Gospodarstwa Wiejskiego, Warszawa (Poland)
Tadeusz Śmiałowski
Instytut Hodowli i Aklimatyzacji Roślin, Zakład Roślin Zbożowych w Krakowie (Poland)
Wiesław Mądry
Katedra Doświadczalnictwa i Bioinformatyki, Szkoła Główna Gospodarstwa Wiejskiego, Warszawa (Poland)
Abstract
In the paper, the diversity among quantitative traits in the winter wheat germplasm working collection using Principal Component Analysis (PCA) was studied. Fifty-one genotypes (cultivars and clones) from the Plant Breeding and Acclimatization Institute, Department of Cereal Crops in Cracow, were evaluated in the years 1999–2002. Two approaches of the PCA were applied. The first, classical approach, involved the phenotypic correlation matrix, i.e. correlation coefficients between across year phenotypic means. In the second, new approach, application of genotypic correlation matrix, i.e. correlation coefficients matrix between the unobservable genotypic effects for considered traits in PCA, has been proposed. Coincident results were obtained using the above methods. However, the first three principal components obtained using the genotypic correlation matrix compared to the classical PCA accounted for 15% more of the overall variation among genotypes. Moreover, higher absolute values of correlation coefficients between principal components and the evaluated traits were recorded.
Keywords:
genotypic correlation matrix, germplasm collection, phenotypic correlation matrix, principal component analysis, winter wheatReferences
Abdi A., Bejkele E., Asfaw Z., Teshome A. 2002. Patterns of morphological variation of sorghum (Sorghum bicolor (L.) Moench) landraces in qualitative characters in North Shewa and South Welo, Ethiopia. Hereditas 137: 161 — 172.
Google Scholar
Ayana A., Bekele E. 1999. Multivariate analysis of morphological variation in sorghum (Sorghum bicolor (L.) Moench) germplasm from Ethiopia and Eritrea. Gen. Res. Crop Evol. 46: 273 — 284.
Google Scholar
Errikson L., Johansson E., Kettaneh-Wold N., Wold S. 1999. Introduction to multi- and megavariate data analysis using projection methods (PCA & PLS). Umetrics AB, Umea, Sweden.
Google Scholar
Everitt B. S., Dunn G. 1992. Applied Multivariate Data Analysis. Oxford University Press, New York.
Google Scholar
Flores F., Gutierrez J. C., Lopez J., Moreno M. T., Cuberto J. I. 1997. Multivariate analysis approach to evaluate a germplasm collection of Hedysarum coronarium L. Gen. Res. Crop Evol. 44: 545 — 555.
Google Scholar
Hotteling H. 1933. Analysis of a Complex of Statistical Variables into Principal Components. Journal of Educational Psychology 24: 417 — 441, 498 — 520.
Google Scholar
Hotteling H. 1936. Simplified Computation of Principal Components. Psychometrica 1:27 — 35.
Google Scholar
Iezzoni A. F., Pritts M. P. 1991. Application of Principal Components Analysis to Horticultural Research. Hort. Sci. 26(4):334 — 338.
Google Scholar
Jolliffe I. T. 1986. Principal components analysis. Springer-Verlag, New York.
Google Scholar
Khattree R., Naik D. N. 2000. Multivariate data reduction and discrimination with SAS software. SAS Institute Inc., Cary, NC.
Google Scholar
Krzanowski W. J. 1988. Principles of multivariate analysis: a users’s perspective. Oxford University Press, Oxford. 563 pp.
Google Scholar
Leguizamon J., Badenes M. L. 2003. Multivariate analysis as a tool for germplasm studies, Example of Analysis of Gerplasm Loquat Data. Acta Hort. 606: 29 — 35.
Google Scholar
Littell R. C., Milliken G. A., Stroup W.W., Wolfinger R. D. 1996. SAS system for mixed models. SAS Institute Inc., Cary, NC
Google Scholar
Mars M., Marrakchi M. 1999. Diversity of pomegrante (Punica granatum L.) germplasm in Tunisia. Genet. Resour. Crop. Evol. 46: 461 — 467.
Google Scholar
Martinez-Calvo J. 2007. Study of a germplasm collection of loquat (Eriobotrya japonica Lindl.) by multivariate analysis. Genet. Resour. Crop Evol. 55(5):695 — 703.
Google Scholar
Mądry W. 2007. Metody statystyczne do oceny różnorodności fenotypowej dla cech ilościowych w kolekcjach roślinnych zasobów genowych. Zesz. Probl. Post. Nauk Rol. 517: 21 — 41.
Google Scholar
Mohammadi S.A., Prasanna B.M. 2003. Analysis of genetic diversity in crop plants-Salient statistical tools and considerations. Crop Sci. 43:1235 — 1248.
Google Scholar
Pearson K. 1901. On lines planes of closest fit to a system of points in space. Philosophical Magazine 2:557 — 572.
Google Scholar
Perez-Gonzalez S. 1992. Associations among morphological and phenological characters representing apricot germplasm in Central Mexico. J. Am. Soc. Hort. Sci. 117:486 — 490.
Google Scholar
Rao C.R. 1964. The Use and Interpretation of Principal Components in Applied Research. Sankhya A26:329 — 358.
Google Scholar
Rojas W., Barriga P., Figueroa H. 2000. Multivariate analysis of the genetic diversity of Bolivian quinoa germplasm. Plant Genetic Resources Newsletter 122: 16 — 23.
Google Scholar
Rotondi A., Magli M., Ricciolini C., Baldoni L. 2003. Morphological and molecular analyses for the characterization of a group of Italian olive cultivars. Euphytica 132: 129 — 137.
