Effect of the A and B genomes Triticum durum Desf. on bread-making quality in winter wheat Triticum aestivum L.

Józef Pilch

j.pilch@ihar.edu.pl
Zakład Oceny Jakości i Metod Hodowli Zbóż, Instytut Hodowli i Aklimatyzacji Roślin w Krakowie (Poland)

Abstract

The effect of the genomes A and B of Triticum durum Desf. on bread-making quality was investigated in 64 winter forms of hybrids (Triticum aestivum L. × Triticum durum Desf.) × Triticum aestivum L. developed from the interspecific crosses of Triticum aestivum L. v. mono-5B Chinese Spring, mono-5B Favorit, and winter tetraploid wheat Triticum durum Desf. v. Mirable, Khapli, Fuensemiduro. The hybrids F1 — bridge were pollinated with 13 varieties and breeding strains of T. aestivum L. The grain quality was evaluated during the period of 3 years on the basis of protein content (%), Zeleny-sedimentation (ml), falling number (s) and baking value (the classes: E — exclusive, A — qualitative, B — bread, and C — remained), in the relation to the check variety Begra of T. aesivum L. The high quality parameters were identified (the class E) which exceeded the quality check of Triticum aestivum L. (Table 2, 4). It indicated the effects of introgression of alien A and B genome genes from the tetraploid wheat. The forms selected could be used in the future for development of new germplasm for quality breeding of winter wheat T. aestivum L.


Keywords:

Triticum aestivum L., Triticum durum Desf., bread-making quality, grain

Anderson W. K., Shakley B. J., Sawkins D. 1998. Grain yield and quality: does there have to be a trade-off. Euphytica 100: 183 — 188. DOI: https://doi.org/10.1023/A:1018326006069
Google Scholar

Baulcombe D.C., Huttly A.K., Martienssen R., Barker R. F., Jarvis M.G. 1987. A novel wheat - amylase gen (L-Amy 3). Mol. Gen. Genet. 209: 33 — 34. DOI: https://doi.org/10.1007/BF00329833
Google Scholar

Blanco A., Bellomo M.P., Lotti C., Pasquolone A. 1998. Mapping of quantitative trait loci for grain quality using recombinant inbred lines of durum wheat. Proc. of the 10th EWAC Meeting, Viterbo — Italy (Ed. C .Ceoloni, Worland A. J.): 106 — 109.
Google Scholar

Branlard G., Dardevet M. 1985. Diversity of grain protein and bread wheat quality. II. Correlation between high molecular weight subunits of glutenin and flour quality characteristics. J. Cereal Sci. 3: 345 — 354. DOI: https://doi.org/10.1016/S0733-5210(85)80007-2
Google Scholar

Carrillo J. M., Rousset M., Qualset C. O., Kasarda D. D. 1990. Use of recombinant inbred lines of wheat for study of associations of high-molecular weight glutenin subunit alleles to quantitative traits. I. Grain yield and quality prediction tests. Theor. Appl. Genet. 73: 321 — 330. DOI: https://doi.org/10.1007/BF01186074
Google Scholar

Ciaffi M., Benedeltelli S., Giorgi B., Porceddu E., Lafiandra D., 1991 Seed storage proteins of Triticum turgidum spp. dicoccoides and their effects on technological quality in durum wheat. Plant Breeding, 107: 309 — 319. DOI: https://doi.org/10.1111/j.1439-0523.1991.tb00554.x
Google Scholar

Dexter J. E., Matsuo R. R. 1987. Relationship between durum wheat properties and pasta dough rheology and spaghetti cooking quality. J. Agric. Food. Chem. 26: 899 — 905. DOI: https://doi.org/10.1021/jf60231a034
Google Scholar

Dong H., Cox T. S., Sears R. G., Lockhard G. L. 1991. High molecular weight glutenin genes: Effects on quality in wheat. Crop. Sci. 31: 971 — 979. DOI: https://doi.org/10.2135/cropsci1991.0011183X003100040027x
Google Scholar

D’Ovidio R, Simeone M., Masci S., Porceddu E. 1997. Molecular characterization of a LMW-GS gene located on chromosome 1B and the development of primers specific for the Glu-B3 complex locus in durum wheat. Theor. Appl. Genet. 95: 119 — 126. DOI: https://doi.org/10.1007/s001220050671
Google Scholar

Ekiz H., Safi Kinal A., Akain A., Simsek L. 1998. Cytoplasmic effects on quality traits of bread wheat (Triticum aestivum L.). Euphytica 100: 189 — 196. DOI: https://doi.org/10.1023/A:1018382106978
Google Scholar

