Barley and Blumeria graminis. Introduction to the host – pathogen interaction
Urszula Piechota
u.piechota@ihar.edu.plInstytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików (Poland)
https://orcid.org/0000-0002-8599-1071
Paweł Czembor
Zakład Genetyki i Hodowli Roślin, Instytut Hodowli i Aklimatyzacji Roślin – Państwowy Instytut Badawczy, Radzików, 05-870 Błonie (Poland)
https://orcid.org/0000-0003-2076-7586
Abstract
Barley (Hordeum vulgare L.) is one of the most economically important cereals and holds fourth place in the world by harvest area. Powdery mildew, caused by the pathogenic fungus Blumeria graminis f. sp. hordei, is one of the most important diseases that decrease the quantity and quality of the yield. Since there is a limited number of resistance genes presented in cultivated crop varieties, there is a need to search and identify new sources of resistance.
Supporting Agencies
Keywords:
gene pools, Hordeum vulgare, powdery mildew, resistance genesReferences
Abdel-Ghani, A. H., Al-Ameiri, N. S., Karajeh, M. R.(2008). Resistance of barley landraces and wild barley populations to powdery mildew in Jordan. Phytopathol Mediterr 47:92–97.
Google Scholar
Actualitix 2019. https://en.actualitix.com/.
Google Scholar
Agenda ONZ na Rzecz Zrównoważonego Rozwoju 2030. http://www.un.org.pl/.
Google Scholar
Agrometeorological Centre of Excellence, Kanada. http://www.gov.mb.ca/agriculture/climate.
Google Scholar
Akem, C., Ceccarelli, S., Erskine, W., Lenne, J. (2000). Using genetic diversity for disease resistance in agricultural production. Outlook on Agric 29:25–30.
Google Scholar
Aken, B. L., Achuthan, P., Akanni, W., Amode, M. R., Bernsdorff, F., Bhai, J. i in. (2017). Ensembl 2017. Nucleic Acids Res, 45 (D1): D635–D642.
Google Scholar
Appiano, M., Catalano, D., Martínez, M. S., Lotti, C., Zheng, Z., Visser, R. G. F., Ricciardi, L., Bai1 Y., Pavan, S. (2015). Monocot and dicot MLO powdery mildew susceptibility factors are functionally conserved in spite of the evolution of class-specific molecular features. BMC Plant Biology 15:257.
Google Scholar
Brabham, H. J., Hernández-Pinzón, I., Holden, S., Lorang, J., Moscou, M. J. (2017). An ancient integration in a plant NLR is maintained as a trans-species polymorphism. SSRN: doi: http://dx.doi.org/10.1101/239541.
Google Scholar
Braun, U. (2011).. The current systematics and taxonomy of the powdery mildews (Erysiphales): an overview. Mycoscience 52:210–212.
Google Scholar
Braun, U., Cook, R. T. A. (2012). Taxonomic manual of the Erysiphales (powdery mildews). CBS Biodiversity Series 11:1–707.
Google Scholar
Brown, J. K. M., Rant, J. C. (2013). Fitness costs and trade-offs of disease resistance and their consequences for breeding arable crops. Plant Pathol 62:83–95.
Google Scholar
Buckler, E. S., Thornsberry, J. M., Kresovich, S. (2001). Molecular diversity, structure and domestication of grasses. Genet. Res. 77:213‒218.
Google Scholar
Büschges, R., Hollricher, K., Pastrunga, R., Simons, G., Wolter, M. i in. (1997). The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705.
Google Scholar
Camacho Villa, T. C., Maxted, N., Scholten, M. A., Ford-Lloyd, B. V. (2005). Defining and identifying crop landraces. Plant Genet Resour 3 (3): 373–384.
Google Scholar
Chełkowski, J., Tyrka, M., Sobkiewicz, A. (2003). Resistance genes in barley (Hordeum vulgare L.) and their identification with molecular markers. J Appl Genet 44 (3): 291‒309.
Google Scholar
Chen, X. (2013). Review Article: High-Temperature Adult-Plant Resistance, Key for Sustainable Control of Stripe Rust. American Journal of Plant Sciences 04: 608‒627.
