A history of the development of statistical methods for designing and analyzing agricultural experiments in the world and in Poland

Wiesław Mądry

wieslaw_madry@sggw.pl
Katedra Biometrii, Wydział Rolnictwa i Biologii, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie (Poland)
https://orcid.org/0000-0003-3607-3124

Dariusz Gozdowski


Katedra Biometrii, Wydział Rolnictwa i Biologii, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie (Poland)
https://orcid.org/0000-0002-7365-7607

Abstract

The paper presents the main directions, chronology and achievements in the field of mathematical statistical methods applied to biometrics and agricultural experimentation, conducted from the 17th century to modern times. The achievements of scientists globally and in Poland are taken into account. The historical and present importance of these mathematical and methodological findings for the development and progress of empirical sciences in general, and especially agricultural and biological sciences, is emphasized. The importance of using statistical methods in the recognition of empirical agricultural research as agricultural science is presented. Testimonies and considerations on statistical discoveries and inventions over the centuries are documented and illustrated by the original publications and real activities of the pioneers of statistics, biometrics and agricultural experimentation, as well as contemporary scientists in these fields.

 


Keywords:

statistical methods, multivariate methods, estimation, hypothesis testing, experimental designs, statistical inference, statisticians, biometricians

Barbacki S., Fisher R. 1936. A test of the supposed precision of systematic arrangements. Annals of Eugenics 7: 189 — 193.
Google Scholar

Caliński T. 2012. Rozwój i osiągnięcia w biometrii polskiej. Przegląd statystyczny, Numer specjalny I: 47 — 52.
Google Scholar

Caliński T., Camussi A., Ottaviano E., Kaczmarek Z. 1985. Genetic distances based on quantitative traits. Genetics, 111:945 — 962.
Google Scholar

Caliński T., Czajka S., Kaczmarek Z., Krajewski P., Pilarczyk W. 2005. Analyzing multi-environment variety trials using randomization-derived mixed models. Biometrics, 61:448 — 455.
Google Scholar

Caliński T., Harabasz J. 1974. A dendrite method for cluster analysis. Communications in Statistics 3: 1 — 27.
Google Scholar

Cochran W. G. 1939. Long-term agricultural experiments. J. Roy. Stat. Soc. (Suppl.) 6: 104–148.
Google Scholar

Crossa J., Franco J. 2004. Statistical methods for classifying genotypes. Euphytica 137: 19 — 37.
Google Scholar

da Silva C. P., de Oliveira L. A., Nuvunga J. J., Pamplona A. K. A., Balestre M. 2019. Heterogeneity of variances in the Bayesian AMMI model for multienvironment trial studies. Crop Sci. 59: 2455 — 2472.
Google Scholar

Elandt R. 1964. Statystyka matematyczna w zastosowaniu do doświadczalnictwa rolniczego. PWN, Warszawa
Google Scholar

Fisher R. A. 1925. Applications of "Student's" distribution. Metron 5: 90–104.
Google Scholar

Fisher R. A. 1918. The correlation between relatives on the supposition of Mendelian inheritance. Trans. Roy. Soc. Edinburgh 52: 399 — 433.
Google Scholar

Fisher R. A. 1921. Studies in crop variation. I. An examination of the yield of dressed grain from Broadbalk. The J. Agri. Sci. 11: 107 — 135.
Google Scholar

Fisher R. A. 1922. On the mathematical foundations of theoretical statistics, Philos. Trans. Roy. Soc., Lon. Ser. A, 222: 309 — 368.
Google Scholar

Fisher R. A. 1925. Statistical methods for research workers, 1st ed. Oliver and Boyd, Edinburgh.
Google Scholar

Fisher R. A. 1935 a. The logic of inductive inference (with discussion). J. Roy. Stat. Soc. 98: 39 — 82.
Google Scholar

Fisher R. A. 1935 b. The design of experiments, 1st ed. Oliver and Boyd, Edinburgh.
Google Scholar

Fisher R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7: 179 — 188.
Google Scholar

Fisher R. A., Mackenzie W. A. 1923. Studies in crop variation. II. The manurial response of different potato varieties. J. Agric. Sci. 13: 311 — 320.
Google Scholar

Fisher R. A., Yates F. 1936. Statistical Tables for Biological, Agricultural and Medical Research. Oliver and Boyd, Edinburgh.
Google Scholar

Gauch H.G., Jr., Piepho H.P., Annicchiarico P. 2008. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Sci. 48:866–889
Google Scholar

Greenland S., Senn S. J., Rothman K. J., Carlin J. B., Poole C., Goodman S. N., Altma D. G. 2016. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur. J. Epidemiol. 31:337 — 350.
Google Scholar

Hall A. D. 1909. The experimental error in field trials. J. Board Agr. 16: 365 — 370.
Google Scholar

Hotelling H. 1931. The generalization of Student's ratio. Ann. Math. Stat. 2: 360 — 378.
Google Scholar

Hotelling H. 1933. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol., 24: 417 — 441.
Google Scholar

Hurlbert S. H., Lombardi C. M. 2009. Final collapse of the Neyman-Pearson decision theoretic framework and rise of the neoFisherian. Ann. Zool. Fennici 46: 311 — 349.
Google Scholar

Johnson N. L., Kotz S. 1997. Leading personalities in statistical sciences. John Wiley & Sons, New York.
Google Scholar