Flavell R., Payne P. 1987. Introducing molecular biology into wheat breeding for better breadmaking quality. Biotechnology in Agriculture: 14 — 15.
Google Scholar

Graybosch R. A., Peterson C. J., Lee J. H., Shelton D. R. 1994. Effects of glutenin protein polymorphisms on breadmaking quality of winter wheats. Crop Sci. 34: 628 — 635. DOI: https://doi.org/10.2135/cropsci1994.0011183X003400030005x
Google Scholar

Gupta R. B., McRitchie F., Shepherd K. W., Ellison F. 1991. Relative contribution of LMW and HMW glutenin subunits to dough strength and dough stickness of bread wheat. Proc. 4th Int. Workshop Gluten Proteins (Ed. Bushuk W., Tkachuk R.): 71 — 80.
Google Scholar

Halloran G. M. 1975. Genetic analysis of grain protein percentage in wheat. Theor. Appl. Genet. 46: 79 — 86. DOI: https://doi.org/10.1007/BF00281646
Google Scholar

Johnson V. A., Mattern P. J., Peterson C. J., Kuhr S. L. 1985. Improvement of wheat protein by traditional breeding and genetic techniques. Cereal Chem. 62 (5): 350 — 355.
Google Scholar

Klockiewicz-Kamińska E., Brzeziński W. J. 1997. Metoda oceny i klasyfikacji jakościowej odmian pszenicy. Wiad. Odm. COBORU, 67: 1 — 18.
Google Scholar

Krattiger A. F., Payne P. I., Law C. N. 1987. The relative contribution of proteins and other components to breadmaking quality of varieties determined using chromosome substitution lines. Proc. 3rd Int. Workshop Gluten Proteins, Budapest-Hungary: 254 — 265.
Google Scholar

Lagudah E. S., O’Brien L. Halloran G. M. 1988. Influence of gliadin composition and high molecular weight subunits of glutenin on dough properties in an F 3 population of a bread wheat cross. J. Creal Sci. 7: 33 — 42. DOI: https://doi.org/10.1016/S0733-5210(88)80057-2
Google Scholar

Lawrence G. J., Moss H. J., Shepherd K. W., Wrigley C. W. 1987. Dough quality of biotypes of eleven Australian wheat cultivars that differ in high-molecular-weight glutenin subunit composition. J. Cereal. Sci. 6: 99 — 101. DOI: https://doi.org/10.1016/S0733-5210(87)80045-0
Google Scholar

Lawrence G. J., Mac Ritchie F. Wrigley C. W. 1988. Dough and baking quality of wheat lines deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci. J. Cereal Sci. 7: 109 — 112. DOI: https://doi.org/10.1016/S0733-5210(88)80012-2
Google Scholar

Little T. M., Hills F. J. 1975. Statistical methods in agricultural research. Eds. T. M. Little F. J. Hills, Univ. California, Davis 95616, 2nd ed. USA.
Google Scholar

Lorenzo A., Kronstad W. E., Vieira L. C. E., 1987. Relationship between high molecular weight glutenin subunits and loaf volume in wheat as measured by the sodium dodecyl sulphate sedimentation test. Crop. Sci. 27: 253 — 257. DOI: https://doi.org/10.2135/cropsci1987.0011183X002700020026x
Google Scholar

MacGregor E. A., Mac Gregor A. W. 1987. Studies of cereal L-amylases using cloned DNSA s. Rev. Biotech. 5: 129 — 142. DOI: https://doi.org/10.3109/07388558709086973
Google Scholar

MacRitchie F., DuCros D. L., Wrigley C. W. 1990. Flour polipeptides related to wheat quality. Adv. In Cereal Sci. and Tech.(Ed. Y. Pomeranz, Am.Assoc. of Cereal Chem., USA), vol. 10: 79 — 146.
Google Scholar

Mansur L. M., Qualset C. O., Kasarda D. D., Morris R. 1990. Effects of Cheyenne chromosomes on milling and baking quality of Chinese Spring wheat in relation to glutenin and gliadin storage proteins. Crop Sci. 30: 35 — 47. DOI: https://doi.org/10.2135/cropsci1990.0011183X003000030026x
Google Scholar

MirAli N., Arabi M. I. E. Al-Safadi B. 1999. High molecular weight glutenin subunits composition of Syrian grown bread wheat and its relationships with gluten strength. J. Genet. Breed. 53: 237 — 245.
Google Scholar

Nieto-Taladriz M. T., Perretant M. R., Rousset M. 1994. Effect of gliadins and HMW and LMW subunits of glutenin on dough properties in the F 6 recombinant inbred lines from a bread wheat cross. Theor. Appl. Genet. 88: 81 — 88. DOI: https://doi.org/10.1007/BF00222398
Google Scholar