Google Scholar
Collins, H. M., Burton, R. A., Topping, D. L., Liao, M. L., Bacic, A., Fincher, G. B. (2010). Variability in fine structures of noncellulosic cell wall polysaccharides from cereal grains: potential importance in human health and nutrition. Cereal Chemistry 87:272‒282.
Google Scholar
Czembor, J. H. (2000a). Resistance to powdery mildew in barley landraces from Morocco. J Plant Pathol 82 (3): 187‒200.
Google Scholar
Czembor, J. H. (2000b.) Resistance to powdery mildew in populations of barley from Morocco. Genet Resour Crop Evol 47:439‒449.
Google Scholar
Czembor, J. H. (2002). Resistance to powdery mildew in selections from Moroccan barley landraces. Euphytica 125:397‒409.
Google Scholar
Czembor, J. H., Pietrusińska, A., Piechota, U., Mańkowski, D. (2019). Resistance to powdery mildew in barley recombinant lines derived from crosses between Hordeum vulgare and Hordeum bulbosum. Cereal Res Commun 47 (3): 463–472.
Google Scholar
Dangl, J. L., Jones, J. D. G. (2001). Plant pathogens and integrated defence responses to infection. Nature 411:826‒833.
Google Scholar
Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., Foster, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414‒430.
Google Scholar
Dreiseitl, A. (2014a). Pathogenic divergence of Central European and Australian populations of Blumeria graminis f. sp. hordei. Ann Appl Biol 165:364‒372.
Google Scholar
Dreiseitl, A. (2014b). The Hordeum vulgare subsp. spontaneum – Blumeria graminis f. sp. hordei pathosystem: its position in resistance research and breeding applications. Eur J Plant Pathol 138:561–568.
Google Scholar
Dreiseitl, A. (2017). Genes for resistance to powdery mildew in European barley cultivars registered in the Czech Republic from 2011 to 2015. Plant Breeding 136:351–356.
Google Scholar
Dreiseitl, A. (2018). Resistance of barley variety ‘Venezia’ and its reflection in the Blumeria graminis f. sp. hordei population. Euphytica 214:40.
Google Scholar
Dreiseitl, A. (2019). A novel resistance against powdery mildew found in winter barley cultivars. Plant Breed 00:1–6.
Google Scholar
Dreiseitl, A., Kosman, E. (2013). Virulence phenotypes of Blumeria graminis f. sp. hordei in South Africa. Eur J Plant Pathol 136:113–121.
Google Scholar
Dyrektywa 2009/128/WE (2009). Dyrektywa Parlamentu Europejskiego na rzecz zrównoważonego rozwoju. Załącznik III Ogólne zasady integrowanej ochrony roślin.
Google Scholar
EnsemblPlants. https://plants.ensembl.org/.
Google Scholar
FAOSTAT (2018). Statistical Division of the UN Food and Agriculture Organization. http://www.fao.org/faostat.
Google Scholar
Flor, H. H. (1956). The complementary genic system in flax and flax rust. Adv Genet 8:29‒54.
Google Scholar
Franckowiak, J. D., Lundqvist, U. (2009). Rules for nomenclature and gene symbolization in barley. Barley Genetics Newsletter 40:178‒182.
Google Scholar
Giraldo, P., Benavente, E., Manzano-Agugliaro, F., Gimenez, E. (2019). Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy 9:352.
Google Scholar
GrainGenes Journal Report: Barley Genetic Newsletter http://wheat.pw.usda.gov/ggpages/bgn/.
Google Scholar
GUS (2019).: Główny Urząd Statystyczny. https://stat.gov.pl/.
Google Scholar
Hacquard, S., Kracher, B., Maekawa, T., Vernaldi, S., Schulze-Lefert, P., Ver Loren van Themaat, E. (2013). Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. Proc Natl Acad Sci USA 110 (24): E2219-E2228.
Google Scholar
Halterman, D. A., Wei, F., Wise, R. P. (2003). Powdery mildew-induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames. Plant Physiol 131.
Google Scholar
Hanelt, P., Kilian, R., Kilian, W. (2001). Mansfeld’s encyclopedia of agricultural and horticultural crops (except ornamentals). Berlin: Springer.
Google Scholar
Hoseinzadeh, P., Zhou, R., Mascher, M., Himmelbach, A., Niks, R. E., Schweizer, P., Stein, N. (2019). High resolution genetic and physical mapping of a major powdery mildew resistance locus in barley. Front Plant Sci 10:146.