Google Scholar
SAS/STAT User's Guide, Version 8.2. 2002. SAS Institute, Cary NC.
Google Scholar
Skinner D.Z., Barchan G.R., Auricht G., Hughes S. 1999. A method for the efficient management and utilization of large germplasm collections. Crop Sci. 39:1237 — 1242.
Google Scholar
Ukalska J., Mądry W., Ukalski K., Masny A., 2007. Wielowymiarowa ocena różnorodności fenotypowej w kolekcji zasobów genowych truskawki (Fragaria × ananassa Duch.) Część I: analiza zmienności. Zesz. Probl. Post. Nauk Rol. 517: 749 — 758.
Google Scholar
Ukalski K., Ukalska J., Śmiałowski T., Mądry W. 2008. Badanie zmienności i współzależności cech użytkowych w kolekcji roboczej pszenicy ozimej (Triticum aestivum L.) za pomocą metod wielowymiarowych. Część I. Korelacje fenotypowe i genotypowe. Biul. IHAR 249: 35 — 43.
Google Scholar
Upadhyaya H. D., Mallikarjuna Swamy B. P., Kenchana Goudar P. V., Kullaiswamy B.Y., Singh S. 2005. Identification of diverse groundnut germplasm through multienvironment evaluation of a core collection for Asia. Field Crops Research 93: 293 — 299.
Google Scholar
Authors
Joanna Ukalskajoanna_ukalska@sggw.edu.pl
Katedra Biometrii, Szkoła Główna Gospodarstwa Wiejskiego, Warszawa Poland
Authors
Krzysztof UkalskiKatedra Biometrii, Szkoła Główna Gospodarstwa Wiejskiego, Warszawa Poland
Authors
Tadeusz ŚmiałowskiInstytut Hodowli i Aklimatyzacji Roślin, Zakład Roślin Zbożowych w Krakowie Poland
Authors
Wiesław MądryKatedra Doświadczalnictwa i Bioinformatyki, Szkoła Główna Gospodarstwa Wiejskiego, Warszawa Poland
Statistics
Abstract views: 483PDF downloads: 25
License
Copyright (c) 2008 Joanna Ukalska, Krzysztof Ukalski, Tadeusz Śmiałowski, Wiesław Mądry
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:
- Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
- Placing on the market, lending or renting the original or copies of the article.
- Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
- Including the article in a collective work.
- Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
- Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
- Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.
Authors by sending a request for publication:
- They consent to the publication of the article in the journal,
- They agree to give the publication a DOI (Digital Object Identifier),
- They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
- They agree to send article metadata to commercial and non-commercial journal indexing databases.
Most read articles by the same author(s)
- Wiesław Mądry, Dariusz Gozdowski, A history of the development of statistical methods for designing and analyzing agricultural experiments in the world and in Poland , Bulletin of Plant Breeding and Acclimatization Institute: No. 288 (2020): Regular issue
- Dariusz Gozdowski, Wiesław Mądry, Zdzisław Wyszyński, Analysis of correlation and path coefficients in evaluation of relationships between grain yield and its components of two spring barley cultivars , Bulletin of Plant Breeding and Acclimatization Institute: No. 248 (2008): Regular issue
- Krzysztof Ukalski, Joanna Ukalska, Tadeusz Śmiałowski, Wiesław Mądry, An examination of diversity and interrelationships among traits in a winter wheat (Triticum aestivum L.) germplasm collection by multivariate methods. Part I. Phenotypic and genotypic correlations , Bulletin of Plant Breeding and Acclimatization Institute: No. 249 (2008): Regular issue
- Marcin Studnicki, Wiesław Mądry, Tadeusz Śmiałowski, Multivariate analysis of phenotypic diversity in Polish spring wheat collection , Bulletin of Plant Breeding and Acclimatization Institute: No. 252 (2009): Regular issue
- Adriana Derejko, Wiesław Mądry, Dariusz Gozdowski, Jan Rozbicki, Jan Golba, Mariusz Piechociński, Marcin Studnicki, The influence of cultivar, location, crop management intensities, and their interactions on winter wheat yield in post-registration multi-environment trials (PDO) , Bulletin of Plant Breeding and Acclimatization Institute: No. 259 (2011): Regular issue
- Tadeusz Śmiałowski, Stanisław Węgrzyn, Maria Stachowicz, Variation and correlation analysis of important technological traits of winter wheat cultivars and strains , Bulletin of Plant Breeding and Acclimatization Institute: No. 249 (2008): Regular issue
- Anna Rajfura, Wiesław Mądry, Tadeusz Drzazga, Marzena Iwańska, The clustering of locations based on multi-environment trials with different cultivars across years using the SEQRET package. Part II. An example for grain yield from winter wheat pre-registration trials , Bulletin of Plant Breeding and Acclimatization Institute: No. 250 (2008): Regular issue
- Dariusz Gozdowski, Wiesław Mądry, Characteristics and empirical comparison of simple and complex path analysis in grain yield determination by yield - related traits. Part I. Presentation of methods , Bulletin of Plant Breeding and Acclimatization Institute: No. 249 (2008): Regular issue
- Stanisław Pluta, Wiesław Mądry, Edward Żurawicz, Marcin Kozak, Statistical assessment of determination of fruit yield in blackcurrant (Ribes nigrum L.) by two multiplicative yield components , Bulletin of Plant Breeding and Acclimatization Institute: No. 249 (2008): Regular issue
- Tadeusz Drzazga, Paweł Krajewski, Tadeusz Śmiałowski, Ewa Śmiałek, Drought resistance assessment of winter wheat cultivars , Bulletin of Plant Breeding and Acclimatization Institute: No. 260/261 (2011): Regular issue