Odenbach W., Mahgoub E. S. 1988. Relationships between HMW glutenin subunit composition and the sedimentation value in reciprocal sets of inbred backcross lines derived from two winter wheat crosses. Proc. 7 th Int.Wheat Genet. Symp., Cambridge (England): 987 — 991.
Google Scholar

Payne P. J., Nightingale M. A., Krattiger A. F., Holt L. M. 1987. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. Sci. Food. Agric. 40: 51 — 65. DOI: https://doi.org/10.1002/jsfa.2740400108
Google Scholar

Pilch J. 1996. Performance of interspecific and intergeneric hybrids of Triticum aestivum L. for wheat improvements. Part II. Breeding value of spring-type generations F6–F10 of T. aestivum L. with Triticum (2x, 4x), Aegilops (2x, 4x), Secale (2x) and Hordeum (2x) species in respect of some characters of spike. Plant Breeding and Seed Science, Vol. 41, No. 1: 3 — 15.
Google Scholar

Pilch J., Głowacz E., Cygankiewicz A. 1999. Wartość wypiekowa ziarna mieszańców pszenicy pochodzących z krzyżowań międzygatunkowych i międzyrodzajowych. Biul. IHAR 210: 71 — 83.
Google Scholar

Redaelli R., Pogna N. E., Ng P. K. 1997. Effects of prolamins encoded by chromosomes 1B and 1D on the rheological properties of dough in near-isogenic lines of bread wheat. Cereal Chem. 74: 102 — 107. DOI: https://doi.org/10.1094/CCHEM.1997.74.2.102
Google Scholar

Rogers W. J., Rickatson J. M., Sayers E. J., Law C. N. 1990. Dosage effects of chromosomes of homoeologous group 1 and 6 upon bread-making quality of hexaploid wheat. Theor. Appl.Genet., 80: 281 — 287. DOI: https://doi.org/10.1007/BF00224399
Google Scholar

Sabelli P. A., Shevry P. R. 1991.Characterization and organization of gene families at the Gli-1 loci of bread and durum wheats by restriction fragment analysis. Theor. Appl. Genet, 83: 209 — 216. DOI: https://doi.org/10.1007/BF00226253
Google Scholar

Schepers J., Keizer L. C. P., Kolster P. 1993. The relation between high molecular weight glutenin subunits, bread-making qualityand agronomic properties of winter wheat. Cereal Res. Comm. 21, No.4: 289 — 296.
Google Scholar

Szwed-Urbaś K., Segit Z., Mazurek H. 1997. Parametry jakościowe ziarna krajowych linii pszenicy twardej (Triticum durum Desf.). Biul. IHAR 204: 129 — 140.
Google Scholar

Turchetta T., Ciaffi M., Porceddu E., Lafiandra D. 1995. Relationship between electrophoretic pattern of storage proteins and gluten strength in durum wheat landraces from Turkey. Plant Breeding, 114: 406 — 412. DOI: https://doi.org/10.1111/j.1439-0523.1995.tb00821.x
Google Scholar

Uhlen A. K. 1990. The composition of high molecular wheight glutenin subunits in Norwegian wheats and their relation to bread-making quality. Norweg. J. Agric. Sci. 4: 1 — 17.
Google Scholar

Wieser H., Zimmermann G. 2000. Importance of amounts and proportions of high molecular weight subunits of glutenin for wheat quality. Eur. Food Res. Technol. 210: 324 — 330. DOI: https://doi.org/10.1007/s002170050558
Google Scholar


Published
2003-12-31

Cited by

Pilch, J. (2003) “Effect of the A and B genomes Triticum durum Desf. on bread-making quality in winter wheat Triticum aestivum L. ”, Bulletin of Plant Breeding and Acclimatization Institute, (230), pp. 43–53. doi: 10.37317/biul-2003-0005.

Authors

Józef Pilch 
j.pilch@ihar.edu.pl
Zakład Oceny Jakości i Metod Hodowli Zbóż, Instytut Hodowli i Aklimatyzacji Roślin w Krakowie Poland

Statistics

Abstract views: 58
PDF downloads: 23


License

Copyright (c) 2003 Józef Pilch

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:

  1. Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
  2. Placing on the market, lending or renting the original or copies of the article.
  3. Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
  4. Including the article in a collective work.
  5. Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
  6. Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
  7. Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.

Authors by sending a request for publication:

  1. They consent to the publication of the article in the journal,
  2. They agree to give the publication a DOI (Digital Object Identifier),
  3. They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
  4. They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
  5. They agree to send article metadata to commercial and non-commercial journal indexing databases.

Most read articles by the same author(s)