Google Scholar
InterPro. https://www.ebi.ac.uk/interpro/.
Google Scholar
Jarosch, B., Kogel, K. H., Schaffrath, U. (1999). The ambivalence of the barley Mlo locus: mutation conferring resistance against powdery mildew (Blumeria graminis f. sp. hordei) enhance susceptibility to the rice blast fungus Magnoporthe grisea. Mol Plant Microbe Interact 12:508‒514
Google Scholar
Jensen, H. R., Dreiseitl, A., Sadiki, M., Schoen, D. J. (2013). High diversity, low spatial structure and rapid pathotype evolution in Moroccan populations of Blumeria graminis f. sp. hordei. Eur J Plant Pathol 136:323–336.
Google Scholar
Jensen, J. (1990). Are powdery mildew resistance loci Mlp and mld on barley chromosome 5? Barley Genetics Newsletter 19:27‒31.
Google Scholar
Jones, J. D. G., Dangl, J. L. (2006). The plant immune system. Nature 444:16.
Google Scholar
Jørgensen, J. H. (1987). Specific recommendation B. Designations of barley powdery mildew resistance and virulence in Europe. In: Wolfe, M. S., Limpert, E. (ed) Integrated control of cereal mildews: monitoring the pathogen. Advances in agricultural biotechnology. Proceedings of seminar in the community programme of coordinated research of energy in agriculture, Freising-Weihenstephan, Federal Republic of Germany, 4‒6 November 1986, pp 1–4.
Google Scholar
Jørgensen, J. H. (1992). Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141‒152.
Google Scholar
Jørgensen, J. H. (1993). Coordinator’s report: Disease and pest resistant genes. Barley Genetics Newsletter 22:110‒134.
Google Scholar
Jørgensen, J. H., Wolfe, M. (1994). Genetics of powdery mildew resistance in barley. Crit Rev Plant Sci 13 (1): 97‒119.
Google Scholar
Kjær, B., Jensen, H. P., Jensen, J., Jørgensen, J. H. (1990). Associations between three ml-o powdery mildew resistance genes and agronomic traits in barley. Euphytica 46:185–193.
Google Scholar
Komatsuda, T. (2014). Domestication. W: Kumlehn, J., Stein, N. (Ed) Biotechnological approaches to barley improvement. pp 37‒54. Springer-Verlag, Niemcy.
Google Scholar
Kourelis, J., van der Hoorn, R. A. L. (2018). Defended to the nines: 25 years of resistance gene cloning identifies nine mechanism for R protein function. Plant Cell 30:285‒299.
Google Scholar
Kumar, J., Hückelhoven, R., Beckhove, U., Nagarajan, S., Kogel, K. H. (2001). A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (telomorph: Cochliobolus sativus) and its toxins. Phytopathol 91:127‒133.
Google Scholar
Lista Opisowa Odmian Roślin Rolniczych (2019). COBOR. U., Słupia Wielka.
Google Scholar
Lucas, J. A., Hawkins, N. J., Fraaije, B. A. (2015). The evolution of fungicide resistance. Adv Appl Microbiol 90:29‒92.
Google Scholar
Maekawa, T., Kracher, B., Saur, I. M. L., Yoshikawa-Maekawa, M., Kellner, R., Pankin, A., von Korff, M., Schulze-Lefert, P. (2019). Subfamily-specific specialization of RGH1/MLA immune receptors in wild barley. MPMI 32 (1): 107–119.
Google Scholar
McCouch, S., Baute, G. J., Bradeen, J., Bramel, P., Bretting, P. K., Buckler, E. i in. (2013). Agriculture: feeding the future. Nature 499:499023a.
Google Scholar
McDonald, B. A., Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349‒379.
Google Scholar
Międzynarodowa Rada Zbożowa (International Grain Council) Wielka Brytania. https://www.igc.int/en/gmr_summary.aspx.
Google Scholar
Mitchell, A. L., Attwood, T. K., Babbitt, P. C., Blum, M., Bork, P., et al. (2019). InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47 (D1): D351-D360.
Google Scholar
Morrell, P. L., Clegg, M. T., (2007). Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proc Natl Acad Sci USA 104:3289–3294.