Lehman E. L. 2011. Fisher, Neyman and the creation of classical statistics. Springer, New York.
Google Scholar

Kozak M. 2004 a. Alokacja próby między warstwy w przypadku cechy wielowymiarowej. Wiadomości statystyczne Nr 7: 13 — 21.
Google Scholar

Kozak M. 2004b. Efektywność schematów losowania w badaniach gospodarstw rolnych. Wiadomości statystyczne Nr 9:20 — 26
Google Scholar

Mahalanobis P. 1930. On tests and measures of group divergence I. Theoretical formulae. J. and Proc. Asiat. Soc. of Bengal, 26: 541 — 588.
Google Scholar

Mahalanobis P. 1936. On the generalized distance in statistics. Proc. Nat. Inst. Sci. 2:49 — 55.
Google Scholar

Miller R.G. 1981. Simultaneous statistical inference. Springer-Verlag, New York.
Google Scholar

Newman D. 1939. The distribution of range in samples from a normal population, expressed in terms of an independent estimate of standard deviation. Biometrika 31: 20 — 30.
Google Scholar

Neyman J. 1934. On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selecion. J. Roy. Stat. Soc., 97:558 — 625
Google Scholar

Neyman J. 1937. Outline of a theory of statistical estimation based on the classical theory of probability. Philos. Trans. Roy. Soc. London, Series A. 236: 333 — 380.
Google Scholar

Neyman J. 1979. Narodziny statystyki matematycznej. Wiadomości Matematyczne, 22: 91 — 106.
Google Scholar

Neyman J., Pearson E. S. 1928. On the use and interpretation of certain test criteria for purposes of statistical inference. Biometrika 20A, Pt. I: 175 — 240; Pt. II: 263–294.
Google Scholar

Neyman J., Pearson E. S. 1933. On the problem of the most efficient tests of statistical hypotheses. Phil. Trans. Roy. Soc. London. Series A, 231: 289 — 337.
Google Scholar

Oktaba W. 2002. Historia teorii eksperymentu. Lubelskie Towarzystwo Naukowe, Lublin.
Google Scholar

Ostasiewicz W. 2012. Rozwój myśli statystycznej w Polsce w XIX wieku. Przegląd statystyczny, Numer specjalny I: 34 — 46.
Google Scholar

Pearson K. 1901. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2:559–572).
Google Scholar

Scheffe H. 1959. The analysis of variance. John Wiley & Sons, Inc., N. Y.
Google Scholar

Smith A. B., Cullis B. R., Thompson R. 2005. The analysis of crop cultivar breeding and evaluation trials: An overview of current mixed model approaches. J. Agric. Sci. 143: 449 — 462
Google Scholar

Speed T. P. 1992. Introduction to Fisher (1926) — The arrangement of field experiments. W: Breakthroughs in statistics, Vol. II. (Ed by Kotz S., Johnson N. L.), Springer-Verlag, New York: 71 — 82.
Google Scholar

Spława-Neyman J. 1923. Próba uzasadnienia zastosowań rachunku prawdopodobieństwa do doświadczeń polowych. Roczn. Nauk Roln. i Leśnych, 10: 1 — 51.
Google Scholar

Statystycy Polscy. 2012. (Redakcja Adamczewski W. i in.) GUS i Polskie Towarzystwo Statystyczne, Warszawa
Google Scholar

Student [W.S. Gosset]. 1908. The probable error of a mean. Biometrika 6: 1 — 25.
Google Scholar

Studnicki M., Paderewski J., Piepho H.P., Wójcik-Gront E. 2017. Prediction accuracy and consistency in cultivar ranking for factor-analytic linear mixed models for winter wheat multienvironmental trials Crop Sci. 57: 2506 — 2516.
Google Scholar

Van Eeuwijk F. A., Bustos-Korts D. V., Malosetti M. 2016. What should students in plant breeding know about the statistical aspects of genotype × environment interactions? Crop Sci. 56: 2119 — 2140.
Google Scholar

Yates F. 1935. Complex experiments. J. Roy. Stat. Soc. (Suppl.) 2: 181 — 247.
Google Scholar

Romer E. 1989. Pamiętnik paryski (1918–1919). Wyd. Zakład Narodowy Imienia Ossolińskich, Wrocław.
Google Scholar

Załęski E. 1927. Metodyka doświadczeń rolniczych. Wydawnictwo Rozpraw Biologicznych, Lwów.
Google Scholar


Published
2020-02-12

Cited by

Mądry, W. and Gozdowski, D. (2020) “A history of the development of statistical methods for designing and analyzing agricultural experiments in the world and in Poland”, Bulletin of Plant Breeding and Acclimatization Institute, (288), pp. 23–40. doi: 10.37317/biul-2020-0003.

Authors

Wiesław Mądry 
wieslaw_madry@sggw.pl
Katedra Biometrii, Wydział Rolnictwa i Biologii, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Poland
https://orcid.org/0000-0003-3607-3124

Authors

Dariusz Gozdowski 

Katedra Biometrii, Wydział Rolnictwa i Biologii, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Poland
https://orcid.org/0000-0002-7365-7607

Statistics

Abstract views: 551
PDF downloads: 401 PDF downloads: 40


License

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)

1 2 3 4 > >>