Google Scholar
NCBI. National Center for Biotechnology Information, USA. https://www.ncbi.nlm.nih.gov/.
Google Scholar
Oberhaensli, S., Parlange, F., Buchmann, J. P., Jenny, F. H., Abbott, J. C., Burgis, T. A., Spanu, P. D., Keller, B., Wicker, T. (2011). Comparative sequence analysis of wheat and barley powdery mildew fungi reveals gene colinearity, dates divergence and indicates host-pathogen co-evolution. Fungal Genet Biol 48 (3): 327‒334.
Google Scholar
OECD (2004). Consensus document on compositional considerations for new varieties of barley (Hordeum vulgare L.): Key food and feed nutrients and anti-nutrients. OECD. Raport nr 2.
Google Scholar
Ordon, F. (2009). Coordinator´s Report: Disease and Pest resistance genes. W: Lundqvist U (Ed.) Reports of the Coordinators. Overall coordinator’s report. Barley Genetics Newsletter 39:24‒76, pp 58‒69.
Google Scholar
Panstruga P. D. S. R. (2012). Powdery mildew genomes in the crosshairs. New Phytologist 195:20‒22.
Google Scholar
Panstruga, R., Dodds, P. N. (2009). Terrific protein traffic: The mystery of effector protein delivery by filamentous plant pathogens. Science 324:748–750.
Google Scholar
Pickering, R. A., Hill, A. M., Michel, M., Timmerman-Vaughan, G. M. (1995). The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley (H. vulgare L.) chromosome 2 (2I). Theor Appl Genet 91:1288‒1292.
Google Scholar
Piechota, U., Czembor, P., Słowacki, P., Czembor, J. H. (2019). Identifying a novel powdery mildew resistance gene in a barley landrace from Morocco. J Appl Genetics 60 (3–4): 243–254.
Google Scholar
Piechota, U., Słowacki, P., Czembor, P. (2020). Identification of a novel recessive gene for resistance to powdery mildew (Blumeria graminis f. sp. hordei) in barley (Hordeum vulgare). Plant Breed. https://doi.org/10.1111/PBR.12819
Google Scholar
Purugganan, M. D., Fuller, D. Q. (2009). The nature of selection during plant domestication. Nature 457. https://doi.org/10.1038/nature07895
Google Scholar
Raport z konsultacji publicznych Strategii Zrównoważonego Rozwoju Wsi, Rolnictwa i Rybactwa 2030, 2019 Warszawa, 2 sierpnia 2019r. www.gov.pl.
Google Scholar
Reinstädler Müller, J., Czembor, J. H., Piffanelli, P., Panstruga, R. (2010). Novel induced mlo mutant alleles in combination with site-directed mutagenesis reveal functionally important domains in the heptahelical barley Mlo protein. BMC Plant Biology 10:31.
Google Scholar
Ridout, C. J., Skamnioti, P., Porritt, O., Sacristan, S., Jones, J. D. G., Brown, J. M. K. (2006). Multiple avirulence paralogous in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. Plant Cell 18. 2402–2414.
Google Scholar
Riehl, S. (2019). Barley in archaeology and early history. W: Oxford research encyclopedia, Enviromental science (oxfordre.com/environmentalscience). Oxford University Press, USA.
Google Scholar
Salamini, F., Ozkan, H., Brandolini, A., Schäfer-Pregl, R., Martin, W. (2002). Genetics and geography of wild cereal domestication in the near east. Nature Reviews Genetics 3:429–441.
Google Scholar
Savary, S., Ficke, A., Aubertot, J. N., Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Sec 4:519–537.
Google Scholar
Schönfeld, M., Ragni, A., Fischbeck, G., Jahoor, A. (1996). RFLP mapping of three new resistance loci for resistance genes to powdery mildew (Erysiphe graminis f. sp. hordei) in barley. Theor Appl Genet 93:48‒56.
Google Scholar
Schulze-Lefert, P., Panstruga, R. (2011). A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci 16 (3): 117‒125.
Google Scholar
Schwessinger, B., Ronald, P. C. (2012). Plant innate immunity: perception of conserved microbial signatures. Annual Review of Plant Biology 63 (63)451‒482.
Google Scholar
Singh, B., Mehta, S., Aggarwal, S. K., Tiwari, M., Bhuyan, S. I., Bhatia, S., Islam, M. A. (2019). Barley, disease resistance and molecular breeding approaches. W: Wani, S. H.(Ed) Disease resistance in crop plants. Springer Nature, Switzerland. pp. 261‒299.
Google Scholar
Spanu, P. D., Abbott, J. C., Amselem, J., Burgis, T. A., Soanes, D. M., Stüber, K. i in. (2010). Genome expansion and gene loss in powdery mildew fungi reveal trade-offs in extreme parasitism. Science 330:1543–1546.
Google Scholar
Species Fungorum, Centre for Agriculture and Biosciences International, Wielka Brytania. http://www.speciesfungorum.org/.
Google Scholar
Stukenbrock, E. H., McDonald, B. A. (2009). Population genetics of fungal and oomycete effectors involved in gene-for-gene nteractions. MPMI 22 (4).
Google Scholar
Tanksley, S. D., McCouch, S. R. (1997). Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277 (5329).: 1063‒1066.
Google Scholar
The Angiosperm Phylogeny Group (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181 (1)1–20.
Google Scholar
The International Barley Genome Sequencing Consortium (2012). A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711.
Google Scholar
The UniProt Consortium (2019). UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research 47 (D1): D506–D515.
Google Scholar
Tratwal, A., Weber, A. (2006). Virulence frequency of Blumeria graminis f. sp. hordei and the occurrence of powdery mildew on four winter barley cultivars. J Plant Prot Res 46 (3): 221–230.
Google Scholar
van der Hoorn, R. A. L., Kamoun, S. (2008). From guard to decoy: A new model for perception of plant pathogen effectors. Plant Cell 20 (8): 2009‒2017.
Google Scholar
von Bothmer, R., Sato, K., Knüpffer, H., Hintum, T. (2003a) .Barley diversity – an introduction. W: von Bothmer, R., Hintum, T., Knüpffer, H., Sato, K. (Ed) Diversity in barley (Hordeum vulgare). Elsevier Science, B.V., Netherlandy. pp. 3–8.
Google Scholar
von Bothmer, R., Sato, K., Komatsuda, T., Yasuda, S., Fischbeck, G. (2003b). The domestication of cultivated barley. W: von Bothmer, R., van Hintum, T., Knuüpffer, H., Sato, K. (Ed) Diversity in barley (Hordeum vulgare). Elsevier Science, B.V., Niderlandy. pp. 3‒27.
Google Scholar
Walters, D. R., Avrova, A., Bingham, I. J., Burnett, F. J., Fountaine, J., Havis, N. D., Hoad, S. P., Hughes G, Looseley M, Oxley S. J. P., Renwick A, Topp C. F. E., Newton, A. C. (2012). Control of foliar diseases in barley: towards an integrated approach. Eur J Plant Pathol 133 (1) 33‒73.
Google Scholar
Wspólna Polityka Rolna Unii Europejskiej na lata 2021‒2027. https://europa.eu/rapid/press-release_MEMO-18‒3974_en.htm.
Google Scholar
Wyand, R. A., Brown, J. K. M. (2003). Genetic and forma specialis diversity in Blumeria graminis of cereals and its implications for host-pathogen co-evolution. Mol Plant Pathol 4 (3): 187–198.
Google Scholar
Zhang, Y., Lubberstedt, T., Xu, M. (2013). The genetic and molecular basis of plant resistance to pathogens. J Genet Genomics 40:23‒35.
Google Scholar
Zipfel, C. (2008). Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10‒16.
Google Scholar
Zipfel, C. (2009). Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12:414‒420.
Google Scholar
Authors
Urszula Piechotau.piechota@ihar.edu.pl
Instytut Hodowli i Aklimatyzacji Roślin — Państwowy Instytut Badawczy, Radzików Poland
https://orcid.org/0000-0002-8599-1071
Authors
Paweł CzemborZakład Genetyki i Hodowli Roślin, Instytut Hodowli i Aklimatyzacji Roślin – Państwowy Instytut Badawczy, Radzików, 05-870 Błonie Poland
https://orcid.org/0000-0003-2076-7586
Statistics
Abstract views: 513PDF downloads: 311 PDF downloads: 91
License
Copyright (c) 2020 Urszula Piechota
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Upon submitting the article, the Authors grant the Publisher a non-exclusive and free license to use the article for an indefinite period of time throughout the world in the following fields of use:
- Production and reproduction of copies of the article using a specific technique, including printing and digital technology.
- Placing on the market, lending or renting the original or copies of the article.
- Public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the article publicly available in such a way that everyone can access it at a place and time of their choice.
- Including the article in a collective work.
- Uploading an article in electronic form to electronic platforms or otherwise introducing an article in electronic form to the Internet or other network.
- Dissemination of the article in electronic form on the Internet or other network, in collective work as well as independently.
- Making the article available in an electronic version in such a way that everyone can access it at a place and time of their choice, in particular via the Internet.
Authors by sending a request for publication:
- They consent to the publication of the article in the journal,
- They agree to give the publication a DOI (Digital Object Identifier),
- They undertake to comply with the publishing house's code of ethics in accordance with the guidelines of the Committee on Publication Ethics (COPE), (http://ihar.edu.pl/biblioteka_i_wydawnictwa.php),
- They consent to the articles being made available in electronic form under the CC BY-SA 4.0 license, in open access,
- They agree to send article metadata to commercial and non-commercial journal indexing databases.
Most read articles by the same author(s)
- Urszula Piechota, Paweł Czembor, Jerzy Czembor, Broadening of barley gene pool , Bulletin of Plant Breeding and Acclimatization Institute: No. 287 (2019): Special issue
- Grzegorz Czajowski, Paweł Czembor, Magdalena Radecka-Janusik, Virulence of Puccinia triticina the causal agents of wheat leaf rust in Poland in the years 2013–2015 , Bulletin of Plant Breeding and Acclimatization Institute: No. 280 (2016): Regular issue
- Tomasz Góral , Halina Wiśniewska , Paweł Czembor , Piotr Ochodzki , Magdalena Radecka-Janusik , Maciej Majka, Jarosław Przetakiewicz , Identification and application of phenotypic, metabolic and molecular markers in studies of types of resistance to Fusarium head blight in winter wheat accessions differing in resistance , Bulletin of Plant Breeding and Acclimatization Institute: No. 286 (2019): Special issue
- Grzegorz Czajowski, Paweł Czembor, Virulence of Puccinia triticina the causal agents of wheat and triticale leaf rust in Poland in years 2016–2017 , Bulletin of Plant Breeding and Acclimatization Institute: No. 287 (2019): Special issue
- Urszula Piechota, Grzegorz Czajowski, Paweł Czembor, Evaluation of the barley landraces resistance to powdery mildew (Blumeria graminis) , Bulletin of Plant Breeding and Acclimatization Institute: No. 297/298 (2022): Regular issue
- Jerzy H. Czembor, Aleksandra Pietrusińska, Urszula Piechota, Hordeum bulbosum — as a source of effective resistance to barley leaf rust , Bulletin of Plant Breeding and Acclimatization Institute: No. 281 (2017): Regular issue
- Marta Puchta, Paulina Bolc, Jerzy H. Czembor, Urszula Piechota, Optimization of the ddRadSeq method for Hordeum sp. and Zea sp. , Bulletin of Plant Breeding and Acclimatization Institute: No. 283 (2018): Special issue
- Katarzyna Karska, Anna Strzembicka, Grzegorz Czajowski, Paweł Czembor, Virulence in population of Puccinia striiformis, the causal agent of triticale yellow rust in Poland , Bulletin of Plant Breeding and Acclimatization Institute: No. 269 (2013): Regular issue
- Elżbieta Czembor, Marta Puchta, Urszula Piechota, Jerzy H. Czembor, Genetic diversity in the collection of modern and historical inbred lines of maize for resistance to ear rot caused by Fusarium verticillioides and the ability to accumulate fumonisins , Bulletin of Plant Breeding and Acclimatization Institute: No. 283 (2018): Special issue
- Piotr Słowacki, Paweł Czembor, Jerzy H. Czembor, Mapping of resistance gene in line Ph873-2 of spring barley to leaf rust (Puccinia hordei) , Bulletin of Plant Breeding and Acclimatization Institute: No. 283 (2018): Special issue